Research Article
BibTex RIS Cite

Investigation of phenotypic and genotypic characteristics of carbapenem resistant Klebsiella pneumoniae strains isolated from nosocomial infections

Year 2020, , 91 - 99, 21.01.2020
https://doi.org/10.31362/patd.621807

Abstract

Purpose: Carbapenem-resistant Klebsiella pneumoniae (CRKP) is an
important nosocomial pathogen. The most common mechanism that causes carbapenem
resistance in these bacteria is carbapenemase production. We aimed to study the
molecular epidemiology of these K.
pneumoniae
isolates and the characteristics of carbapenem resistance.

Materials and Methods: The
diagnosis and antibiotic susceptibility tests of 62 CRKP isolates were
performed with Vitek-2 automated system and E test. Carbapenemase genes were
determined by multiplex PCR. The genetic relationships were detected by rep-PCR.

Results:
Eight
clusters containing 25 strains with 95% or more similarity were identified by
Rep-PCR method. On the other hand, 59.7% (37/62) of these strains were
identified as "different" with similarities of less than 95% and more
than two different bands. The blaOXA-48 gene was detected in 57 of the 62
isolates (91.9%) and the modified Hodge test was positive in all of the blaOXA-48
gene positive isolates. The resistance rates of carbapenems (imipenem,
meropenem and ertapenem) were examined by Vitek-2 system and E-test. The lowest
resistance rates were observed for meropenem (Vitek-2 35%, E-test 16%).  Resistance rates in these isolates were 100%
for ampicillin and amoxicillin-clavulanic acid, 90% for ceftriaxone.







Conclusion: We found that OXA-48 oxacillinase production was
responsible for carbapenemase resistance in CRKP. The rep-PCR results suggested
that the genetic similarities between CRKP isolates were not high. We suggest
that this was due to the characteristic of blaOXA-48 gene which is horizontal
trasnferred rather. than clonal spread among bacteria. 

References

  • 1. Guh AY, Limbago BM, Kallen AJ. Epidemiology and prevention of carbapenem-resistant Enterobacteriaceae in the United States. Expert Rev Anti Infect Ther, 2014;12:565-80.
  • 2. Us E, Tekeli A, Arikan OA, Dolapci I, Sahin F, Karahan ZC. Molecular epidemiology of carbapenem-resistant Klebsiella pneumoniae strains isolated between 2004-2007 in Ankara University Hospital, Turkey. Mikrobiyol Bul, 2010;44:1-10.
  • 3. Jeong SH, Bae IK, Lee JH, Sohn SG, Kang GH, Jeon GJ, et al.Molecular characterization of extended-spectrum beta-lactamases produced by clinical isolates of Klebsiella pneumoniae and Escherichia coli from a Korean nationwide survey. J Clin Microbiol, 2004;42:2902-6.
  • 4. Swaminathan M, Sharma S, Blash SP, Patel G, Banach DB, Phillips M, et al.Prevalence and risk factors for acquisition of carbapenem-resistant Enterobacteriaceae in the setting of endemicity. Infect Control Hosp Epidemiol, 2013;34:809-17.
  • 5. Park SO, Liu J, Furuya EY, Larson EL. Carbapenem-resistant Klebsiella pneumoniae infection in three New York City hospitals trended downwards from 2006 to 2014. Open forum infectious diseases, 2016. Oxford University Press US: ofw222.
  • 6. Huddleston JR. Horizontal gene transfer in the human gastrointestinal tract: potential spread of antibiotic resistance genes. Infect Drug Resist, 2014;7:167.
  • 7. Bratu S, Landman D, Haag R, Recco R, Eramo A, Alam M, et al.Rapid spread of carbapenem-resistant Klebsiella pneumoniae in New York City: a new threat to our antibiotic armamentarium.Arch Intern Med, 2005;165:1430-5.
  • 8. Queenan AM, Bush K. Carbapenemases: the versatile β-lactamases. Clin Microbiol Rev, 2007;20:440-58.
  • 9. Bushnell G, Mitrani-Gold F, Mundy LM. Emergence of New Delhi metallo-β-lactamase type 1-producing Enterobacteriaceae and non-Enterobacteriaceae: global case detection and bacterial surveillance. Int J Infect Dis, 2013;17:e325-e33.
  • 10. Baroud á, Dandache I, Araj G, Wakim R, Kanj S, Kanafani Z, et al.Underlying mechanisms of carbapenem resistance in extended-spectrum β-lactamase-producing Klebsiella pneumoniae and Escherichia coli isolates at a tertiary care centre in Lebanon: role of OXA-48 and NDM-1 carbapenemases. Int J Antimicrob Agents, 2013;41:75-9.
  • 11. Borer A, Saidel-Odes L, Riesenberg K, Eskira S, Peled N, Nativ R, et al.Attributable mortality rate for carbapenem-resistant Klebsiella pneumoniae bacteremia. Infect Control Hosp Epidemiol, 2009;30:972-6.
  • 12. Daikos GL, Petrikkos P, Psichogiou M, Kosmidis C, Vryonis E, Skoutelis A, et al.Prospective observational study of the impact of VIM-1 metallo-β-lactamase on the outcome of patients with Klebsiella pneumoniae bloodstream infections. Antimicrob Agents Chemother, 2009;53:1868-73.
  • 13. Patel G, Huprikar S, Factor SH, Jenkins SG, Calfee DP. Outcomes of carbapenem-resistant Klebsiella pneumoniae infection and the impact of antimicrobial and adjunctive therapies. Infect Control Hosp Epidemiol, 2008;29:1099-106.
  • 14. Percin D, Colakoğlu S, Durmaz S, Ekincioğlu P. Comparison of ertapenem-EMB Agar with traditional methods for screening carbapenem-resistant Klebsiella pneumoniae from rectal swabs. Mikrobiyol Bul, 2012;46:546-52.
  • 15. Tzouvelekis L, Markogiannakis A, Psichogiou M, Tassios P, Daikos G. Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: an evolving crisis of global dimensions. Clin Microbiol Rev, 2012;25:682-707.
  • 16. Ny P, Nieberg P, Wong-Beringer A. Impact of carbapenem resistance on epidemiology and outcomes of nonbacteremic Klebsiella pneumoniae infections. Am J Infect Control, 2015;43:1076-80.
  • 17. Carrër A, Poirel L, Eraksoy H, Cagatay AA, Badur S, Nordmann P. Spread of OXA-48-positive carbapenem-resistant Klebsiella pneumoniae isolates in Istanbul, Turkey. Antimicrob Agents Chemother, 2008;52:2950-4.
  • 18. Aubert D, Naas T, Héritier C, Poirel L, Nordmann P. Functional characterization of IS1999, an IS4 family element involved in mobilization and expression of β-lactam resistance genes. J Bacteriol, 2006;188:6506-14.
  • 19. Poirel L, Héritier C, Tolün V, Nordmann P. Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob Agents Chemother, 2004;48:15-22.
  • 20. Sahin K, Tekin A, Ozdas S, Akin D, Yapislar H, Dilek AR, et al.Evaluation of carbapenem resistance using phenotypic and genotypic techniques in Enterobacteriaceae isolates. Ann Clin Microbiol Antimicrob, 2015;14:44.
  • 21. Poirel L, Potron A, Nordmann P. OXA-48-like carbapenemases: the phantom menace. J Antimicrob Chemother, 2012;67:1597-606.
  • 22. Carrër A, Poirel L, Yilmaz M, Akan ÖA, Feriha C, Cuzon G, et al.Spread of OXA-48-encoding plasmid in Turkey and beyond. Antimicrob Agents Chemother, 2010;54:1369-73.
  • 23. Cuzon G, Naas T, Bogaerts P, Glupczynski Y, Huang T-D, Nordmann P. Plasmid-encoded carbapenem-hydrolyzing β-lactamase OXA-48 in an imipenem-susceptible Klebsiella pneumoniae strain from Belgium. Antimicrob Agents Chemother, 2008;52:3463-4.
  • 24. Skalova A, Chudejova K, Rotova V, Medvecky M, Studentova V, Chudackova E, et al.Molecular characterization of OXA-48-like-producing Enterobacteriaceae in the Czech Republic and evidence for horizontal transfer of pOXA-48-like plasmids. Antimicrob Agents Chemother, 2017;61:e01889-16.
  • 25. Voulgari E, Zarkotou O, Ranellou K, Karageorgopoulos DE, Vrioni G, Mamali V, et al.Outbreak of OXA-48 carbapenemase-producing Klebsiella pneumoniae in Greece involving an ST11 clone. J Antimicrob Chemother, 2012;68:84-8.
  • 26. O’Brien D, Wrenn C, Roche C, Rose L, Fenelon C, Flynn A, et al.First isolation and outbreak of OXA-48-producing Klebsiella pneumoniae in an Irish hospital, March to June 2011. Euro Surveill, 2011;16:19921.
  • 27. Poirel L, Pitout JD, Nordmann P. Carbapenemases: molecular diversity and clinical consequences.Future Microbiol, 2007;2: 501-12.
  • 28. Cakar A, Akyön Y, Gür D, Karatuna O, Öğünç D, Özhak BB, et al.Investigation of carbapenemases in carbapenem-resistant Escherichia coli and Klebsiella pneumoniae strains isolated in 2014 in Turkey. Mikrobiyol Bul, 2016;50:21-33.
  • 29. Walther-Rasmussen J, Høiby N. Class A carbapenemases. J Antimicrob Chemother, 2007;60:470-82.
  • 30. Chu YW, Cheung TKM, Ngan JYW, Kam KM. EDTA susceptibility leading to false detection of metallo-β-lactamase in Pseudomonas aeruginosa by Etest and an imipenem–EDTA disk method. Int J Antimicrob Agents, 2005;26:340-1.
  • 31. Stuart JC, Leverstein-Van Hall MA. Guideline for phenotypic screening and confirmation of carbapenemases in Enterobacteriaceae. Int J Antimicrob Agents, 2010;36:205-10.
  • 32. Performance standards for antimicrobial susceptibility testing, 21st informational supplement. Clinical and Laboratory Standards Institute, 2013.
  • 33. Raghunathan A, Samuel L, Tibbetts RJ. Evaluation of a real-time PCR assay for the detection of the Klebsiella pneumoniae carbapenemase genes in microbiological samples in comparison with the modified Hodge test. Am J Clin Pathol 2011;135:566-71.
  • 34. Leavitt A, Navon-Venezia S, Chmelnitsky I, Schwaber MJ, Carmeli Y. Emergence of KPC-2 and KPC-3 in carbapenem-resistant Klebsiella pneumoniae strains in an Israeli hospital. Antimicrob Agents Chemother, 2007;51:3026-9.
  • 35. Herbert S, Halvorsen DS, Leong T, Franklin C, Harrington G, Spelman D. Large outbreak of infection and colonization with gram-negative pathogens carrying the metallo-β-lactamase gene bla IMP-4 at a 320-bed tertiary hospital in Australia. Infect Control Hosp Epidemiol, 2007;28:98-101.

Hastane enfeksiyonlarından izole edilen karbapenem dirençli Klebsiella pneumonia suşlarının fenotipik ve genotipik özelliklerinin incelenmesi

Year 2020, , 91 - 99, 21.01.2020
https://doi.org/10.31362/patd.621807

Abstract

Amaç: Karbapenemlere
dirençli Klebsiella pneumoniae (KDKP)
önemli bir nosokomiyal patojendir. Bu bakterilerde karbapenem direncine neden
olan en yaygın mekanizma karbapenemaz üretimidir. Bu çalışmada KDKP
izolatlarının moleküler epidemiyolojisini ve karbapenem direncinin
özelliklerini incelemeyi amaçladık.



Gereç
ve Yöntem:
Toplam 62 KDKP izolatının tanımlanması ve
antibiyotik duyarlılık testleri Vitek-2 otomatik sistem ve E testi ile yapıldı.
Karbapenemaz genleri multipleks PCR ile belirlendi. Genetik benzerlikleri
rep-PCR ile araştırıldı.



Bulgular:
Rep-PCR
yöntemi ile, %95 veya daha fazla benzerliğe sahip 25 suş içeren sekiz küme
tanımlandı. İzolatların %59.7'si (37/62), benzerlikleri %95'ten az ve ikiden
fazla farklı bant içeren, “farklı” olarak belirlendi. BlaOXA-48 geni,
izolatların %91.9’unda (57/62) tespit edildi. Modifiye Hodge testi, blaOXA-48
geni pozitif izolatlarının tamamında pozitifti. Karbapenemlerin (imipenem,
meropenem ve ertapenem) direnç oranları Vitek-2 sistemi ve E-testi ile
incelendi. En düşük direnç oranları meropenem için belirlendi (Vitek-2 %35,
E-test %16). Bu izolatlarda direnç oranları ampisilin ve amoksisilin-klavulanik
asit için %100, seftriakson için %90 bulundu.



Sonuç:
KDKP
izolatlarında OXA-48 oksasilinaz üretiminin karbapenemaz direncinden sorumlu
olduğunu belirledik. Rep-PCR sonuçları, KDKP izolatları arasındaki genetik
benzerliklerin yüksek olmadığını göstermiştir. Bu verilere dayanarak, K. pneumoniae suşlarında blaOXA-48
geninin, klonal yayılımdan ziyade bakteriler arasında horizontal geçiş
özelliğinden kaynaklandığını ileri sürmekteyiz.

References

  • 1. Guh AY, Limbago BM, Kallen AJ. Epidemiology and prevention of carbapenem-resistant Enterobacteriaceae in the United States. Expert Rev Anti Infect Ther, 2014;12:565-80.
  • 2. Us E, Tekeli A, Arikan OA, Dolapci I, Sahin F, Karahan ZC. Molecular epidemiology of carbapenem-resistant Klebsiella pneumoniae strains isolated between 2004-2007 in Ankara University Hospital, Turkey. Mikrobiyol Bul, 2010;44:1-10.
  • 3. Jeong SH, Bae IK, Lee JH, Sohn SG, Kang GH, Jeon GJ, et al.Molecular characterization of extended-spectrum beta-lactamases produced by clinical isolates of Klebsiella pneumoniae and Escherichia coli from a Korean nationwide survey. J Clin Microbiol, 2004;42:2902-6.
  • 4. Swaminathan M, Sharma S, Blash SP, Patel G, Banach DB, Phillips M, et al.Prevalence and risk factors for acquisition of carbapenem-resistant Enterobacteriaceae in the setting of endemicity. Infect Control Hosp Epidemiol, 2013;34:809-17.
  • 5. Park SO, Liu J, Furuya EY, Larson EL. Carbapenem-resistant Klebsiella pneumoniae infection in three New York City hospitals trended downwards from 2006 to 2014. Open forum infectious diseases, 2016. Oxford University Press US: ofw222.
  • 6. Huddleston JR. Horizontal gene transfer in the human gastrointestinal tract: potential spread of antibiotic resistance genes. Infect Drug Resist, 2014;7:167.
  • 7. Bratu S, Landman D, Haag R, Recco R, Eramo A, Alam M, et al.Rapid spread of carbapenem-resistant Klebsiella pneumoniae in New York City: a new threat to our antibiotic armamentarium.Arch Intern Med, 2005;165:1430-5.
  • 8. Queenan AM, Bush K. Carbapenemases: the versatile β-lactamases. Clin Microbiol Rev, 2007;20:440-58.
  • 9. Bushnell G, Mitrani-Gold F, Mundy LM. Emergence of New Delhi metallo-β-lactamase type 1-producing Enterobacteriaceae and non-Enterobacteriaceae: global case detection and bacterial surveillance. Int J Infect Dis, 2013;17:e325-e33.
  • 10. Baroud á, Dandache I, Araj G, Wakim R, Kanj S, Kanafani Z, et al.Underlying mechanisms of carbapenem resistance in extended-spectrum β-lactamase-producing Klebsiella pneumoniae and Escherichia coli isolates at a tertiary care centre in Lebanon: role of OXA-48 and NDM-1 carbapenemases. Int J Antimicrob Agents, 2013;41:75-9.
  • 11. Borer A, Saidel-Odes L, Riesenberg K, Eskira S, Peled N, Nativ R, et al.Attributable mortality rate for carbapenem-resistant Klebsiella pneumoniae bacteremia. Infect Control Hosp Epidemiol, 2009;30:972-6.
  • 12. Daikos GL, Petrikkos P, Psichogiou M, Kosmidis C, Vryonis E, Skoutelis A, et al.Prospective observational study of the impact of VIM-1 metallo-β-lactamase on the outcome of patients with Klebsiella pneumoniae bloodstream infections. Antimicrob Agents Chemother, 2009;53:1868-73.
  • 13. Patel G, Huprikar S, Factor SH, Jenkins SG, Calfee DP. Outcomes of carbapenem-resistant Klebsiella pneumoniae infection and the impact of antimicrobial and adjunctive therapies. Infect Control Hosp Epidemiol, 2008;29:1099-106.
  • 14. Percin D, Colakoğlu S, Durmaz S, Ekincioğlu P. Comparison of ertapenem-EMB Agar with traditional methods for screening carbapenem-resistant Klebsiella pneumoniae from rectal swabs. Mikrobiyol Bul, 2012;46:546-52.
  • 15. Tzouvelekis L, Markogiannakis A, Psichogiou M, Tassios P, Daikos G. Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: an evolving crisis of global dimensions. Clin Microbiol Rev, 2012;25:682-707.
  • 16. Ny P, Nieberg P, Wong-Beringer A. Impact of carbapenem resistance on epidemiology and outcomes of nonbacteremic Klebsiella pneumoniae infections. Am J Infect Control, 2015;43:1076-80.
  • 17. Carrër A, Poirel L, Eraksoy H, Cagatay AA, Badur S, Nordmann P. Spread of OXA-48-positive carbapenem-resistant Klebsiella pneumoniae isolates in Istanbul, Turkey. Antimicrob Agents Chemother, 2008;52:2950-4.
  • 18. Aubert D, Naas T, Héritier C, Poirel L, Nordmann P. Functional characterization of IS1999, an IS4 family element involved in mobilization and expression of β-lactam resistance genes. J Bacteriol, 2006;188:6506-14.
  • 19. Poirel L, Héritier C, Tolün V, Nordmann P. Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob Agents Chemother, 2004;48:15-22.
  • 20. Sahin K, Tekin A, Ozdas S, Akin D, Yapislar H, Dilek AR, et al.Evaluation of carbapenem resistance using phenotypic and genotypic techniques in Enterobacteriaceae isolates. Ann Clin Microbiol Antimicrob, 2015;14:44.
  • 21. Poirel L, Potron A, Nordmann P. OXA-48-like carbapenemases: the phantom menace. J Antimicrob Chemother, 2012;67:1597-606.
  • 22. Carrër A, Poirel L, Yilmaz M, Akan ÖA, Feriha C, Cuzon G, et al.Spread of OXA-48-encoding plasmid in Turkey and beyond. Antimicrob Agents Chemother, 2010;54:1369-73.
  • 23. Cuzon G, Naas T, Bogaerts P, Glupczynski Y, Huang T-D, Nordmann P. Plasmid-encoded carbapenem-hydrolyzing β-lactamase OXA-48 in an imipenem-susceptible Klebsiella pneumoniae strain from Belgium. Antimicrob Agents Chemother, 2008;52:3463-4.
  • 24. Skalova A, Chudejova K, Rotova V, Medvecky M, Studentova V, Chudackova E, et al.Molecular characterization of OXA-48-like-producing Enterobacteriaceae in the Czech Republic and evidence for horizontal transfer of pOXA-48-like plasmids. Antimicrob Agents Chemother, 2017;61:e01889-16.
  • 25. Voulgari E, Zarkotou O, Ranellou K, Karageorgopoulos DE, Vrioni G, Mamali V, et al.Outbreak of OXA-48 carbapenemase-producing Klebsiella pneumoniae in Greece involving an ST11 clone. J Antimicrob Chemother, 2012;68:84-8.
  • 26. O’Brien D, Wrenn C, Roche C, Rose L, Fenelon C, Flynn A, et al.First isolation and outbreak of OXA-48-producing Klebsiella pneumoniae in an Irish hospital, March to June 2011. Euro Surveill, 2011;16:19921.
  • 27. Poirel L, Pitout JD, Nordmann P. Carbapenemases: molecular diversity and clinical consequences.Future Microbiol, 2007;2: 501-12.
  • 28. Cakar A, Akyön Y, Gür D, Karatuna O, Öğünç D, Özhak BB, et al.Investigation of carbapenemases in carbapenem-resistant Escherichia coli and Klebsiella pneumoniae strains isolated in 2014 in Turkey. Mikrobiyol Bul, 2016;50:21-33.
  • 29. Walther-Rasmussen J, Høiby N. Class A carbapenemases. J Antimicrob Chemother, 2007;60:470-82.
  • 30. Chu YW, Cheung TKM, Ngan JYW, Kam KM. EDTA susceptibility leading to false detection of metallo-β-lactamase in Pseudomonas aeruginosa by Etest and an imipenem–EDTA disk method. Int J Antimicrob Agents, 2005;26:340-1.
  • 31. Stuart JC, Leverstein-Van Hall MA. Guideline for phenotypic screening and confirmation of carbapenemases in Enterobacteriaceae. Int J Antimicrob Agents, 2010;36:205-10.
  • 32. Performance standards for antimicrobial susceptibility testing, 21st informational supplement. Clinical and Laboratory Standards Institute, 2013.
  • 33. Raghunathan A, Samuel L, Tibbetts RJ. Evaluation of a real-time PCR assay for the detection of the Klebsiella pneumoniae carbapenemase genes in microbiological samples in comparison with the modified Hodge test. Am J Clin Pathol 2011;135:566-71.
  • 34. Leavitt A, Navon-Venezia S, Chmelnitsky I, Schwaber MJ, Carmeli Y. Emergence of KPC-2 and KPC-3 in carbapenem-resistant Klebsiella pneumoniae strains in an Israeli hospital. Antimicrob Agents Chemother, 2007;51:3026-9.
  • 35. Herbert S, Halvorsen DS, Leong T, Franklin C, Harrington G, Spelman D. Large outbreak of infection and colonization with gram-negative pathogens carrying the metallo-β-lactamase gene bla IMP-4 at a 320-bed tertiary hospital in Australia. Infect Control Hosp Epidemiol, 2007;28:98-101.
There are 35 citations in total.

Details

Primary Language English
Subjects Medical Microbiology
Journal Section Research Article
Authors

Sema Alaçam 0000-0001-7957-2906

İrmak Baran 0000-0001-6729-948X

Publication Date January 21, 2020
Submission Date September 18, 2019
Acceptance Date November 26, 2019
Published in Issue Year 2020

Cite

AMA Alaçam S, Baran İ. Investigation of phenotypic and genotypic characteristics of carbapenem resistant Klebsiella pneumoniae strains isolated from nosocomial infections. Pam Tıp Derg. January 2020;13(1):91-99. doi:10.31362/patd.621807
Creative Commons Lisansı
Pamukkale Tıp Dergisi, Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır