Research Article
BibTex RIS Cite
Year 2024, Volume: 2 Issue: 1, 18 - 28, 11.06.2024
https://doi.org/10.26650/PAR.2024.00003

Abstract

References

  • Angulo C., et al., 1999, Nuclear Phys. A, 656, 3 google scholar
  • Astropy Collaboration et al., 2013, A&A, 558, A33 google scholar
  • Astropy Collaboration et al., 2018, AJ, 156, 123 google scholar
  • Astropy Collaboration et al., 2022, ApJ, 935, 167 google scholar
  • Bakış V., Eker Z., 2022, Acta Astron., 72, 195 google scholar
  • Baranne A., Mayor M., Poncet J. L., 1979, Vistas in Astronomy, 23, 279 google scholar
  • Benedict G. F., et al., 2016, AJ, 152, 141 google scholar
  • Blouin S., Shaffer N. R., Saumon D., Starrett C. E., 2020, ApJ, 899, 46 google scholar
  • Bovy J., 2015, ApJS, 216, 29 google scholar
  • Casagrande L., Schönrich R., Asplund M., Cassisi S., Ramirez I., Melendez J., Bensby T., Feltzing S., 2011, A&A, 530, A138 google scholar
  • Cassisi S., Potekhin A. Y., Pietrinferni A., Catelan M., Salaris M., 2007, ApJ, 661, 1094 google scholar
  • Chabrier G., 2003, PASP, 115, 763 google scholar
  • Chugunov A. I., Dewitt H. E., Yakovlev D. G., 2007, Phys. Rev. D, 76, 025028 google scholar
  • Coşkunoglu B., et al., 2011, MNRAS, 412, 1237 google scholar
  • Cyburt R. H., et al., 2010, ApJS, 189, 240 google scholar
  • Eggleton P. P., 1983, ApJ, 268, 368 google scholar
  • Eker Z., Bakış V., 2023, MNRAS, 523, 2440 google scholar
  • Eker Z., et al., 2015, AJ, 149, 131 google scholar
  • Eker Z., et al., 2018, MNRAS, 479, 5491 google scholar
  • Eker Z., Soydugan F., Bilir S., 2024, arXiv e-prints, p. arXiv:2402.07947 google scholar
  • Ferguson J. W., Alexander D. R., Allard F., Barman T., Bodnarik J. G., Hauschildt P. H., Heffner-Wong A., Tamanai A., 2005, ApJ, 623, 585 google scholar
  • Foreman-Mackey D., 2016, The Journal of Open Source Software, 1, 24 google scholar
  • Foreman-Mackey D., Hogg D. W., Lang D., Goodman J., 2013, PASP, 125, 306 google scholar
  • Fuller G. M., Fowler W. A., Newman M. J., 1985, ApJ, 293, 1 google scholar
  • Gaia Collaboration et al., 2023, A&A, 674, A1 google scholar
  • Griffin R. F., 2001, The Observatory, 121, 315 google scholar
  • Harris C. R., et al., 2020, Nature, 585, 357 google scholar
  • Holmberg J., Nordström B., Andersen J., 2009, A&A, 501, 941 google scholar
  • Hunter J. D., 2007, Computing in Science and Engineering, 9, 90 google scholar
  • Hurley J. R., Tout C. A., Pols O. R., 2002, MNRAS, 329, 897 google scholar
  • Iglesias C. A., Rogers F. J., 1993, ApJ, 412, 752 google scholar
  • Iglesias C. A., Rogers F. J., 1996, ApJ, 464, 943 google scholar
  • Irwin A. W., 2004, The FreeEOS Code for Calculating the Equation of State for Stellar Interiors, http://freeeos.sourceforge.net/ google scholar
  • Itoh N., Hayashi H., Nishikawa A., Kohyama Y., 1996, ApJS, 102, 411 google scholar
  • Jermyn A. S., Schwab J., Bauer E., Timmes F. X., Potekhin A. Y., 2021, ApJ, 913, 72 google scholar
  • Jermyn A. S., et al., 2023, ApJS, 265, 15 google scholar
  • Johnson D. R. H., Soderblom D. R., 1987, AJ, 93, 864 google scholar
  • Kwee K. K., van Woerden H., 1956, Bull. Astron. Inst. Netherlands, 12, 327 google scholar
  • Langanke K., Martmez-Pinedo G., 2000, Nuclear Physics A, 673, 481 google scholar
  • Leggett S. K., 1992, ApJS, 82, 351 google scholar
