In this study, we examined the dispersion profiles and surface acoustic wave attenuation properties of polygonal cavity-type phononic crystals in relation to changes in the number of vertices. Both band analysis and transmission spectrum calculations are performed using finite element method simulations. The findings indicate an increase in the number of vertices of phononic crystal results in an increase in local resonance bandgap frequencies and corresponding transmission peaks. Furthermore, the phononic crystal bandgap widens from 7.3 MHz to 11.1 MHz as the number of vertices increases from 3 to 14, as demonstrated by the obtained dispersion profiles. Comparable features are observed in the transmission spectra for alternating polygonal cavity-type phononic crystal periodic grooves. Additionally, the ability of the surface acoustic wave attenuation is affected by the phononic crystal shape, and the resonance frequency of the phononic crystals can be adjusted by changing the number of vertices.
Achaoui Y., Khelif A., Benchabane S., Robert L., Laude V., 2011, Physical Review B, 83, 104201 google scholar
Achaoui Y., Laude V., Benchabane S., Khelif A., 2013, Journal of Applied Physics, 114, 104503 google scholar
Agostini M., Greco G., Cecchini M., 2019, IEEE Access, 7, 70901 google scholar
Ash B. J., Worsfold S. R., Vukusic P., Nash G. R., 2017, Nature Communications, 8, 174 google scholar
Bourquin Y., Wilson R., Zhang Y., Reboud J., Cooper J. M., 2011, Advanced Materials, 23, 1458 google scholar
Cao D., Hu W., Gao Y., Guo X., 2019, Smart Materials and Structures, 28, 085014 google scholar
Collins D. J., Devendran C., Ma Z., Ng J. W., Neild A., Ai Y., 2016, Science Advances, 2, e1600089 google scholar
Gharibi H., Mehaney A., 2021, Physica E: Low-dimensional Systems and Nanostructures, 126, 114429 google scholar
Gharibi H., Khaligh A., Bahrami A., Ghavifekr H. B., 2019, Journal of Molecular Liquids, 296, 111878 google scholar
Guo J. C., Zhang Z., 2022, Applied Physics A, 128, 126 google scholar
Guo L., Zhao S., Guo Y., Yang J., Kitipornchai S., 2023, International Journal of Mechanical Sciences, 240, 107956 google scholar
HekiemN. L. L., Ralib A. A. M., HattarM. A. b. M., Ahmad F., Nordin A. N., Rahim R. A., Za’bah N. F., 2021, Sensors and Actuators A: Physical, 329, 112792 google scholar
Jin Y., Pennec Y., Bonello B., Honarvar H., Dobrzynski L., Djafari-Rouhani B., Hussein M. I., 2021, Reports on Progress in Physics, 84, 086502 google scholar
Kidakova A., Boroznjak R., Reut J., Öpik A., Saarma M., Syritski V., 2020, Sensors and Actuators B: Chemical, 308, 127708 google scholar
Korozlu N., Biçer A., Sayarcan D., Kaya O. A., Cicek A., 2022, Ultrasonics, 124, 106777 google scholar
Kumar A., Prajesh R., 2022, Sensors and Actuators A: Physical, p. 113498 google scholar
Kuruoğlu F., 2022, Cumhuriyet Science Journal, 43, 346 google scholar
Kushwaha M. S., Halevi P., Dobrzynski L., Djafari-Rouhani B., 1993, Physical Review Letters, 71, 2022 google scholar
Kushwaha M. S., Halevi P., Martinez G., Dobrzynski L., Djafari-Rouhani B., 1994, Physical Review B, 49, 2313 google scholar
Li X., Ning S., Liu Z., Yan Z., Luo C., Zhuang Z., 2020, Computer Methods in Applied Mechanics and Engineering, 361, 112737 google scholar
Mead D., 1996, Journal of Sound and Vibration, 190, 495 google scholar
Muhammad Lim C., Leung A. Y. T., 2021, Acoustics, 3, 25 google scholar
Oh J. H., Lee I. K., Ma P. S., Kim Y. Y., 2011, Applied Physics Letters, 99, 083505 google scholar
Pouya C., Nash G. R., 2021, Communications Materials, 2, 55 google scholar
Qian J., Ren J., Liu Y., Lam R. H. W., Lee J. E.-Y., 2020, Analyst, 145, 7752 google scholar
Schmidt M.-P., Oseev A., Lucklum R., Zubtsov M., Hirsch S., 2016, Microsystem Technologies, 22, 1593 google scholar
Sigalas M., Economou E., 1993, Solid State Communications, 86,141 Su R., et al., 2021a, IEEE Transactions on Device and Materials Reliability, 21, 365 google scholar
Su R., et al., 2021b, IEEE Electron Device Letters, 42, 438 google scholar
Tateno S., Kurimune Y., Matsuo M., Yamanoi K., Nozaki Y., 2021, Physical Review B, 104, L020404 google scholar
Topaltzikis D., et al., 2021, Applied Physics Letters, 118, 133501 google scholar
Ulug B., Kuruoğlu F., Yalçın Y., Erol A., Sarcan F., Şahin A., Cicek A., 2022, Journal of Physics D: Applied Physics, 55, 225303 google scholar
Vasseur J. O., Hladky-Hennion A.-C., Djafari-Rouhani B., Duval F., Dubus B., Pennec Y., Deymier P. A., 2007, Journal of Applied Physics, 101, 114904 google scholar
Wang Y., Wang Y., Liu W., Chen D., Wu C., Xie J., 2019, Sensors and Actuators A: Physical, 288, 67 google scholar
Xie Y., Mao Z., Bachman H., Li P., Zhang P., Ren L., Wu M., Huang T. J., 2020, Journal of biomechanical engineering, 142 google scholar
Yavuzcetin O., Ozturk B., Xiao D., Sridhar S., 2011, Optical Materials Expres s, 1, 1262 google scholar
Zhang X.-F., Zhang Z.-W., He Y.-L., Liu Y.-X., Li S., Fang J.-Y., Zhang X.-A., Peng G., 2015, Frontiers of Physics, 11 google scholar
Achaoui Y., Khelif A., Benchabane S., Robert L., Laude V., 2011, Physical Review B, 83, 104201 google scholar
Achaoui Y., Laude V., Benchabane S., Khelif A., 2013, Journal of Applied Physics, 114, 104503 google scholar
Agostini M., Greco G., Cecchini M., 2019, IEEE Access, 7, 70901 google scholar
Ash B. J., Worsfold S. R., Vukusic P., Nash G. R., 2017, Nature Communications, 8, 174 google scholar
Bourquin Y., Wilson R., Zhang Y., Reboud J., Cooper J. M., 2011, Advanced Materials, 23, 1458 google scholar
Cao D., Hu W., Gao Y., Guo X., 2019, Smart Materials and Structures, 28, 085014 google scholar
Collins D. J., Devendran C., Ma Z., Ng J. W., Neild A., Ai Y., 2016, Science Advances, 2, e1600089 google scholar
Gharibi H., Mehaney A., 2021, Physica E: Low-dimensional Systems and Nanostructures, 126, 114429 google scholar
Gharibi H., Khaligh A., Bahrami A., Ghavifekr H. B., 2019, Journal of Molecular Liquids, 296, 111878 google scholar
Guo J. C., Zhang Z., 2022, Applied Physics A, 128, 126 google scholar
Guo L., Zhao S., Guo Y., Yang J., Kitipornchai S., 2023, International Journal of Mechanical Sciences, 240, 107956 google scholar
HekiemN. L. L., Ralib A. A. M., HattarM. A. b. M., Ahmad F., Nordin A. N., Rahim R. A., Za’bah N. F., 2021, Sensors and Actuators A: Physical, 329, 112792 google scholar
Jin Y., Pennec Y., Bonello B., Honarvar H., Dobrzynski L., Djafari-Rouhani B., Hussein M. I., 2021, Reports on Progress in Physics, 84, 086502 google scholar
Kidakova A., Boroznjak R., Reut J., Öpik A., Saarma M., Syritski V., 2020, Sensors and Actuators B: Chemical, 308, 127708 google scholar
Korozlu N., Biçer A., Sayarcan D., Kaya O. A., Cicek A., 2022, Ultrasonics, 124, 106777 google scholar
Kumar A., Prajesh R., 2022, Sensors and Actuators A: Physical, p. 113498 google scholar
Kuruoğlu F., 2022, Cumhuriyet Science Journal, 43, 346 google scholar
Kushwaha M. S., Halevi P., Dobrzynski L., Djafari-Rouhani B., 1993, Physical Review Letters, 71, 2022 google scholar
Kushwaha M. S., Halevi P., Martinez G., Dobrzynski L., Djafari-Rouhani B., 1994, Physical Review B, 49, 2313 google scholar
Li X., Ning S., Liu Z., Yan Z., Luo C., Zhuang Z., 2020, Computer Methods in Applied Mechanics and Engineering, 361, 112737 google scholar
Mead D., 1996, Journal of Sound and Vibration, 190, 495 google scholar
Muhammad Lim C., Leung A. Y. T., 2021, Acoustics, 3, 25 google scholar
Oh J. H., Lee I. K., Ma P. S., Kim Y. Y., 2011, Applied Physics Letters, 99, 083505 google scholar
