Research Article
BibTex RIS Cite

Echinacoside decreases cell proliferation and inhibits cell invasion in PC3 androgen-independent prostate cancer cells

Year 2022, Volume: 15 Issue: 4, 796 - 803, 01.10.2022
https://doi.org/10.31362/patd.1151168

Abstract

Purpose: The aim of this study was to determine the effects of Echinacoside on cell proliferation, invasion and mRNA expression changes of invasion-related genes in PC3 androgen-independent prostate cancer cells.
Material and methods: The effect of Echinacoside on cell proliferation in PC3 cells was determined by XTT method. Anti-invasive efficacy was achieved using the transwell chamber. Total RNA isolation was performed by Trizol and cDNA was subsequently synthesized. mRNA expression changes in MMP2, MMP9, TIMP1, TIMP2 and TIMP3 were also performed in RT-PCR with SYBER Green.
Results: In this study, the IC50 dose of Echinacoside in PC3 cells was determined as 55.21 μM at 48h. It was determined that echinacoside inhibited cell invasion in PC3 cells and reduced the invasion by 66% in the dose group. In addition, it was found statistically significant that Echinacoside increased TIMP1 mRNA expression 1.96 times, TIMP2 mRNA expression 2.60 times, while decreasing MMP2 expression 3.82 times and MMP9 mRNA expression 1.54 times in IC50 dose group according to control.
Conclusion: It was revealed that echinacoside has an anti-proliferative effect on PC3 prostate cancer cells. It has also been shown that invasion-related genes can suppress invasion by regulating expression changes. With this study, preliminary data were presented in terms of detailed molecular biological studies to be carried out on echinacoside and its effect on prostate cancer.

