Research Article
BibTex RIS Cite

Pulmoner hipertansiyonlu hastalarda comet analizi ile değerlendirilen artmış DNA hasarı

Year 2019, , 415 - 421, 30.09.2019
https://doi.org/10.31362/patd.557153

Abstract

Amaç: Pulmoner
hipertansiyonda (PH) görülen patolojik lezyonlar, oksidatif stres ve
inflamatuar süreçlerle karakterizedir. Çalışmamızın amacı, PH hastalarında DNA
hasarının potansiyel katkısını araştırmaktır.



Gereç ve Yöntem: Çalışmamıza
28 tedavi almamış PH hastası (59.93 ± 11.19 yıl) ve 28 yaş-cinsiyet uyumlu
(59.86 ± 11.92 yıl) sağlıklı kontrol dahil edilmiştir. Tüm hastalara tanıyı doğrulamak ve hemodinamiyi değerlendirmek
için sağ kalp kateterizasyonu uygulanmıştır. Bireylerden alınan venöz kan
örneklerinde, DNA hasarı belirlenmesinde tek hücre jel elektroforezi ve
flüoresan mikroskopisine dayanan, onarımdan önce DNA hasarını tespit eden
kuyruklu yıldız (Comet) analizi kullanılmıştır. Sürekli veriler ortalama ±
standart sapma (SD) olarak verilmiş, normallik testi için Shapiro-Wilk testleri
kullanılmıştır. Bağımsız gruplar için Mann Whitney U testi, kategorik
değişkenler için ki-kare testi kullanılmıştır. İstatistiksel analizlerde SPSS,
24.0 programı kullanılmış ve p≤0.05 değerleri istatistiksel olarak anlamlı
kabul edilmiştir.



Bulgular: Ortalama
pulmoner vasküler direnç 5.64 ± 2.99 Wood Unitesi, ortalama sağ atriyal basınç
9.70 ± 5.38 mmHg, kardiyak indeks 3.12 ± 1.18 l / dak / m2, mixed
venöz O2 saturasyonu % 64.77 ± 13.33 olarak saptanmıştır. DNA hasar
parametrelerinden, kuyruk uzunluğu (24.02 ± 11.34 ve 16.88 ± 3.55 μm, p =
0.0001), kuyruk momenti (1.93 ± 2.36 ve 0.87 ± 1.03 μm, p = 0.013), kuyruk göçü
(10.3 ± 12.24 ve 3.62  ± 2.75, p = 0.03)
hastalarda istatistiksel olarak anlamlı düzeyde yüksek saptanmıştır.



Sonuç: Bulgularımız, PH
hastalarında DNA tamir mekanizmaları devreye girmeden önce DNA hasarının artmış
olabileceğini göstermektedir. DNA hasarı PH patofizyolojisine katkıda
bulunabilir ve/veya PH'da yeni bir farmakolojik hedef olarak ele alınabilir.

