Research Article
BibTex RIS Cite

Kafein sıçan yavrularında bağırsak hasarı gelişiminde predispozan bir risk faktörü mü?

Year 2021, Volume: 14 Issue: 2, 338 - 345, 01.04.2021
https://doi.org/10.31362/patd.804703

Abstract

Amaç: Hipoksi/reoksijenizasyon (H/R) ile intestinal hasarlanma oluşturulan sıçan yavrularında kafein sitratın histopatolojik ve biyokimyasal etkilerini araştırmak.
Gereç ve yöntem: Bir günlük 32 Wistar albino sıçan yavrusu rastgele dört gruba ayrıldı: kontrol grubu (grup1, n=8), kafein grubu (grup2, subkutan kafein sitrat uygulanan, n=8), H/R grubu (grup3, H/R uygulanan, n=8) ve kafein+H/R grubu (grup4, kafein sitrat verilen ve H/R uygulanan, n=8). Kafein sitrat, 20 mg/kg'lık bir yükleme dozunda başlatıldı, ardından subkutan 5 mg/kg/günlük idame dozu takip edildi. Dördüncü günde, grup 1 ve 2 dışındaki tüm hayvanlar H/R'ye maruz bırakıldı ve H/R prosedüründen 6 saat sonra öldürüldü.
Histopatolojik hasarlanma skorları (HIS), interlökin-6 (IL-6), tümör nekroz faktörü-alfa (TNF-α) ve oksidatif stres indeksi (OSI: toplam oksidan durum “TOS”/toplam antioksidan durum “TAS”) seviyeleri bağırsak örnekleri üzerinden değerlendirildi.
Bulgular: Histopatolojik olarak en ciddi hasar H/R uygulanan gruplarda görüldü (p <0.01). Kafein grubunun ortalama HIS'leri kontrol grubundan daha yüksek iken, H/R grubundan daha düşüktü, ancak bu istatistiksel olarak anlamlı değildi. Grup 2, 3 ve 4'teki TNF-α, IL-6 ve OSI düzeyleri kontrol grubundan anlamlı olarak yüksekti (p <0.05). Bununla birlikte, kafein grubundaki bu biyokimyasal parametreler, H/R uygulanan gruplardan anlamlı olarak daha düşüktü (p <0.01).
Sonuç: Bu çalışma, kafein sitratın TNF-α, IL-6 ve OSI'nin bağırsak doku düzeylerini önemli ölçüde arttırdığını gösterdi. Bu nedenle, kafeinin bağırsak hasarı geliştirmek için predispozan bir risk faktörü olabileceğini düşünüyoruz.

Supporting Institution

Pamukkale Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Kurulu

Project Number

2017TPF011

Thanks

Yazarlar olarak Barbaros Şahin ve Pamukkale Üniversitesi Hayvan Araştırmaları Laboratuvarı'na yardımları için çok teşekkür ederiz