  • Lightkurve Collaboration et al., 2018, Lightkurve: Kepler and TESS time series analysis in Python, Astrophysics Source Code Library (ascl:1812.013) google scholar
  • Mihalas D., Binney J., 1981, Galactic astronomy. Structure and kine-matics google scholar
  • Moe M., Di Stefano R., 2017, ApJS, 230, 15 google scholar
  • Nordström B., et al., 2004, A&A, 418, 989 google scholar
  • Oda T., Hino M., Muto K., Takahara M., Sato K., 1994, Atomic Data and Nuclear Data Tables, 56, 231 google scholar
  • Paegert M., Stassun K. G., Collins K. A., Pepper J., Torres G., Jenk-ins J., Twicken J. D., Latham D. W., 2022, VizieR Online Data Catalog: TESS Input Catalog version 8.2 (TIC v8.2) (Paegert+, 2021), VizieR On-line Data Catalog: IV/39. Originally published in: 2021arXiv210804778P google scholar
  • Paxton B., Bildsten L., Dotter A., Herwig F., Lesaffre P., Timmes F., 2011, ApJS, 192, 3 google scholar
  • Paxton B., et al., 2013, ApJS, 208, 4 google scholar
  • Paxton B., et al., 2015, ApJS, 220, 15 google scholar
  • Paxton B., et al., 2018, ApJS, 234, 34 google scholar
  • Paxton B., et al., 2019, ApJS, 243, 10 google scholar
  • Perryman M. A. C., et al., 1997, A&A, 323, L49 google scholar
  • Potekhin A. Y., Chabrier G., 2010, Contributions to Plasma Physics, 50, 82 google scholar
  • Poutanen J., 2017, ApJ, 835, 119 google scholar
  • Prsa A., 2020, Contributions of the Astronomical Observatory Skalnate Pleso, 50, 565 google scholar
  • Prsa A., Zwitter T., 2005, ApJ, 628, 426 google scholar
  • Prsa A., et al., 2022, ApJS, 258, 16 google scholar
  • Rappaport S., Verbunt F., Joss P. C., 1983, ApJ, 275, 713 google scholar
  • Ricker G. R., et al., 2015, Journal of Astronomical Telescopes, Instru-ments, and Systems, 1, 014003 google scholar
  • Ritter H., 1988, A&A, 202, 93 google scholar
  • Rogers F. J., Nayfonov A., 2002, ApJ, 576, 1064 google scholar
  • Rosales J. A., Mennickent R. E., Schleicher D. R. G., Senhadji A. A., 2019, MNRAS, 483, 862 google scholar
  • Saumon D., Chabrier G., van Horn H. M., 1995, ApJS, 99, 713 google scholar
  • Serenelli A., et al., 2021, A&ARv, 29, 4 google scholar
  • Soydugan F., Soydugan E., Aliçavuş F., 2020, Research in Astronomy and Astrophysics, 20, 052 google scholar
  • Tasdemir S., Yontan T., 2023, Physics and Astronomy Reports, 1, 1 google scholar
  • Timmes F. X., Swesty F. D., 2000, ApJS, 126, 501 google scholar
  • Torres G., Andersen J., Gimenez A., 2010, A&ARv, 18, 67 google scholar
  • Townsend R., 2024, MESA SDK for Linux, google scholar
  • doi:10.5281/zenodo.10624843, https://doi.org/10.5281/zenodo. 10624843 google scholar
  • Tunçel Güçtekin S., Bilir S., Karaali S., Plevne O., Ak S., 2019, Advances in Space Research, 63, 1360 google scholar
  • Virtanen P., et al., 2020, Nature Methods, 17, 261 google scholar
  • Wilson R. E., 1979, ApJ, 234, 1054 google scholar
  • Wilson R. E., 1990, ApJ, 356, 613 google scholar
  • Wilson R. E., Devinney E. J., 1971, ApJ, 166, 605 google scholar
  • Yontan T., Canbay R., 2023, Physics and Astronomy Reports, 1, 65 google scholar
  • Yontan T., et al., 2022, Rev. Mex. Astron. Astrofis., 58, 333 google scholar
  • Yücel G., Bakış V., 2022, MNRAS, 516, 2486 google scholar
  • van Hamme W., 1993, AJ, 106, 2096 google scholar
  • van Hamme W., Wilson R. E., 2003, in Munari U., ed., Astronomical Society of the Pacific Conference Series Vol. 298, GAIA Spec-troscopy: Science and Technology. p. 323 google scholar

The Fundamental Parameters and Evolutionary Status of V454 Aurigae

Year 2024, Volume: 2 Issue: 1, 18 - 28, 11.06.2024
https://doi.org/10.26650/PAR.2024.00003

Abstract

Eclipsing binary systems have a unique feature that enables scientists to obtain precise fundamental star parameters, which opens up a greater area of astrophysics studies. In this study, we derived the fundamental parameters, evolutionary status, and birthplace of V454 Aur in the Galaxy by combining radial velocity, photometric, and spectral energy distribution data. We have updated the ephemerides and period of V454 Aur as 2458850.80136 +0.00001 −0.00001 and 27.0198177 +0.0000003 −0.0000003, respectively. We obtain 1.173 +0.016 −0.016 𝑀⊙ and 1.203 +0.022 −0.026 𝑅⊙ for the primary component and 1.045 +0.015 −0.014 𝑀⊙ and 0.993 +0.034 −0.027 𝑅⊙ for the secondary component. The effective temperatures for the components were accurately determined via SED data as 6250 +150 −150 K and 5966 +109 −89 K for the primary component and secondary component, respectively. The metallicity of the components is derived from evolutionary tracks, which implies a slightly higher metallicity than Solar metallicity. According to the analysis, the components of V454 Aur are in the main sequence. Our distance calculation for the system is 65.07 +2 −3 pc and is in excellent agreement with Gaia astrometric data, which is 65.07 +0.09 −0.09 pc. The current age of the system is 1.19 +0.08 −0.09 Gyr, and it will start mass transfer between components in 5 Gyr from now on. Dynamical orbital analysis shows that V454 Aur follows a boxy pattern around the Galactic centre and is a member of the thin-disc component of the Galaxy. Considering the age and metallicity of this system, it was found to have formed just outside the Solar circle.

References

  • Angulo C., et al., 1999, Nuclear Phys. A, 656, 3 google scholar
  • Astropy Collaboration et al., 2013, A&A, 558, A33 google scholar
  • Astropy Collaboration et al., 2018, AJ, 156, 123 google scholar
  • Astropy Collaboration et al., 2022, ApJ, 935, 167 google scholar
  • Bakış V., Eker Z., 2022, Acta Astron., 72, 195 google scholar
  • Baranne A., Mayor M., Poncet J. L., 1979, Vistas in Astronomy, 23, 279 google scholar
  • Benedict G. F., et al., 2016, AJ, 152, 141 google scholar
  • Blouin S., Shaffer N. R., Saumon D., Starrett C. E., 2020, ApJ, 899, 46 google scholar
  • Bovy J., 2015, ApJS, 216, 29 google scholar
  • Casagrande L., Schönrich R., Asplund M., Cassisi S., Ramirez I., Melendez J., Bensby T., Feltzing S., 2011, A&A, 530, A138 google scholar
  • Cassisi S., Potekhin A. Y., Pietrinferni A., Catelan M., Salaris M., 2007, ApJ, 661, 1094 google scholar
  • Chabrier G., 2003, PASP, 115, 763 google scholar
  • Chugunov A. I., Dewitt H. E., Yakovlev D. G., 2007, Phys. Rev. D, 76, 025028 google scholar
  • Coşkunoglu B., et al., 2011, MNRAS, 412, 1237 google scholar
  • Cyburt R. H., et al., 2010, ApJS, 189, 240 google scholar
  • Eggleton P. P., 1983, ApJ, 268, 368 google scholar
  • Eker Z., Bakış V., 2023, MNRAS, 523, 2440 google scholar
  • Eker Z., et al., 2015, AJ, 149, 131 google scholar
  • Eker Z., et al., 2018, MNRAS, 479, 5491 google scholar
  • Eker Z., Soydugan F., Bilir S., 2024, arXiv e-prints, p. arXiv:2402.07947 google scholar
  • Ferguson J. W., Alexander D. R., Allard F., Barman T., Bodnarik J. G., Hauschildt P. H., Heffner-Wong A., Tamanai A., 2005, ApJ, 623, 585 google scholar
  • Foreman-Mackey D., 2016, The Journal of Open Source Software, 1, 24 google scholar
  • Foreman-Mackey D., Hogg D. W., Lang D., Goodman J., 2013, PASP, 125, 306 google scholar
  • Fuller G. M., Fowler W. A., Newman M. J., 1985, ApJ, 293, 1 google scholar
  • Gaia Collaboration et al., 2023, A&A, 674, A1 google scholar
  • Griffin R. F., 2001, The Observatory, 121, 315 google scholar
  • Harris C. R., et al., 2020, Nature, 585, 357 google scholar
  • Holmberg J., Nordström B., Andersen J., 2009, A&A, 501, 941 google scholar
  • Hunter J. D., 2007, Computing in Science and Engineering, 9, 90 google scholar
  • Hurley J. R., Tout C. A., Pols O. R., 2002, MNRAS, 329, 897 google scholar
  • Iglesias C. A., Rogers F. J., 1993, ApJ, 412, 752 google scholar
  • Iglesias C. A., Rogers F. J., 1996, ApJ, 464, 943 google scholar
  • Irwin A. W., 2004, The FreeEOS Code for Calculating the Equation of State for Stellar Interiors, http://freeeos.sourceforge.net/ google scholar
  • Itoh N., Hayashi H., Nishikawa A., Kohyama Y., 1996, ApJS, 102, 411 google scholar
  • Jermyn A. S., Schwab J., Bauer E., Timmes F. X., Potekhin A. Y., 2021, ApJ, 913, 72 google scholar
  • Jermyn A. S., et al., 2023, ApJS, 265, 15 google scholar
  • Johnson D. R. H., Soderblom D. R., 1987, AJ, 93, 864 google scholar
  • Kwee K. K., van Woerden H., 1956, Bull. Astron. Inst. Netherlands, 12, 327 google scholar
  • Langanke K., Martmez-Pinedo G., 2000, Nuclear Physics A, 673, 481 google scholar
  • Leggett S. K., 1992, ApJS, 82, 351 google scholar
  • Lightkurve Collaboration et al., 2018, Lightkurve: Kepler and TESS time series analysis in Python, Astrophysics Source Code Library (ascl:1812.013) google scholar
  • Mihalas D., Binney J., 1981, Galactic astronomy. Structure and kine-matics google scholar
  • Moe M., Di Stefano R., 2017, ApJS, 230, 15 google scholar
  • Nordström B., et al., 2004, A&A, 418, 989 google scholar
  • Oda T., Hino M., Muto K., Takahara M., Sato K., 1994, Atomic Data and Nuclear Data Tables, 56, 231 google scholar
  • Paegert M., Stassun K. G., Collins K. A., Pepper J., Torres G., Jenk-ins J., Twicken J. D., Latham D. W., 2022, VizieR Online Data Catalog: TESS Input Catalog version 8.2 (TIC v8.2) (Paegert+, 2021), VizieR On-line Data Catalog: IV/39. Originally published in: 2021arXiv210804778P google scholar
  • Paxton B., Bildsten L., Dotter A., Herwig F., Lesaffre P., Timmes F., 2011, ApJS, 192, 3 google scholar
  • Paxton B., et al., 2013, ApJS, 208, 4 google scholar
  • Paxton B., et al., 2015, ApJS, 220, 15 google scholar
  • Paxton B., et al., 2018, ApJS, 234, 34 google scholar
  • Paxton B., et al., 2019, ApJS, 243, 10 google scholar
  • Perryman M. A. C., et al., 1997, A&A, 323, L49 google scholar
  • Potekhin A. Y., Chabrier G., 2010, Contributions to Plasma Physics, 50, 82 google scholar
  • Poutanen J., 2017, ApJ, 835, 119 google scholar
  • Prsa A., 2020, Contributions of the Astronomical Observatory Skalnate Pleso, 50, 565 google scholar
  • Prsa A., Zwitter T., 2005, ApJ, 628, 426 google scholar
  • Prsa A., et al., 2022, ApJS, 258, 16 google scholar
  • Rappaport S., Verbunt F., Joss P. C., 1983, ApJ, 275, 713 google scholar
  • Ricker G. R., et al., 2015, Journal of Astronomical Telescopes, Instru-ments, and Systems, 1, 014003 google scholar
  • Ritter H., 1988, A&A, 202, 93 google scholar
  • Rogers F. J., Nayfonov A., 2002, ApJ, 576, 1064 google scholar
  • Rosales J. A., Mennickent R. E., Schleicher D. R. G., Senhadji A. A., 2019, MNRAS, 483, 862 google scholar
  • Saumon D., Chabrier G., van Horn H. M., 1995, ApJS, 99, 713 google scholar
  • Serenelli A., et al., 2021, A&ARv, 29, 4 google scholar
  • Soydugan F., Soydugan E., Aliçavuş F., 2020, Research in Astronomy and Astrophysics, 20, 052 google scholar
  • Tasdemir S., Yontan T., 2023, Physics and Astronomy Reports, 1, 1 google scholar
  • Timmes F. X., Swesty F. D., 2000, ApJS, 126, 501 google scholar
  • Torres G., Andersen J., Gimenez A., 2010, A&ARv, 18, 67 google scholar
  • Townsend R., 2024, MESA SDK for Linux, google scholar
  • doi:10.5281/zenodo.10624843, https://doi.org/10.5281/zenodo. 10624843 google scholar
  • Tunçel Güçtekin S., Bilir S., Karaali S., Plevne O., Ak S., 2019, Advances in Space Research, 63, 1360 google scholar
  • Virtanen P., et al., 2020, Nature Methods, 17, 261 google scholar
  • Wilson R. E., 1979, ApJ, 234, 1054 google scholar
  • Wilson R. E., 1990, ApJ, 356, 613 google scholar
  • Wilson R. E., Devinney E. J., 1971, ApJ, 166, 605 google scholar
  • Yontan T., Canbay R., 2023, Physics and Astronomy Reports, 1, 65 google scholar
  • Yontan T., et al., 2022, Rev. Mex. Astron. Astrofis., 58, 333 google scholar
  • Yücel G., Bakış V., 2022, MNRAS, 516, 2486 google scholar
  • van Hamme W., 1993, AJ, 106, 2096 google scholar
  • van Hamme W., Wilson R. E., 2003, in Munari U., ed., Astronomical Society of the Pacific Conference Series Vol. 298, GAIA Spec-troscopy: Science and Technology. p. 323 google scholar
There are 80 citations in total.

Details

Primary Language English
Subjects Classical Physics (Other)
Journal Section Research Articles
Authors

Gökhan Yücel 0000-0002-9846-3788

Remziye Canbay 0000-0003-2575-9892

Volkan Bakış 0000-0002-3125-9010

Publication Date June 11, 2024
Submission Date March 7, 2024
Acceptance Date April 28, 2024
Published in Issue Year 2024 Volume: 2 Issue: 1

Cite

APA Yücel, G., Canbay, R., & Bakış, V. (2024). The Fundamental Parameters and Evolutionary Status of V454 Aurigae. Physics and Astronomy Reports, 2(1), 18-28. https://doi.org/10.26650/PAR.2024.00003
AMA Yücel G, Canbay R, Bakış V. The Fundamental Parameters and Evolutionary Status of V454 Aurigae. Physics and Astronomy Reports. June 2024;2(1):18-28. doi:10.26650/PAR.2024.00003
Chicago Yücel, Gökhan, Remziye Canbay, and Volkan Bakış. “The Fundamental Parameters and Evolutionary Status of V454 Aurigae”. Physics and Astronomy Reports 2, no. 1 (June 2024): 18-28. https://doi.org/10.26650/PAR.2024.00003.
EndNote Yücel G, Canbay R, Bakış V (June 1, 2024) The Fundamental Parameters and Evolutionary Status of V454 Aurigae. Physics and Astronomy Reports 2 1 18–28.
IEEE G. Yücel, R. Canbay, and V. Bakış, “The Fundamental Parameters and Evolutionary Status of V454 Aurigae”, Physics and Astronomy Reports, vol. 2, no. 1, pp. 18–28, 2024, doi: 10.26650/PAR.2024.00003.
ISNAD Yücel, Gökhan et al. “The Fundamental Parameters and Evolutionary Status of V454 Aurigae”. Physics and Astronomy Reports 2/1 (June 2024), 18-28. https://doi.org/10.26650/PAR.2024.00003.
JAMA Yücel G, Canbay R, Bakış V. The Fundamental Parameters and Evolutionary Status of V454 Aurigae. Physics and Astronomy Reports. 2024;2:18–28.
MLA Yücel, Gökhan et al. “The Fundamental Parameters and Evolutionary Status of V454 Aurigae”. Physics and Astronomy Reports, vol. 2, no. 1, 2024, pp. 18-28, doi:10.26650/PAR.2024.00003.
Vancouver Yücel G, Canbay R, Bakış V. The Fundamental Parameters and Evolutionary Status of V454 Aurigae. Physics and Astronomy Reports. 2024;2(1):18-2.