References

  • 1- NGlobal Burden of Disease Cancer Collaboration, Fitzmaurice, C., Allen, C., Barber, R. M., Barregard, L., Bhutta, Z. A., et al. (2017). Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-years for 32 Cancer Groups, 1990 to 2015: A Systematic Analysis for the Global Burden of Disease Study. JAMA oncology, 3(4), 524–548. https://doi.org/10.1001/jamaoncol.2016.5688
  • 2- H. Sung, J. Ferlay, R. L. Siegel et al., “Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality Oxidative Medicine and Cellular Longevity worldwide for 36 cancers in 185 countries,” CA: a Cancer Journal for Clinicians, vol. 71, no. 3, pp. 209–249, 2021.
  • 3- Siegel, R. L., Miller, K. D., Fuchs, H. E., & Jemal, A. (2022). Cancer statistics, 2022. CA: a cancer journal for clinicians, 72(1), 7–33. https://doi.org/10.3322/caac.21708
  • 4- Stephenson, A. J., Scardino, P. T., Eastham, J. A., Bianco, F. J., Jr, Dotan, Z. A., Fearn, P. A., & Kattan, M. W. (2006). Preoperative nomogram predicting the 10-year probability of prostate cancer recurrence after radical prostatectomy. Journal of the National Cancer Institute, 98(10), 715–717. https://doi.org/10.1093/jnci/djj190
  • 5- Fontana, F., Raimondi, M., Marzagalli, M., Di Domizio, A., & Limonta, P. (2020). Natural Compounds in Prostate Cancer Prevention and Treatment: Mechanisms of Action and Molecular Targets. Cells, 9(2), 460. https://doi.org/10.3390/cells90204603w
  • 6- Perlmutter, M.A.; Lepor, H. Androgen deprivation therapy in the treatment of advanced prostate cancer. Rev. Urol. 2007, 9, S3–S8.
  • 7- Hellerstedt, B. A. & Pienta, K. J. The current state of hormonal therapy for prostate cancer. CA A Cancer J. Clin. 52, 154–179 (2002)
  • 8- Kalra, R., Bhagyaraj, E., Tiwari, D., Nanduri, R., Chacko, A. P., Jain, M., Mahajan, S., Khatri, N., & Gupta, P. (2018). AIRE promotes androgen-independent prostate cancer by directly regulating IL-6 and modulating tumor microenvironment. Oncogenesis, 7(5), 43. https://doi.org/10.1038/s41389-018-0053-7
  • 9- Saraon, P., Drabovich, A. P., Jarvi, K. A., & Diamandis, E. P. (2014). Mechanisms of Androgen-Independent Prostate Cancer. EJIFCC, 25(1), 42–54.
  • 10- Eroglu Gunes, C., Secme, M., Kurar, E., & Donmez, H. (2022). Apoptotic and Anti-Metastatic Effect of Carvacrol in PANC-1 Human Pancreatic Cancer Cells. Natural Products and Biotechnology, 2(1), 42-50.
  • 11- Alipieva, K., Korkina, L., Orhan, I. E., & Georgiev, M. I. (2014). Verbascoside--a review of its occurrence, (bio)synthesis and pharmacological significance. Biotechnology advances, 32(6), 1065–1076. https://doi.org/10.1016/j.biotechadv.2014.07.001
  • 12- Liu, J., Yang, L., Dong, Y., Zhang, B., & Ma, X. (2018). Echinacoside, an Inestimable Natural Product in Treatment of Neurological and other Disorders. Molecules (Basel, Switzerland), 23(5), 1213. https://doi.org/10.3390/molecules23051213
  • 13- Facino, R. M., Carini, M., Aldini, G., Saibene, L., Pietta, P., & Mauri, P. (1995). Echinacoside and caffeoyl conjugates protect collagen from free radical-induced degradation: a potential use of Echinacea extracts in the prevention of skin photodamage. Planta medica, 61(6), 510–514. https://doi.org/10.1055/s-2006-959359
  • 14- Bian, P., Liu, C., Hu, W., Ding, Y., Qiu, S., & Li, L. (2021). Echinacoside Suppresses the Progression of Breast Cancer by Downregulating the Expression of miR-4306 and miR-4508. Integrative cancer therapies, 20, 15347354211062639. https://doi.org/10.1177/15347354211062639
  • 15- Dong, L., Yu, D., Wu, N., Wang, H., Niu, J., Wang, Y., & Zou, Z. (2015). Echinacoside Induces Apoptosis in Human SW480 Colorectal Cancer Cells by Induction of Oxidative DNA Damages. International journal of molecular sciences, 16(7), 14655–14668. https://doi.org/10.3390/ijms160714655
  • 16- Zhang, D., Li, H., & Wang, J. B. (2015). Echinacoside inhibits amyloid fibrillization of HEWL and protects against Aβ-induced neurotoxicity. International journal of biological macromolecules, 72, 243–253. https://doi.org/10.1016/j.ijbiomac.2014.08.034
  • 17- Wu, Y., Li, L., Wen, T., & Li, Y. Q. (2007). Protective effects of echinacoside on carbon tetrachloride-induced hepatotoxicity in rats. Toxicology, 232(1-2), 50–56. https://doi.org/10.1016/j.tox.2006.12.013
  • 18- Wang, S., Zheng, G., Tian, S., Zhang, Y., Shen, L., Pak, Y., Shen, Y., & Qian, J. (2015). Echinacoside improves hematopoietic function in 5-FU-induced myelosuppression mice. Life sciences, 123, 86–92. https://doi.org/10.1016/j.lfs.2015.01.002
  • 19- Morikawa, T., Ninomiya, K., Imamura, M., Akaki, J., Fujikura, S., Pan, Y., Yuan, D., Yoshikawa, M., Jia, X., Li, Z., & Muraoka, O. (2014). Acylated phenylethanoid glycosides, echinacoside and acteoside from Cistanche tubulosa, improve glucose tolerance in mice. Journal of natural medicines, 68(3), 561–566. https://doi.org/10.1007/s11418-014-0837-9
  • 20- Wang, W., Luo, J., Liang, Y., & Li, X. (2016). Echinacoside suppresses pancreatic adenocarcinoma cell growth by inducing apoptosis via the mitogen-activated protein kinase pathway. Molecular medicine reports, 13(3), 2613–2618. https://doi.org/10.3892/mmr.2016.4867
  • 21- Liu, J., Tang, N., Liu, N., Lei, P., & Wang, F. (2022). Echinacoside inhibits the proliferation, migration, invasion and angiogenesis of ovarian cancer cells through PI3K/AKT pathway. Journal of molecular histology, 53(2), 493–502. https://doi.org/10.1007/s10735-022-10073-x
  • 22- Li, W., Zhou, J., Zhang, Y., Zhang, J., Li, X., Yan, Q., Han, J., & Hu, F. (2021). Echinacoside exerts anti-tumor activity via the miR-503-3p/TGF-β1/Smad aixs in liver cancer. Cancer cell international, 21(1), 304. https://doi.org/10.1186/s12935-021-01890-3
  • 23- Secme, M., Kaygusuz, O., Eroglu, C., Dodurga, Y., Colak, O. F., & Atmaca, P. (2018). Potential Anticancer Activity of the Parasol Mushroom, Macrolepiota procera (Agaricomycetes), against the A549 Human Lung Cancer Cell Line. International journal of medicinal mushrooms, 20(11), 1075–1086. https://doi.org/10.1615/IntJMedMushrooms.2018028589
  • 24- Dodurga, Y., Seçme, M., Eroğlu, C., Gündoğdu, G., Avcı, Ç. B., Bağcı, G., Küçükatay, V., & Lale Şatıroğlu-Tufan, N. (2015). Investigation of the effects of a sulfite molecule on human neuroblastoma cells via a novel oncogene URG4/URGCP. Life sciences, 143, 27–34. https://doi.org/10.1016/j.lfs.2015.10.005
  • 25- Tang, C., Gong, L., Lvzi Xu, Qiu, K., Zhang, Z., & Wan, L. (2020). Echinacoside inhibits breast cancer cells by suppressing the Wnt/β-catenin signaling pathway. Biochemical and biophysical research communications, 526(1), 170–175. https://doi.org/10.1016/j.bbrc.2020.03.050
  • 26- Espinosa-Paredes, D. A., Cornejo-Garrido, J., Moreno-Eutimio, M. A., Martínez-Rodríguez, O. P., Jaramillo-Flores, M. E., & Ordaz-Pichardo, C. (2021). Echinacea Angustifolia DC Extract Induces Apoptosis and Cell Cycle Arrest and Synergizes with Paclitaxel in the MDA-MB-231 and MCF-7 Human Breast Cancer Cell Lines. Nutrition and cancer, 73(11-12), 2287–2305. https://doi.org/10.1080/01635581.2020.1817956
  • 27- Ye, Y., Song, Y., Zhuang, J., Wang, G., Ni, J., & Xia, W. (2019). Anticancer effects of echinacoside in hepatocellular carcinoma mouse model and HepG2 cells. Journal of cellular physiology, 234(2), 1880–1888. https://doi.org/10.1002/jcp.27063
  • 28- Dong, L., Wang, H., Niu, J., Zou, M., Wu, N., Yu, D., Wang, Y., & Zou, Z. (2015). Echinacoside induces apoptotic cancer cell death by inhibiting the nucleotide pool sanitizing enzyme MTH1. OncoTargets and therapy, 8, 3649–3664. https://doi.org/10.2147/OTT.S94513
  • 29- Erkli H and Ersöz E. Matrix metalloprotinases: effects on dental tissues and caries. Cumhuriyet Dent J 2011;14(3):246-257
  • 30- Falk, P., Jonsson, A., Swartling, T., Asplund, D., & Ivarsson, M. L. (2018). Role of matrix metalloproteinases in tumour invasion: immunohistochemistry of peritoneum from peritoneal carcinomatosis. Medical oncology (Northwood, London, England), 35(5), 64. https://doi.org/10.1007/s12032-018-1122-7

Ekinakozit PC3 androjen bağımsız prostat kanseri hücrelerinde hücre proliferasyonunu azaltır ve hücre invazyonunu inhibe eder

Year 2022, Volume: 15 Issue: 4, 796 - 803, 01.10.2022
https://doi.org/10.31362/patd.1151168

Abstract

Amaç: Bu çalışmanın amacı Echinacoside'in PC3 androjen bağımsız prostat kanseri hücrelerinde hücre proliferasyonuna, invazyonuna ve invazyon ilişkili genlerin mRNA ekspresyon değişimleri üzerine etkilerini belirlemektir.
Gereç ve yöntem: Ekinakozitin PC3 hücrelerinde hücre proliferasyonuna olan etkisi XTT yöntemiyle belirlenmiştir. Anti-invaziv etkinliği transwel chamber kullanılarak gerçekleştirilmiştir. Total RNA izolasyonu Trizol aracılığıyla gerçekleştirilmiş ve takiben cDNA sentezlenmiştir. MMP2, MMP9, TIMP1, TIMP2 ve TIMP3'ün mRNA ekspresyon değişimleri SYBER Green ile RT-PCR da gerçekleştirilmiştir.
Bulgular: Bu çalışmada Ekinakozitin PC3 hücrelerinde IC50 dozu 48. saate 55,21 μM olarak tespit edilmiştir. Ekinakozitin PC3 hücrelerinde hücre invazyonunu inhibe ettiği doz grubunda %66 oranında invazyonu azalttığı belirlenmiştir. Ayrıca ekinakozitin kontrole göre IC50 doz grubunda, TIMP1 mRNA ekspresyonunu 1,96 kat, TIMP2 mRNA ekspresyonunu 2,60 kat arttırken MMP2 ekspresyonunu 3,82 kat, MMP9 mRNA ekspresyonunu 1,54 kat azaltması istatistiksel olarak anlamlı bulunmuştur.
Sonuç: Ekinakozitin PC3 prostat kanseri hücreleri üzerinde antiproliferatif etki gösterdiği ortaya koyulmuştur. Ayrıca invazyon ilişkili genlerin ekspresyon değişimlerini regüle ederek invazyonu da baskılayabileceği gösterilmiştir. Bu çalışma ile ekinakozit ve prostat kanseri üzerindeki etkisi ile ilgili olarak bundan sonraki yapılacak olan detaylı moleküler biyolojik çalışmalar açısından ön veriler ortaya koyulmuştur.

References

  • 1- NGlobal Burden of Disease Cancer Collaboration, Fitzmaurice, C., Allen, C., Barber, R. M., Barregard, L., Bhutta, Z. A., et al. (2017). Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-years for 32 Cancer Groups, 1990 to 2015: A Systematic Analysis for the Global Burden of Disease Study. JAMA oncology, 3(4), 524–548. https://doi.org/10.1001/jamaoncol.2016.5688
  • 2- H. Sung, J. Ferlay, R. L. Siegel et al., “Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality Oxidative Medicine and Cellular Longevity worldwide for 36 cancers in 185 countries,” CA: a Cancer Journal for Clinicians, vol. 71, no. 3, pp. 209–249, 2021.
  • 3- Siegel, R. L., Miller, K. D., Fuchs, H. E., & Jemal, A. (2022). Cancer statistics, 2022. CA: a cancer journal for clinicians, 72(1), 7–33. https://doi.org/10.3322/caac.21708
  • 4- Stephenson, A. J., Scardino, P. T., Eastham, J. A., Bianco, F. J., Jr, Dotan, Z. A., Fearn, P. A., & Kattan, M. W. (2006). Preoperative nomogram predicting the 10-year probability of prostate cancer recurrence after radical prostatectomy. Journal of the National Cancer Institute, 98(10), 715–717. https://doi.org/10.1093/jnci/djj190
  • 5- Fontana, F., Raimondi, M., Marzagalli, M., Di Domizio, A., & Limonta, P. (2020). Natural Compounds in Prostate Cancer Prevention and Treatment: Mechanisms of Action and Molecular Targets. Cells, 9(2), 460. https://doi.org/10.3390/cells90204603w
  • 6- Perlmutter, M.A.; Lepor, H. Androgen deprivation therapy in the treatment of advanced prostate cancer. Rev. Urol. 2007, 9, S3–S8.
  • 7- Hellerstedt, B. A. & Pienta, K. J. The current state of hormonal therapy for prostate cancer. CA A Cancer J. Clin. 52, 154–179 (2002)
  • 8- Kalra, R., Bhagyaraj, E., Tiwari, D., Nanduri, R., Chacko, A. P., Jain, M., Mahajan, S., Khatri, N., & Gupta, P. (2018). AIRE promotes androgen-independent prostate cancer by directly regulating IL-6 and modulating tumor microenvironment. Oncogenesis, 7(5), 43. https://doi.org/10.1038/s41389-018-0053-7
  • 9- Saraon, P., Drabovich, A. P., Jarvi, K. A., & Diamandis, E. P. (2014). Mechanisms of Androgen-Independent Prostate Cancer. EJIFCC, 25(1), 42–54.
  • 10- Eroglu Gunes, C., Secme, M., Kurar, E., & Donmez, H. (2022). Apoptotic and Anti-Metastatic Effect of Carvacrol in PANC-1 Human Pancreatic Cancer Cells. Natural Products and Biotechnology, 2(1), 42-50.
  • 11- Alipieva, K., Korkina, L., Orhan, I. E., & Georgiev, M. I. (2014). Verbascoside--a review of its occurrence, (bio)synthesis and pharmacological significance. Biotechnology advances, 32(6), 1065–1076. https://doi.org/10.1016/j.biotechadv.2014.07.001
  • 12- Liu, J., Yang, L., Dong, Y., Zhang, B., & Ma, X. (2018). Echinacoside, an Inestimable Natural Product in Treatment of Neurological and other Disorders. Molecules (Basel, Switzerland), 23(5), 1213. https://doi.org/10.3390/molecules23051213
  • 13- Facino, R. M., Carini, M., Aldini, G., Saibene, L., Pietta, P., & Mauri, P. (1995). Echinacoside and caffeoyl conjugates protect collagen from free radical-induced degradation: a potential use of Echinacea extracts in the prevention of skin photodamage. Planta medica, 61(6), 510–514. https://doi.org/10.1055/s-2006-959359
  • 14- Bian, P., Liu, C., Hu, W., Ding, Y., Qiu, S., & Li, L. (2021). Echinacoside Suppresses the Progression of Breast Cancer by Downregulating the Expression of miR-4306 and miR-4508. Integrative cancer therapies, 20, 15347354211062639. https://doi.org/10.1177/15347354211062639
  • 15- Dong, L., Yu, D., Wu, N., Wang, H., Niu, J., Wang, Y., & Zou, Z. (2015). Echinacoside Induces Apoptosis in Human SW480 Colorectal Cancer Cells by Induction of Oxidative DNA Damages. International journal of molecular sciences, 16(7), 14655–14668. https://doi.org/10.3390/ijms160714655
  • 16- Zhang, D., Li, H., & Wang, J. B. (2015). Echinacoside inhibits amyloid fibrillization of HEWL and protects against Aβ-induced neurotoxicity. International journal of biological macromolecules, 72, 243–253. https://doi.org/10.1016/j.ijbiomac.2014.08.034
  • 17- Wu, Y., Li, L., Wen, T., & Li, Y. Q. (2007). Protective effects of echinacoside on carbon tetrachloride-induced hepatotoxicity in rats. Toxicology, 232(1-2), 50–56. https://doi.org/10.1016/j.tox.2006.12.013
  • 18- Wang, S., Zheng, G., Tian, S., Zhang, Y., Shen, L., Pak, Y., Shen, Y., & Qian, J. (2015). Echinacoside improves hematopoietic function in 5-FU-induced myelosuppression mice. Life sciences, 123, 86–92. https://doi.org/10.1016/j.lfs.2015.01.002
  • 19- Morikawa, T., Ninomiya, K., Imamura, M., Akaki, J., Fujikura, S., Pan, Y., Yuan, D., Yoshikawa, M., Jia, X., Li, Z., & Muraoka, O. (2014). Acylated phenylethanoid glycosides, echinacoside and acteoside from Cistanche tubulosa, improve glucose tolerance in mice. Journal of natural medicines, 68(3), 561–566. https://doi.org/10.1007/s11418-014-0837-9
  • 20- Wang, W., Luo, J., Liang, Y., & Li, X. (2016). Echinacoside suppresses pancreatic adenocarcinoma cell growth by inducing apoptosis via the mitogen-activated protein kinase pathway. Molecular medicine reports, 13(3), 2613–2618. https://doi.org/10.3892/mmr.2016.4867
  • 21- Liu, J., Tang, N., Liu, N., Lei, P., & Wang, F. (2022). Echinacoside inhibits the proliferation, migration, invasion and angiogenesis of ovarian cancer cells through PI3K/AKT pathway. Journal of molecular histology, 53(2), 493–502. https://doi.org/10.1007/s10735-022-10073-x
  • 22- Li, W., Zhou, J., Zhang, Y., Zhang, J., Li, X., Yan, Q., Han, J., & Hu, F. (2021). Echinacoside exerts anti-tumor activity via the miR-503-3p/TGF-β1/Smad aixs in liver cancer. Cancer cell international, 21(1), 304. https://doi.org/10.1186/s12935-021-01890-3
  • 23- Secme, M., Kaygusuz, O., Eroglu, C., Dodurga, Y., Colak, O. F., & Atmaca, P. (2018). Potential Anticancer Activity of the Parasol Mushroom, Macrolepiota procera (Agaricomycetes), against the A549 Human Lung Cancer Cell Line. International journal of medicinal mushrooms, 20(11), 1075–1086. https://doi.org/10.1615/IntJMedMushrooms.2018028589
  • 24- Dodurga, Y., Seçme, M., Eroğlu, C., Gündoğdu, G., Avcı, Ç. B., Bağcı, G., Küçükatay, V., & Lale Şatıroğlu-Tufan, N. (2015). Investigation of the effects of a sulfite molecule on human neuroblastoma cells via a novel oncogene URG4/URGCP. Life sciences, 143, 27–34. https://doi.org/10.1016/j.lfs.2015.10.005
  • 25- Tang, C., Gong, L., Lvzi Xu, Qiu, K., Zhang, Z., & Wan, L. (2020). Echinacoside inhibits breast cancer cells by suppressing the Wnt/β-catenin signaling pathway. Biochemical and biophysical research communications, 526(1), 170–175. https://doi.org/10.1016/j.bbrc.2020.03.050
  • 26- Espinosa-Paredes, D. A., Cornejo-Garrido, J., Moreno-Eutimio, M. A., Martínez-Rodríguez, O. P., Jaramillo-Flores, M. E., & Ordaz-Pichardo, C. (2021). Echinacea Angustifolia DC Extract Induces Apoptosis and Cell Cycle Arrest and Synergizes with Paclitaxel in the MDA-MB-231 and MCF-7 Human Breast Cancer Cell Lines. Nutrition and cancer, 73(11-12), 2287–2305. https://doi.org/10.1080/01635581.2020.1817956
  • 27- Ye, Y., Song, Y., Zhuang, J., Wang, G., Ni, J., & Xia, W. (2019). Anticancer effects of echinacoside in hepatocellular carcinoma mouse model and HepG2 cells. Journal of cellular physiology, 234(2), 1880–1888. https://doi.org/10.1002/jcp.27063
  • 28- Dong, L., Wang, H., Niu, J., Zou, M., Wu, N., Yu, D., Wang, Y., & Zou, Z. (2015). Echinacoside induces apoptotic cancer cell death by inhibiting the nucleotide pool sanitizing enzyme MTH1. OncoTargets and therapy, 8, 3649–3664. https://doi.org/10.2147/OTT.S94513
  • 29- Erkli H and Ersöz E. Matrix metalloprotinases: effects on dental tissues and caries. Cumhuriyet Dent J 2011;14(3):246-257
  • 30- Falk, P., Jonsson, A., Swartling, T., Asplund, D., & Ivarsson, M. L. (2018). Role of matrix metalloproteinases in tumour invasion: immunohistochemistry of peritoneum from peritoneal carcinomatosis. Medical oncology (Northwood, London, England), 35(5), 64. https://doi.org/10.1007/s12032-018-1122-7
There are 30 citations in total.

Details

Primary Language English
Subjects Biochemistry and Cell Biology (Other)
Journal Section Research Article
Authors

Mücahit Seçme 0000-0002-2084-760X

Yavuz Dodurga 0000-0002-4936-5954

Publication Date October 1, 2022
Submission Date July 30, 2022
Acceptance Date August 12, 2022
Published in Issue Year 2022 Volume: 15 Issue: 4

Cite

AMA Seçme M, Dodurga Y. Echinacoside decreases cell proliferation and inhibits cell invasion in PC3 androgen-independent prostate cancer cells. Pam Med J. October 2022;15(4):796-803. doi:10.31362/patd.1151168

Creative Commons Lisansı
Pamukkale Medical Journal is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License