References

  • 1- Rich S, Dantzker DR, Ayres SM, et al. Primary pulmonary hypertension. A national prospective study. Ann Intern Med 1987;107:216-223.
  • 2- McLaughlin VV, Archer SL, Badesch DB, et al. ACCF/AHA 2009 expert consensus document on pulmonary hypertension: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association: developed in collaboration with the American College of Chest Physicians, American Thoracic Society, Inc., and the Pulmonary Hypertension Association. Circulation 2009;119:2250-2294. https://dx.doi.org/10.1161/CIRCULATIONAHA.109.192230
  • 3- Kishimoto Y, Kato T, Ito M, et al. Hydrogen ameliorates pulmonary hypertension in rats by anti-inflammatory and antioxidant effects. J Thorac Cardiovasc Surg 2015;150:645-654. https://dx.doi.org/10.1016/j.jtcvs.2015.05.052
  • 4- Cool C, Kennedy D, Voelkel N, Tuder R. Pathogenesis and evolution of plexiform lesions in pulmonary hypertension associated with scleroderma and human immunodeficiency virus infection. Hum Pathol 1997,28:434-442.
  • 5- Vaillancourt M, Ruffenach G, Meloche J, Bonnet S. Adaptation and remodelling of the pulmonary circulation in pulmonary hypertension. Can J Cardiol 2015;31:407-415. https://dx.doi.org/10.1016/j.cjca.2014.10.023
  • 6- Galiè N, Hoeper MM, Humbert M, et al. Guidelines for the diagnosis and treatment of pulmonary hypertension: the Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT). Eur Heart J 2009;30:2493-2537. https://dx.doi.org/10.1093/eurheartj/ehp297
  • 7- McLaughlin VV, Archer SL, Badesch DB, et al. ACCF/AHA 2009 expert consensus document on pulmonary hypertension a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association developed in collaboration with the American College of Chest Physicians; American Thoracic Society, Inc.; and the Pulmonary Hypertension Association. J Am Coll Cardiol 2009;53:1573-1619. https://dx.doi.org/10.1016/j.jacc.2009.01.004
  • 8- Meloche J, Pflieger A, Vaillancourt M, et al. Role for DNA damage signaling in pulmonary arterial hypertension. Circulation 2014;129:786-797. https://dx.doi.org/10.1161/CIRCULATIONAHA.113.006167
  • 9- Federici C, Drake KM, Rigelsky CM, et al. Increased mutagen sensitivity and dna damage in pulmonary arterial hypertension. Am J Respir Crit Care Med 2015;192:219-228. https://dx.doi.org/10.1164/rccm.201411-2128OC
  • 10- Nandhakumar S, Parasuraman S, Shanmugam MM, Rao KR, Chand P, Bhat BV. Evaluation of DNA damage using single-cell gel electrophoresis (Comet Assay). J Pharmacol Pharmacother 2011;2:107-111. https://dx.doi.org/10.4103/0976-500X.81903
  • 11- Galiè N, Humbert M, Vachiery JL, et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J 2016;37:67-119. https://dx.doi.org/10.1093/eurheartj/ehv317
  • 12- Dikilitaş M, Koçyiğit A. Canlılarda “tek hücre jel elektroforez” yöntemi ile DNA hasar analizi (teknik not): COMET analiz yöntemi. Harran Tarım ve Gıda Bilimleri Dergisi 2010;14,77-89.
  • 13- Davidson CJ, Bonow RO. Cardiac Catheterization. In: Mann DL, Zipes DP, Libby P, et al, ed. Braunwald’s Heart Disease. Philadelphia, PA: Elsevier; 2015;378.
  • 14- Rabinovitch M, Guignabert C, Humbert M, Nicolls MR. Inflammation and immunity in the pathogenesis of pulmonary arterial hypertension. Circ Res 2014;115:165-175. https://dx.doi.org/10.1161/CIRCRESAHA.113.301141
  • 15- Intengan HD, Schiffrin EL. Vascular remodeling in hypertension: roles of apoptosis, inflammation, and fibrosis. Hypertension 2001;38:581-587.16- Stenmark KR, Fagan KA, Frid MG. Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms. Circ Res 2006;99:675-691. https://dx.doi.org/10.1161/01.RES.0000243584.45145.3f
  • 17- Bourgeois A, Omura J, Habbout K, Bonnet S, Boucherat O. Pulmonary arterial hypertension: New pathophysiological insights and emerging therapeutic targets. Int J Biochem Cell Biol 2018;104:9-13. https://dx.doi.org/10.1016/j.biocel.2018.08.015
  • 18- Chen PI, Cao A, Miyagawa K, et al. Amphetamines promote mitochondrial dysfunction and DNA damage in pulmonary hypertension. JCI Insight 2017;2:e90427. https://dx.doi.org/10.1172/jci.insight.90427
  • 19- Bristow RG, Hill RP. Hypoxia and metabolism. Hypoxia, DNA repair and genetic instability. Nat Rev Cancer 2008;8:180-192. https://dx.doi.org/10.1038/nrc2344
  • 20- Ranchoux B, Meloche J, Paulin R, Boucherat O, Provencher S, Bonnet S. DNA damage and pulmonary hypertension. Int J Mol Sci 2016;17(6). pii: E990. https://dx.doi.org/10.3390/ijms17060990
  • 21- Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D; Darnell J. DNA damage and repair and their role in carcinogenesis. In: Molecular Cell Biology; WH. Freeman: New York, NY, USA, 2000.
  • 22- Diebold I, Hennigs JK, Miyagawa K, et al. BMPR2 preserves mitochondrial function and DNA during reoxygenation to promote endothelial cell survival and reverse pulmonary hypertension. Cell Metab 2015;21:596-608. https://dx.doi.org/10.1016/j.cmet.2015.03.010
  • 23- Li M, Vattulainen S, Aho J, et al. Loss of bone morphogenetic protein receptor 2 is associated with abnormal DNA repair in pulmonary arterial hypertension. Am J Respir Cell Mol Biol 2014;50:1118-1128. https://dx.doi.org/10.1165/rcmb.2013-0349OC
  • 24- Soubrier F, Chung WK, Machado R, et al. Genetics and genomics of pulmonary arterial hypertension. Turk Kardiyol Dern Ars 2014;42:17-28.
  • 25- Tuder RM, Archer SL, Dorfmüller P, et al. Relevant issues in the pathology and pathobiology of pulmonary hypertension. J Am Coll Cardiol 2013;62:D4-12. https://dx.doi.org/10.1016/j.jacc.2013.10.025
  • 26- de Jesus Perez VA, Yuan K, Lyuksyutova MA, et al. Whole-exome sequencing reveals TopBP1 as a novel gene in idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med 2014;189:1260-1272. https://dx.doi.org/10.1164/rccm.201310-1749OC
  • 27- Bowers R, Cool C, Murphy RC, et al. Oxidative stress in severe pulmonary hypertension. Am J Respir Crit Care Med 2004;169:764-769. https://dx.doi.org/10.1164/rccm.200301-147OC
  • 28- Xu W, Koeck T, Lara AR, et al. Alterations of cellular bioenergetics in pulmonary artery endothelial cells. Proc Natl Acad Sci USA 2007;104:1342-1347. https://dx.doi.org/10.1073/pnas.0605080104
  • 29- Sutendra G, Michelakis ED. The metabolic basis of pulmonary arterial hypertension. Cell Metab 2014;19:558-573. https://dx.doi.org/10.1016/j.cmet.2014.01.004
  • 30- Lombard DB, Chua KF, Mostoslavsky R, Franco S, Gostissa M, Alt FW. DNA repair, genome stability, and aging. Cell 2005;120:497-512. https://dx.doi.org/10.1016/j.cell.2005.01.028
  • 31- Ou HL, Schumacher B. DNA damage responses and p53 in the aging process. Blood 2018;131:488-495. https://dx.doi.org/10.1182/blood-2017-07-746396

Increased DNA damage with comet assay in patients with pulmonary hypertension

Year 2019, , 415 - 421, 30.09.2019
https://doi.org/10.31362/patd.557153

Abstract

Purpose: In pulmonary
hypertension (PH), pathologic lesions are characterized by oxidative stress and
inflammatory processes. The purpose of our study was to investigate the
potential contribution of DNA damage in PH.

 

Materials and methods: The study
comprised 28 treatment-naive PH patients (59.93±11.19 years) and 28 age- and
sex-matched (59.86±11.92 years) healthy controls. All participants underwent a
right-heart catheterization to confirm the diagnosis and to asses hemodynamics.
Venous blood was obtained from participants. DNA damage were evaluated using
the comet assay which is based on single cell gel electrophoresis and
fluorescent microscopy and detects DNA damage prior to repair. Continuous data
were reported as mean ± standard deviation (SD). Shapiro–Wilk tests were used
for testing normality. Mann Whitney U test was used for independent groups. For
categorical variables, Chi-square test was used. SPSS, 24.0 was used for
statistical analyses and p value less than 0.05 was considered statistically
significant.

 

Results: The average pulmonary
vascular resistance was 5.64±2.99 WU, mean right atrial pressure was 9.70±5.38
mmHg, cardiac index was 3.12±1.18 l/min/m2, mixed venous O2
saturation was 64.77±13.33 %. DNA damage parameters such as tail length
(24.02±11.34 vs. 16.88±3.55 μm, p=0.0001), tail moment (1.93±2.36 vs.
0.87±1.03 μm, p=0.013), tail migration (10.3±12.24 vs. 3.62±2.75,
p=0.03) were significantly higher in

patients
with PH.

 















Conslusion: These results suggest that
patients with PH could have increased DNA damage before DNA repair mechanisms
are at play. DNA damage could be contributing to the pathophysiology
and may represent a novel pharmacological
target in PH.