References

  • 1. Patrinos ME. Neonatal apnea and the foundation of respiratory control. In: Martin RJ, Fanaroff AA, Walsh MC, eds. Fanaroff and Martin’s neonatal-perinatal medicine: diseases of the fetus and infant. 10th ed. Philadelphia: Elsevier Saunders 2015;1137-1146.
  • 2. Schmidt B, Roberts RS, Davis P, et al. Caffeine therapy for apnea of prematurity. N Engl J Med 2006;18;354:2112-2121. https://doi.org/10.1056/NEJMoa054065
  • 3. Park HW, Lim G, Chung SH, Chung S, Kim KS, Kim SN. Early caffeine use in very low birth weight infants and neonatal outcomes: a systematic review and meta-analysis. J Korean Med Sci 2015;30:1828-1835. https://doi.org/10.3346/jkms.2015.30.12.1828
  • 4. Sweet DG1, Carnielli V, Greisen G, et al. European Consensus Guidelines on the management of respiratory distress syndrome - 2016 update. Neonatology 2017;111:107-125.doi: 10.1159/000448985
  • 5. Cox C, Hashem NG, Tebbs J, Bookstaver PB, Iskersky V. Evaluation of caffeine and the development of necrotizing enterecolitis. J Neonatal Perinatal Med 2015;8:339-347. https://doi.org/10.3233/NPM-15814059
  • 6. Abdel Wahed MA, Issa HM, Khafagy SM, Abdel Raouf SM. Effect of caffeine on superior mesenteric artery blood flow velocities in preterm neonates. J Matern Fetal Neonatal Med 2019;32:357-361. https://doi.org/10.1080/14767058.2017.1378337
  • 7. Welsh C, Pan J, Belik J. Caffeine impairs gastrointestinal function in newborn rats. Pediatr Res 2015;78:24-28. https://doi.org/10.1038/pr.2015.65
  • 8. Okur HM. Kücükaydın M, Köse K, Kontas O, Dogam P, Kazez A. Hypoxia-induced necrotizing enterocolitis in the immature rat: the role of lipid peroxidation and management by vitamin E. J Pediatr Surg 1995;30:1416-1419. https://doi.org/10.1016/0022-3468(95)90395-x
  • 9. Kabaroglu C, Akisu M, Habif S, et al. Effects of L-arginine and L-carnitine in hypoxia/reoxygenation-induced intestinal injury. Pediatr Int 2005;47:10-14. https://doi.org/10.1111/j.1442-200x.2005.01999.x
  • 10. Özkan KU, Özokutan BH, İnanç F, Boran C, Kilinc M. Does maternal nicotine exposure during gestation increase the injury severity of small intestine in the newborn rats subjected to experimental necrotizing enterocolitis. J Pediatr Surg 2005;40:484-488. https://doi.org/10.1016/j.jpedsurg.2004.11.040
  • 11. Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem 2004;37:277-285. https://doi.org/10.1016/j.clinbiochem.2003.11.015
  • 12. Erel O. A new automated colorimetric method for measuring total oxidant status. Clin Biochem 2005;38:1103-1111. https://doi.org/10.1016/j.clinbiochem.2005.08.008
  • 13. Caplan M. Neonatal necrotizing enterocolitis. In: Martin RJ, Fanaroff AA, Walsh MC, eds. Fanaroff and Martin’s neonatal-perinatal medicine: diseases of the fetus and infant.10th ed. Philadelphia: Elsevier Saunders 2015;1423-1432.
  • 14. Hagberg H, Bona E, Gilland E, Puka Sundvall M. Hypoxia-ischemia model in the 7-day old rat: possibilities and shortcomings. Acta Paediatr Suppl 1997;422:85-88. https://doi.org/10.1111/j.1651-2227.1997.tb18353.x
  • 15. Yossuck P, Kraszpulski M, Salm AK. Perinatal corticosteroid effect on amygdala and hippocampus volume during brain development in the rat model. Early Hum Dev 2006;82;267-272. https://doi.org/10.1016/j.earlhumdev.2005.09.017
  • 16. Özdemir ÖMA, Ergin H, Yenisey Ç, Şen Türk N. Protective effects of Ginkgo biloba extract in rats with hypoxia/reoxygenation-induced intestinal injury. J Pediatr Surg 2011;46:685-690. https://doi.org/10.1016/j.jpedsurg.2010.09.053
  • 17. Kumral A, Yesilirmak DC, Tugyan K, et al. Activated protein C reduces intestinal injury in an experimental model of necrotizing enterocolitis. J Pediatr Surg 2010;45:483-489. https://doi.org/10.1016/j.jpedsurg.2009.07.077
  • 18. Caplan MS, Sun XM, Hseuh W, Hageman JR. Role of platelet-activating factor and tumor necrosis factor-alpha in neonatal necrotizing enterocolitis. J Pediatr 1990;116:960-964. https://doi.org/10.1016/s0022-3476(05)80661-4
  • 19. Cakir U, Tayman C, Serkant UE, et al. Ginger (Zingiber officinale Roscoe) for the treatment and prevention of necrotizing enterocolitis. J Ethnopharmacol 2018;225:297-308. https://doi.org/10.1016/j.jep.2018.07.009
  • 20. Papparella A, DeLuca FG, Oyer CE, Pinar H, Stonestreet BS. Ischemia-reperfusion injury in the intestines of newborn pigs. Pediatr Res 1997;42:180-188. https://doi.org/10.1203/00006450-199708000-00009
  • 21. Miller MJ, McNeill H, Mullane KM, Caravella SJ, Clark DA. SOD prevents damage and attenuates eicosanoid release in a rabbit model of necrotizing enterocolitis. Am J Physiol 1988;255:556-565. https://doi.org/10.1152/ajpgi.1988.255.5.G556
  • 22. Granger DN, Höllwarth ME, Parks DA. Ischemia-reperfusion injury: role of oxygen-derived free radicals. Acta Physiol Scand Suppl 1986;548:47-63. PMID: 3529822
  • 23. Lodha A, Seshia M, McMillan DD, et al. Association of early caffeine administration and neonatal outcomes in very preterm neonates. JAMA Pediatr 2015;169:33-38. https://doi.org/10.1001/jamapediatrics.2014.2223
  • 24. Hoecker C, Nelle M, Poeschl J, Beedgen B, Linderkamp O. Caffeine impairs cerebral and intestinal blood flow velocity in preterm infants. Pediatrics 2002;109:784-787. https://doi.org/10.1542/peds.109.5.784
  • 25. Hoecker C, Nelle M, Beedgen B, Rengelshausen J, Linderkamp O. Effects of a divided high loading dose of caffeine on circulatory variables in preterm infants. Arch Dis Child Fetal Neonatal Ed 2006;91:61-64. https://doi.org/10.1136/adc.2005.073866
  • 26. Soraisham AS, Elliott D, Amin H. Effect of single loading dose of intravenous caffeine infusion on superior mesenteric artery blood flow velocities in preterm infants. J Paediatr Child Health 2008;44:119-121. https://doi.org/10.1111/j.1440-1754.2007.01211.x

Is caffeine a predisposing risk factor for developing intestinal injury in newborn rats?

Year 2021, Volume: 14 Issue: 2, 338 - 345, 01.04.2021
https://doi.org/10.31362/patd.804703

Abstract

Purpose: To investigate of histopathologic and biochemical effects of caffeine citrate in newborn rats with hypoxia/reoxygenation (H/R)-induced intestinal injury.
Materials and methods: One-day-old, 32 Wistar albino newborn rats (n=8) were randomly divided into four groups: control group (group1, n=8), caffeine group (group2, caffeine citrate administered subcutaneously, n=8), H/R group (group3, exposed to H/R, n=8), and caffeine + H/R group (group4, caffeine citrate administered and exposed to H/R, n=8). Caffeine citrate was initiated at a loading dose of 20 mg/kg, followed by a maintenance dose of 5 mg/kg/day, subcutaneously. On day 4th, all animals except for groups 1 and 2 were exposed to H/R and sacrificed 6 hours after H/R procedure. Histopathological injury scores (HISs), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and oxidative stress index (OSI: total oxidant status “TOS”/total antioxidant status “TAS”) levels were measured in intestinal samples.
Results: As histopathological, the most severe damage was observed in H/R-induced groups (p<0.01). Although not statistically significant, the mean HISs of caffeine group was higher than the control group and lower than the H/R group. The levels of TNF-α, IL-6 and OSI in the groups 2, 3 and 4 were significantly higher than the control group (p<0.05). However, these biochemical parameters in the caffeine group were significantly lower than those of the H/R-induced groups (p<0.01).
Conclusion: This study showed that caffeine citrate significantly increased the intestinal tissue levels of TNF-α, IL-6, and OSI. As a result, caffeine may be a predisposing risk factor for developing intestinal injury.   

Project Number

2017TPF011

References

  • 1. Patrinos ME. Neonatal apnea and the foundation of respiratory control. In: Martin RJ, Fanaroff AA, Walsh MC, eds. Fanaroff and Martin’s neonatal-perinatal medicine: diseases of the fetus and infant. 10th ed. Philadelphia: Elsevier Saunders 2015;1137-1146.
  • 2. Schmidt B, Roberts RS, Davis P, et al. Caffeine therapy for apnea of prematurity. N Engl J Med 2006;18;354:2112-2121. https://doi.org/10.1056/NEJMoa054065
  • 3. Park HW, Lim G, Chung SH, Chung S, Kim KS, Kim SN. Early caffeine use in very low birth weight infants and neonatal outcomes: a systematic review and meta-analysis. J Korean Med Sci 2015;30:1828-1835. https://doi.org/10.3346/jkms.2015.30.12.1828
  • 4. Sweet DG1, Carnielli V, Greisen G, et al. European Consensus Guidelines on the management of respiratory distress syndrome - 2016 update. Neonatology 2017;111:107-125.doi: 10.1159/000448985
  • 5. Cox C, Hashem NG, Tebbs J, Bookstaver PB, Iskersky V. Evaluation of caffeine and the development of necrotizing enterecolitis. J Neonatal Perinatal Med 2015;8:339-347. https://doi.org/10.3233/NPM-15814059
  • 6. Abdel Wahed MA, Issa HM, Khafagy SM, Abdel Raouf SM. Effect of caffeine on superior mesenteric artery blood flow velocities in preterm neonates. J Matern Fetal Neonatal Med 2019;32:357-361. https://doi.org/10.1080/14767058.2017.1378337
  • 7. Welsh C, Pan J, Belik J. Caffeine impairs gastrointestinal function in newborn rats. Pediatr Res 2015;78:24-28. https://doi.org/10.1038/pr.2015.65
  • 8. Okur HM. Kücükaydın M, Köse K, Kontas O, Dogam P, Kazez A. Hypoxia-induced necrotizing enterocolitis in the immature rat: the role of lipid peroxidation and management by vitamin E. J Pediatr Surg 1995;30:1416-1419. https://doi.org/10.1016/0022-3468(95)90395-x
  • 9. Kabaroglu C, Akisu M, Habif S, et al. Effects of L-arginine and L-carnitine in hypoxia/reoxygenation-induced intestinal injury. Pediatr Int 2005;47:10-14. https://doi.org/10.1111/j.1442-200x.2005.01999.x
  • 10. Özkan KU, Özokutan BH, İnanç F, Boran C, Kilinc M. Does maternal nicotine exposure during gestation increase the injury severity of small intestine in the newborn rats subjected to experimental necrotizing enterocolitis. J Pediatr Surg 2005;40:484-488. https://doi.org/10.1016/j.jpedsurg.2004.11.040
  • 11. Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem 2004;37:277-285. https://doi.org/10.1016/j.clinbiochem.2003.11.015
  • 12. Erel O. A new automated colorimetric method for measuring total oxidant status. Clin Biochem 2005;38:1103-1111. https://doi.org/10.1016/j.clinbiochem.2005.08.008
  • 13. Caplan M. Neonatal necrotizing enterocolitis. In: Martin RJ, Fanaroff AA, Walsh MC, eds. Fanaroff and Martin’s neonatal-perinatal medicine: diseases of the fetus and infant.10th ed. Philadelphia: Elsevier Saunders 2015;1423-1432.
  • 14. Hagberg H, Bona E, Gilland E, Puka Sundvall M. Hypoxia-ischemia model in the 7-day old rat: possibilities and shortcomings. Acta Paediatr Suppl 1997;422:85-88. https://doi.org/10.1111/j.1651-2227.1997.tb18353.x
  • 15. Yossuck P, Kraszpulski M, Salm AK. Perinatal corticosteroid effect on amygdala and hippocampus volume during brain development in the rat model. Early Hum Dev 2006;82;267-272. https://doi.org/10.1016/j.earlhumdev.2005.09.017
  • 16. Özdemir ÖMA, Ergin H, Yenisey Ç, Şen Türk N. Protective effects of Ginkgo biloba extract in rats with hypoxia/reoxygenation-induced intestinal injury. J Pediatr Surg 2011;46:685-690. https://doi.org/10.1016/j.jpedsurg.2010.09.053
  • 17. Kumral A, Yesilirmak DC, Tugyan K, et al. Activated protein C reduces intestinal injury in an experimental model of necrotizing enterocolitis. J Pediatr Surg 2010;45:483-489. https://doi.org/10.1016/j.jpedsurg.2009.07.077
  • 18. Caplan MS, Sun XM, Hseuh W, Hageman JR. Role of platelet-activating factor and tumor necrosis factor-alpha in neonatal necrotizing enterocolitis. J Pediatr 1990;116:960-964. https://doi.org/10.1016/s0022-3476(05)80661-4
  • 19. Cakir U, Tayman C, Serkant UE, et al. Ginger (Zingiber officinale Roscoe) for the treatment and prevention of necrotizing enterocolitis. J Ethnopharmacol 2018;225:297-308. https://doi.org/10.1016/j.jep.2018.07.009
  • 20. Papparella A, DeLuca FG, Oyer CE, Pinar H, Stonestreet BS. Ischemia-reperfusion injury in the intestines of newborn pigs. Pediatr Res 1997;42:180-188. https://doi.org/10.1203/00006450-199708000-00009
  • 21. Miller MJ, McNeill H, Mullane KM, Caravella SJ, Clark DA. SOD prevents damage and attenuates eicosanoid release in a rabbit model of necrotizing enterocolitis. Am J Physiol 1988;255:556-565. https://doi.org/10.1152/ajpgi.1988.255.5.G556
  • 22. Granger DN, Höllwarth ME, Parks DA. Ischemia-reperfusion injury: role of oxygen-derived free radicals. Acta Physiol Scand Suppl 1986;548:47-63. PMID: 3529822
  • 23. Lodha A, Seshia M, McMillan DD, et al. Association of early caffeine administration and neonatal outcomes in very preterm neonates. JAMA Pediatr 2015;169:33-38. https://doi.org/10.1001/jamapediatrics.2014.2223
  • 24. Hoecker C, Nelle M, Poeschl J, Beedgen B, Linderkamp O. Caffeine impairs cerebral and intestinal blood flow velocity in preterm infants. Pediatrics 2002;109:784-787. https://doi.org/10.1542/peds.109.5.784
  • 25. Hoecker C, Nelle M, Beedgen B, Rengelshausen J, Linderkamp O. Effects of a divided high loading dose of caffeine on circulatory variables in preterm infants. Arch Dis Child Fetal Neonatal Ed 2006;91:61-64. https://doi.org/10.1136/adc.2005.073866
  • 26. Soraisham AS, Elliott D, Amin H. Effect of single loading dose of intravenous caffeine infusion on superior mesenteric artery blood flow velocities in preterm infants. J Paediatr Child Health 2008;44:119-121. https://doi.org/10.1111/j.1440-1754.2007.01211.x
There are 26 citations in total.

Details

Primary Language English
Subjects Paediatrics
Journal Section Research Article
Authors

Özmert M.a. Özdemir 0000-0002-2499-4949

Savaş Saldıray 0000-0003-0437-9305

Yaşar Enli 0000-0001-5080-3192

Nilay Türk 0000-0002-8294-558X

Hacer Ergin 0000-0002-6002-4202

Project Number 2017TPF011
Publication Date April 1, 2021
Submission Date October 6, 2020
Acceptance Date December 25, 2020
Published in Issue Year 2021 Volume: 14 Issue: 2

Cite

AMA Özdemir ÖM, Saldıray S, Enli Y, Türk N, Ergin H. Is caffeine a predisposing risk factor for developing intestinal injury in newborn rats?. Pam Med J. April 2021;14(2):338-345. doi:10.31362/patd.804703

Creative Commons Lisansı
Pamukkale Medical Journal is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License