Pouya C., Nash G. R., 2021, Communications Materials, 2, 55 google scholar
Qian J., Ren J., Liu Y., Lam R. H. W., Lee J. E.-Y., 2020, Analyst, 145, 7752 google scholar
Schmidt M.-P., Oseev A., Lucklum R., Zubtsov M., Hirsch S., 2016, Microsystem Technologies, 22, 1593 google scholar
Sigalas M., Economou E., 1993, Solid State Communications, 86,141 Su R., et al., 2021a, IEEE Transactions on Device and Materials Reliability, 21, 365 google scholar
Su R., et al., 2021b, IEEE Electron Device Letters, 42, 438 google scholar
Tateno S., Kurimune Y., Matsuo M., Yamanoi K., Nozaki Y., 2021, Physical Review B, 104, L020404 google scholar
Topaltzikis D., et al., 2021, Applied Physics Letters, 118, 133501 google scholar
Ulug B., Kuruoğlu F., Yalçın Y., Erol A., Sarcan F., Şahin A., Cicek A., 2022, Journal of Physics D: Applied Physics, 55, 225303 google scholar
Vasseur J. O., Hladky-Hennion A.-C., Djafari-Rouhani B., Duval F., Dubus B., Pennec Y., Deymier P. A., 2007, Journal of Applied Physics, 101, 114904 google scholar
Wang Y., Wang Y., Liu W., Chen D., Wu C., Xie J., 2019, Sensors and Actuators A: Physical, 288, 67 google scholar
Xie Y., Mao Z., Bachman H., Li P., Zhang P., Ren L., Wu M., Huang T. J., 2020, Journal of biomechanical engineering, 142 google scholar
Yavuzcetin O., Ozturk B., Xiao D., Sridhar S., 2011, Optical Materials Expres s, 1, 1262 google scholar
Zhang X.-F., Zhang Z.-W., He Y.-L., Liu Y.-X., Li S., Fang J.-Y., Zhang X.-A., Peng G., 2015, Frontiers of Physics, 11 google scholar
Kuruoğlu, F., Genç, N. S., Erol, A., Çiçek, A. (2023). Band Profile and Surface Acoustic Wave Attenuation Analysis of Polygonal Cavity-type Piezoelectric Phononic Crystals. Physics and Astronomy Reports, 1(1), 27-31. https://doi.org/10.26650/PAR.2023.00003
AMA
Kuruoğlu F, Genç NS, Erol A, Çiçek A. Band Profile and Surface Acoustic Wave Attenuation Analysis of Polygonal Cavity-type Piezoelectric Phononic Crystals. Physics and Astronomy Reports. June 2023;1(1):27-31. doi:10.26650/PAR.2023.00003
Chicago
Kuruoğlu, Furkan, Nurseli Seda Genç, Ayşe Erol, and Ahmet Çiçek. “Band Profile and Surface Acoustic Wave Attenuation Analysis of Polygonal Cavity-Type Piezoelectric Phononic Crystals”. Physics and Astronomy Reports 1, no. 1 (June 2023): 27-31. https://doi.org/10.26650/PAR.2023.00003.
EndNote
Kuruoğlu F, Genç NS, Erol A, Çiçek A (June 1, 2023) Band Profile and Surface Acoustic Wave Attenuation Analysis of Polygonal Cavity-type Piezoelectric Phononic Crystals. Physics and Astronomy Reports 1 1 27–31.
IEEE
F. Kuruoğlu, N. S. Genç, A. Erol, and A. Çiçek, “Band Profile and Surface Acoustic Wave Attenuation Analysis of Polygonal Cavity-type Piezoelectric Phononic Crystals”, Physics and Astronomy Reports, vol. 1, no. 1, pp. 27–31, 2023, doi: 10.26650/PAR.2023.00003.
ISNAD
Kuruoğlu, Furkan et al. “Band Profile and Surface Acoustic Wave Attenuation Analysis of Polygonal Cavity-Type Piezoelectric Phononic Crystals”. Physics and Astronomy Reports 1/1 (June 2023), 27-31. https://doi.org/10.26650/PAR.2023.00003.
JAMA
Kuruoğlu F, Genç NS, Erol A, Çiçek A. Band Profile and Surface Acoustic Wave Attenuation Analysis of Polygonal Cavity-type Piezoelectric Phononic Crystals. Physics and Astronomy Reports. 2023;1:27–31.
MLA
Kuruoğlu, Furkan et al. “Band Profile and Surface Acoustic Wave Attenuation Analysis of Polygonal Cavity-Type Piezoelectric Phononic Crystals”. Physics and Astronomy Reports, vol. 1, no. 1, 2023, pp. 27-31, doi:10.26650/PAR.2023.00003.
Vancouver
Kuruoğlu F, Genç NS, Erol A, Çiçek A. Band Profile and Surface Acoustic Wave Attenuation Analysis of Polygonal Cavity-type Piezoelectric Phononic Crystals. Physics and Astronomy Reports. 2023;1(1):27-31.