References

  • 1- Rich S, Dantzker DR, Ayres SM, et al. Primary pulmonary hypertension. A national prospective study. Ann Intern Med 1987;107:216-223.
  • 2- McLaughlin VV, Archer SL, Badesch DB, et al. ACCF/AHA 2009 expert consensus document on pulmonary hypertension: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association: developed in collaboration with the American College of Chest Physicians, American Thoracic Society, Inc., and the Pulmonary Hypertension Association. Circulation 2009;119:2250-2294. https://dx.doi.org/10.1161/CIRCULATIONAHA.109.192230
  • 3- Kishimoto Y, Kato T, Ito M, et al. Hydrogen ameliorates pulmonary hypertension in rats by anti-inflammatory and antioxidant effects. J Thorac Cardiovasc Surg 2015;150:645-654. https://dx.doi.org/10.1016/j.jtcvs.2015.05.052
  • 4- Cool C, Kennedy D, Voelkel N, Tuder R. Pathogenesis and evolution of plexiform lesions in pulmonary hypertension associated with scleroderma and human immunodeficiency virus infection. Hum Pathol 1997,28:434-442.
  • 5- Vaillancourt M, Ruffenach G, Meloche J, Bonnet S. Adaptation and remodelling of the pulmonary circulation in pulmonary hypertension. Can J Cardiol 2015;31:407-415. https://dx.doi.org/10.1016/j.cjca.2014.10.023
  • 6- Galiè N, Hoeper MM, Humbert M, et al. Guidelines for the diagnosis and treatment of pulmonary hypertension: the Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT). Eur Heart J 2009;30:2493-2537. https://dx.doi.org/10.1093/eurheartj/ehp297
  • 7- McLaughlin VV, Archer SL, Badesch DB, et al. ACCF/AHA 2009 expert consensus document on pulmonary hypertension a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association developed in collaboration with the American College of Chest Physicians; American Thoracic Society, Inc.; and the Pulmonary Hypertension Association. J Am Coll Cardiol 2009;53:1573-1619. https://dx.doi.org/10.1016/j.jacc.2009.01.004
  • 8- Meloche J, Pflieger A, Vaillancourt M, et al. Role for DNA damage signaling in pulmonary arterial hypertension. Circulation 2014;129:786-797. https://dx.doi.org/10.1161/CIRCULATIONAHA.113.006167
  • 9- Federici C, Drake KM, Rigelsky CM, et al. Increased mutagen sensitivity and dna damage in pulmonary arterial hypertension. Am J Respir Crit Care Med 2015;192:219-228. https://dx.doi.org/10.1164/rccm.201411-2128OC
  • 10- Nandhakumar S, Parasuraman S, Shanmugam MM, Rao KR, Chand P, Bhat BV. Evaluation of DNA damage using single-cell gel electrophoresis (Comet Assay). J Pharmacol Pharmacother 2011;2:107-111. https://dx.doi.org/10.4103/0976-500X.81903
  • 11- Galiè N, Humbert M, Vachiery JL, et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J 2016;37:67-119. https://dx.doi.org/10.1093/eurheartj/ehv317
  • 12- Dikilitaş M, Koçyiğit A. Canlılarda “tek hücre jel elektroforez” yöntemi ile DNA hasar analizi (teknik not): COMET analiz yöntemi. Harran Tarım ve Gıda Bilimleri Dergisi 2010;14,77-89.
  • 13- Davidson CJ, Bonow RO. Cardiac Catheterization. In: Mann DL, Zipes DP, Libby P, et al, ed. Braunwald’s Heart Disease. Philadelphia, PA: Elsevier; 2015;378.
  • 14- Rabinovitch M, Guignabert C, Humbert M, Nicolls MR. Inflammation and immunity in the pathogenesis of pulmonary arterial hypertension. Circ Res 2014;115:165-175. https://dx.doi.org/10.1161/CIRCRESAHA.113.301141
  • 15- Intengan HD, Schiffrin EL. Vascular remodeling in hypertension: roles of apoptosis, inflammation, and fibrosis. Hypertension 2001;38:581-587.16- Stenmark KR, Fagan KA, Frid MG. Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms. Circ Res 2006;99:675-691. https://dx.doi.org/10.1161/01.RES.0000243584.45145.3f
  • 17- Bourgeois A, Omura J, Habbout K, Bonnet S, Boucherat O. Pulmonary arterial hypertension: New pathophysiological insights and emerging therapeutic targets. Int J Biochem Cell Biol 2018;104:9-13. https://dx.doi.org/10.1016/j.biocel.2018.08.015
  • 18- Chen PI, Cao A, Miyagawa K, et al. Amphetamines promote mitochondrial dysfunction and DNA damage in pulmonary hypertension. JCI Insight 2017;2:e90427. https://dx.doi.org/10.1172/jci.insight.90427
  • 19- Bristow RG, Hill RP. Hypoxia and metabolism. Hypoxia, DNA repair and genetic instability. Nat Rev Cancer 2008;8:180-192. https://dx.doi.org/10.1038/nrc2344
  • 20- Ranchoux B, Meloche J, Paulin R, Boucherat O, Provencher S, Bonnet S. DNA damage and pulmonary hypertension. Int J Mol Sci 2016;17(6). pii: E990. https://dx.doi.org/10.3390/ijms17060990
  • 21- Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D; Darnell J. DNA damage and repair and their role in carcinogenesis. In: Molecular Cell Biology; WH. Freeman: New York, NY, USA, 2000.
  • 22- Diebold I, Hennigs JK, Miyagawa K, et al. BMPR2 preserves mitochondrial function and DNA during reoxygenation to promote endothelial cell survival and reverse pulmonary hypertension. Cell Metab 2015;21:596-608. https://dx.doi.org/10.1016/j.cmet.2015.03.010
  • 23- Li M, Vattulainen S, Aho J, et al. Loss of bone morphogenetic protein receptor 2 is associated with abnormal DNA repair in pulmonary arterial hypertension. Am J Respir Cell Mol Biol 2014;50:1118-1128. https://dx.doi.org/10.1165/rcmb.2013-0349OC
  • 24- Soubrier F, Chung WK, Machado R, et al. Genetics and genomics of pulmonary arterial hypertension. Turk Kardiyol Dern Ars 2014;42:17-28.
  • 25- Tuder RM, Archer SL, Dorfmüller P, et al. Relevant issues in the pathology and pathobiology of pulmonary hypertension. J Am Coll Cardiol 2013;62:D4-12. https://dx.doi.org/10.1016/j.jacc.2013.10.025
  • 26- de Jesus Perez VA, Yuan K, Lyuksyutova MA, et al. Whole-exome sequencing reveals TopBP1 as a novel gene in idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med 2014;189:1260-1272. https://dx.doi.org/10.1164/rccm.201310-1749OC
  • 27- Bowers R, Cool C, Murphy RC, et al. Oxidative stress in severe pulmonary hypertension. Am J Respir Crit Care Med 2004;169:764-769. https://dx.doi.org/10.1164/rccm.200301-147OC
  • 28- Xu W, Koeck T, Lara AR, et al. Alterations of cellular bioenergetics in pulmonary artery endothelial cells. Proc Natl Acad Sci USA 2007;104:1342-1347. https://dx.doi.org/10.1073/pnas.0605080104
  • 29- Sutendra G, Michelakis ED. The metabolic basis of pulmonary arterial hypertension. Cell Metab 2014;19:558-573. https://dx.doi.org/10.1016/j.cmet.2014.01.004
  • 30- Lombard DB, Chua KF, Mostoslavsky R, Franco S, Gostissa M, Alt FW. DNA repair, genome stability, and aging. Cell 2005;120:497-512. https://dx.doi.org/10.1016/j.cell.2005.01.028
  • 31- Ou HL, Schumacher B. DNA damage responses and p53 in the aging process. Blood 2018;131:488-495. https://dx.doi.org/10.1182/blood-2017-07-746396
There are 30 citations in total.

Details

Primary Language Turkish
Subjects Medical Physiology
Journal Section Research Article
Authors

Emine Kılıç-toprak This is me 0000-0002-8795-0185

Yalın Tolga Yaylalı This is me 0000-0002-8452-923X

Yasin Özdemir This is me 0000-0002-7562-0744

Vural Küçükatay 0000-0002-6850-6281

Hande Şenol 0000-0001-6395-7924

Melek Bor-küçükatay

Publication Date September 30, 2019
Submission Date April 23, 2019
Acceptance Date July 5, 2019
Published in Issue Year 2019

Cite

AMA Kılıç-toprak E, Yaylalı YT, Özdemir Y, Küçükatay V, Şenol H, Bor-küçükatay M. Pulmoner hipertansiyonlu hastalarda comet analizi ile değerlendirilen artmış DNA hasarı. Pam Tıp Derg. September 2019;12(3):415-421. doi:10.31362/patd.557153
Creative Commons Lisansı
Pamukkale Tıp Dergisi, Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır