Research Article
BibTex RIS Cite

HT22 hücre farklılaşması insülin reseptör seviyelerini azaltır

Year 2024, Volume: 17 Issue: 1, 79 - 85, 01.01.2024
https://doi.org/10.31362/patd.1338766

Abstract

Amaç: Beyin, yaygın insülin reseptörü (IR) ekspresyonu olan insüline duyarlı bir organ olarak kabul edilmektedir. Beyindeki IR sinyali; nöronal gelişim, beslenme davranışı, vücut ağırlığı, dikkat, öğrenme ve hafıza gibi bilişsel süreçler için gereklidir. Primer fare hipokampal nöronal hücrelerinden ölümsüzleştirilen ana HT4 hücrelerinden türetilen HT22 hücreleri, insülin sinyali ile ilgili araştırmalarda kullanılmaktadır. Bununla birlikte, bu hücrelerin insülin sinyallemesindeki rolü bilinmemektedir. Bu çalışmada, nörobazal besiyeri kullanılarak farklılaştırılmış hücrelerde IR düzeylerini incelemeyi amaçladık.
Gereç ve yöntem: Çalışma için öncelikle, hücreler 24 saat boyunca 2x105 hücre/kuyu olacak şekilde 6 oyuklu plakalara ekildi. Hücreler %80 konfluansa ulaştıktan sonra normal büyüme ortamı farklılaşma ortamı ile değiştirildi ve hücreler 72 saat 370C'de %5 CO2'de inkübe edildi. İnsülin reseptörünün (IR) ekspresyonunu belirlemek için western blot prosedürü kullanıldı.
Bulgular: Sonuçlarımız, HT22 hücrelerinin farklılaşmasının nörit büyümesini desteklediğini göstermektedir. Ayrıca, IR protein seviyeleri farklılaşmış HT22 hücrelerinde önemli ölçüde azalmıştır.
Sonuç: Bu bulgu, IR sinyalinin önemli olduğu durumlarda nörobazal ortamın kullanımının dikkatli bir şekilde değerlendirilmesini gerektirebilir.

References

  • 1. Havrankova J, Roth J, Brownstein M. Insulin receptors are widely distributed in the central nervous system of the rat. Nature 1978;272:827‐829. https://doi.org/10.1038/272827a0
  • 2. Unger J, McNeill TH, Moxley 3rd RT, White M, Moss A, Livingston JN. Distribution of insulin receptor-like immunoreactivity in the rat forebrain. Neuroscience 1989;31:143‐157. https://doi.org/10.1016/0306-4522(89)90036-5
  • 3. Lee CC, Huang CC, Hsu KS. Insulin promotes dendritic spine and synapse formation by the PI3K/Akt/mTOR and Rac1 signaling pathways. Neuropharmacology 2011;61:867-879. https://doi.org/0.1016/j.neuropharm.2011.06.003
  • 4. Zhao WQ, Alkon DL. Role of insulin and insulin receptor in learning and memory Mol Cell Endocrinol 2001;177:125-134. https://doi.org/10.1016/s0303-7207(01)00455-5
  • 5. Mielke JG, Taghibiglou C, Liu L, et al. A biochemical and functional characterization of diet-induced brain insulin resistance. J Neurochem 2005;93:1568-1578. https://doi.org/10.1111/j.1471-4159.2005.03155.x
  • 6. Arnold SE, Arvanitakis Z, Macauley Rambach SL, et al. Brain insulin resistance in type 2 diabetes and alzheimer disease: concepts and conundrums. Nat Rev Neurol 2018;14:168-181. https://doi.org/10.1038/nrneurol.2017.185
  • 7. Liu C, Maejima T, Wyler SC, Casadesus G, Herlitze S, Deneris ES. Pet-1 is required across different stages of life to regulate serotonergic function. Nat Neurosci 2010;13:1190-1198. https://doi.org/10.1038/nn.2623
  • 8. He M, Liu J, Cheng S, Xing Y, Suo WZ. Differentiation renders susceptibility to excitotoxicity in HT22 neurons. Neural Regen Res 2013;8:1297-1306. https://doi.org/10.3969/j.issn.1673-5374.2013.14.006
  • 9. Lim J, Bang Y, Kim KM, Choi HJ. Differentiated HT22 cells as a novel model for in vitro screening of serotonin reuptake inhibitors. Front Pharmacol 2023;13:1062650. https://doi.org/10.3389/fphar.2022.1062650
  • 10. Apostolatos A, Song S, Acosta S, et al. Insulin promotes neuronal survival via the alternatively spliced protein kinase CδII isoform. J Biol Chem 2012;287:9299-9310. https://doi.org/10.1074/jbc.M111.313080
  • 11. Chiu SL, Cline HT. Insulin receptor signaling in the development of neuronal structure and function. Neural Dev 2010;5:7. https://doi.org/10.1186/1749-8104-5-7
  • 12. Mamik MK, Asahchop EL, Chan WF, et al. Insulin treatment prevents neuroinflammation and neuronal injury with restored neurobehavioral function in models of HIV/AIDS neurodegeneration. J Neurosci 2016;36:10683-10695. https://doi.org/10.1523/JNEUROSCI.1287-16.2016
  • 13. Duarte AI, Santos MS, Seica R, de Oliveira CR. Insulin affects synaptosomal GABA and glutamate transport under oxidative stress conditions. Brain Res 2003;977:23-30. https://doi.org/10.1016/s0006-8993(03)02679-9
  • 14. Reno CM, Tanoli T, Bree A, et al. Antecedent glycemic control reduces severe hypoglycemia-induced neuronal damage in diabetic rats. Am J Physiol Endocrinol Metab 2013;304:1331-1337. https://doi.org/10.1152/ajpendo.00084.2013
  • 15. Rensink AAM, Otte Holler I, de Boer R, et al. Insulin inhibits amyloid beta-induced cell death in cultured human brain pericytes. Neurobiol Aging 2004;25:93-103. https://doi.org/10.1016/s0197-4580(03)00039-3
  • 16. Ryu BR, Ko HW, Jou I, Noh JS, Gwag BJ. Phosphatidylinositol 3-kinase- mediated regulation of neuronal apoptosis and necrosis by insülin and IGF-I. J Neurobiol 1999;39:536-546.
  • 17. Soto M, Cai W, Konishi M, Kahn CR. Insulin signaling in the hippocampus and amygdala regulates metabolism and neurobehavior. Proc Natl Acad Sci USA 2019;116:6379-6384. https://doi.org/10.1073/pnas.1817391116
  • 18. Holscher C. Insulin signaling impairment in the brain as a risk factor in Alzheimer's disease. Front Aging Neurosci 2019;11:88. https://doi.org/10.3389/fnagi.2019.00088
  • 19. Kleinridders A, Cai W, Cappellucci L, et al. Insulin resistance in brain alters dopamine turnover and causes behavioral disorders. Proc Natl Acad Sci USA 2015;112:3463-3468. https://doi.org/10.1073/pnas.1500877112
  • 20. Yang Y, Ma D, Xu W, et al. Exendin-4 reduces tau hyperphosphorylation in type 2 diabetic rats via increasing brain insulin level. Mol Cell Neurosci 2016;70:68-75. https://doi.org/10.1016/j.mcn.2015.10.005
  • 21. Amine H, Benomar Y, Taouis M. Palmitic acid promotes resistin-induced insulin resistance and inflammation in SH-SY5Y human neuroblastoma. Sci Rep 2021;11:5427. https://doi.org/10.1038/s41598-021-85018-7
  • 22. Zaulkffali AS, Md Razip NN, Syed Alwi SS, et al. Vitamins D and E stimulate the PI3K-AKT signaling pathway in insulin-resistant SK-N-SH neuronal cells. Nutrients 2019;11:2525. https://doi.org/10.3390/nu11102525 23. Maekawa Y, Onishi A, Matsushita K, et al. Optimized culture system to ınduce neurite outgrowth from retinal ganglion cells in three-dimensional retinal aggregates differentiated from mouse and human embryonic stem cells. Curr Eye Res 2016;41:558-568. https://doi.org/10.3109/02713683.2015.1038359
  • 24. Yang JL, Lin YT, Chen WY, Yang YR, Sun SF, Chen SD. The neurotrophic function of Glucagon-Like Peptide-1 promotes human neuroblastoma differentiation via the PI3K-AKT axis. Biology (Basel) 2020;9:348. https://doi.org/10.3390/biology9110348
  • 25. Bassit GE, Patel RS, Carter G, et al. MALAT1 in human adipose stem cells modulates survival and alternative splicing of PKCδII in HT22 cells. Endocrinology 2017;158:183-195. https://doi.org/10.1210/en.2016-1819
  • 26. Apostolatos A, Song S, Acosta S, et al. Insulin promotes neuronal survival via the alternatively spliced protein kinase CδII isoform. J Biol Chem 2012;287:9299-9310. https://doi.org/10.1074/jbc.M111.313080
  • 27. Harrill JA, Robinette BL, Freudenrich TM, Mundy WR. Media formulation influences chemical effects on neuronal growth and morphology. In Vitro Cell Dev Biol Anim 2015;51:612-629. https://doi.org/10.1007/s11626-015-9873-3
  • 28. He M, Liu J, Cheng S, Xing Y, Suo WZ. Differentiation renders susceptibility to excitotoxicity in HT22 neurons. Neural Regen Res 2013;8:1297-1306. https://doi.org/10.3969/j.issn.1673-5374.2013.14.006
  • 29. Zhao Z, Lu R, Zhang B, et al. Differentiation of HT22 neurons induces expression of NMDA receptor that mediates homocysteine cytotoxicity. Neurol Res 2012;34:38-43. https://doi.org/10.1179/1743132811Y.0000000057

HT22 cell differentiation reduces insulin receptor levels

Year 2024, Volume: 17 Issue: 1, 79 - 85, 01.01.2024
https://doi.org/10.31362/patd.1338766

Abstract

Purpose: The brain is an insulin-sensitive organ and has widespread insulin receptor (IR) expression. IR signaling in the brain is essential for neuronal development, feeding behavior, body weight, and cognitive processes such as attention, learning, and memory. HT22 cells, which are derived from parent HT4 cells that are immortalized from primary mouse hippocampal neuronal cells are used in research related to insulin signaling. However, the role of these cells in insulin signaling is not known. In this study, we aimed to examine IR levels in cells differentiated using neurobasal medium.
Material and methods: For the study, briefly, the cells were seeded in 6-well plates at 2x105 cells/well for 24 h. After the cells reached 80% confluence, the normal growth medium was replaced with a differentiation medium and the cells were incubated for 72 hours at 370C in 5% CO2. Western blot procedure was used to determine the expression of the IR.
Result: Our results show that differentiation of HT22 cells stimulates neurite outgrowth. Furthermore, IR protein levels were significantly downregulated in differentiated HT22 cells.
Conclusion: This finding may require careful consideration of the use of neurobasal medium in conditions where IR signaling is important.

References

  • 1. Havrankova J, Roth J, Brownstein M. Insulin receptors are widely distributed in the central nervous system of the rat. Nature 1978;272:827‐829. https://doi.org/10.1038/272827a0
  • 2. Unger J, McNeill TH, Moxley 3rd RT, White M, Moss A, Livingston JN. Distribution of insulin receptor-like immunoreactivity in the rat forebrain. Neuroscience 1989;31:143‐157. https://doi.org/10.1016/0306-4522(89)90036-5
  • 3. Lee CC, Huang CC, Hsu KS. Insulin promotes dendritic spine and synapse formation by the PI3K/Akt/mTOR and Rac1 signaling pathways. Neuropharmacology 2011;61:867-879. https://doi.org/0.1016/j.neuropharm.2011.06.003
  • 4. Zhao WQ, Alkon DL. Role of insulin and insulin receptor in learning and memory Mol Cell Endocrinol 2001;177:125-134. https://doi.org/10.1016/s0303-7207(01)00455-5
  • 5. Mielke JG, Taghibiglou C, Liu L, et al. A biochemical and functional characterization of diet-induced brain insulin resistance. J Neurochem 2005;93:1568-1578. https://doi.org/10.1111/j.1471-4159.2005.03155.x
  • 6. Arnold SE, Arvanitakis Z, Macauley Rambach SL, et al. Brain insulin resistance in type 2 diabetes and alzheimer disease: concepts and conundrums. Nat Rev Neurol 2018;14:168-181. https://doi.org/10.1038/nrneurol.2017.185
  • 7. Liu C, Maejima T, Wyler SC, Casadesus G, Herlitze S, Deneris ES. Pet-1 is required across different stages of life to regulate serotonergic function. Nat Neurosci 2010;13:1190-1198. https://doi.org/10.1038/nn.2623
  • 8. He M, Liu J, Cheng S, Xing Y, Suo WZ. Differentiation renders susceptibility to excitotoxicity in HT22 neurons. Neural Regen Res 2013;8:1297-1306. https://doi.org/10.3969/j.issn.1673-5374.2013.14.006
  • 9. Lim J, Bang Y, Kim KM, Choi HJ. Differentiated HT22 cells as a novel model for in vitro screening of serotonin reuptake inhibitors. Front Pharmacol 2023;13:1062650. https://doi.org/10.3389/fphar.2022.1062650
  • 10. Apostolatos A, Song S, Acosta S, et al. Insulin promotes neuronal survival via the alternatively spliced protein kinase CδII isoform. J Biol Chem 2012;287:9299-9310. https://doi.org/10.1074/jbc.M111.313080
  • 11. Chiu SL, Cline HT. Insulin receptor signaling in the development of neuronal structure and function. Neural Dev 2010;5:7. https://doi.org/10.1186/1749-8104-5-7
  • 12. Mamik MK, Asahchop EL, Chan WF, et al. Insulin treatment prevents neuroinflammation and neuronal injury with restored neurobehavioral function in models of HIV/AIDS neurodegeneration. J Neurosci 2016;36:10683-10695. https://doi.org/10.1523/JNEUROSCI.1287-16.2016
  • 13. Duarte AI, Santos MS, Seica R, de Oliveira CR. Insulin affects synaptosomal GABA and glutamate transport under oxidative stress conditions. Brain Res 2003;977:23-30. https://doi.org/10.1016/s0006-8993(03)02679-9
  • 14. Reno CM, Tanoli T, Bree A, et al. Antecedent glycemic control reduces severe hypoglycemia-induced neuronal damage in diabetic rats. Am J Physiol Endocrinol Metab 2013;304:1331-1337. https://doi.org/10.1152/ajpendo.00084.2013
  • 15. Rensink AAM, Otte Holler I, de Boer R, et al. Insulin inhibits amyloid beta-induced cell death in cultured human brain pericytes. Neurobiol Aging 2004;25:93-103. https://doi.org/10.1016/s0197-4580(03)00039-3
  • 16. Ryu BR, Ko HW, Jou I, Noh JS, Gwag BJ. Phosphatidylinositol 3-kinase- mediated regulation of neuronal apoptosis and necrosis by insülin and IGF-I. J Neurobiol 1999;39:536-546.
  • 17. Soto M, Cai W, Konishi M, Kahn CR. Insulin signaling in the hippocampus and amygdala regulates metabolism and neurobehavior. Proc Natl Acad Sci USA 2019;116:6379-6384. https://doi.org/10.1073/pnas.1817391116
  • 18. Holscher C. Insulin signaling impairment in the brain as a risk factor in Alzheimer's disease. Front Aging Neurosci 2019;11:88. https://doi.org/10.3389/fnagi.2019.00088
  • 19. Kleinridders A, Cai W, Cappellucci L, et al. Insulin resistance in brain alters dopamine turnover and causes behavioral disorders. Proc Natl Acad Sci USA 2015;112:3463-3468. https://doi.org/10.1073/pnas.1500877112
  • 20. Yang Y, Ma D, Xu W, et al. Exendin-4 reduces tau hyperphosphorylation in type 2 diabetic rats via increasing brain insulin level. Mol Cell Neurosci 2016;70:68-75. https://doi.org/10.1016/j.mcn.2015.10.005
  • 21. Amine H, Benomar Y, Taouis M. Palmitic acid promotes resistin-induced insulin resistance and inflammation in SH-SY5Y human neuroblastoma. Sci Rep 2021;11:5427. https://doi.org/10.1038/s41598-021-85018-7
  • 22. Zaulkffali AS, Md Razip NN, Syed Alwi SS, et al. Vitamins D and E stimulate the PI3K-AKT signaling pathway in insulin-resistant SK-N-SH neuronal cells. Nutrients 2019;11:2525. https://doi.org/10.3390/nu11102525 23. Maekawa Y, Onishi A, Matsushita K, et al. Optimized culture system to ınduce neurite outgrowth from retinal ganglion cells in three-dimensional retinal aggregates differentiated from mouse and human embryonic stem cells. Curr Eye Res 2016;41:558-568. https://doi.org/10.3109/02713683.2015.1038359
  • 24. Yang JL, Lin YT, Chen WY, Yang YR, Sun SF, Chen SD. The neurotrophic function of Glucagon-Like Peptide-1 promotes human neuroblastoma differentiation via the PI3K-AKT axis. Biology (Basel) 2020;9:348. https://doi.org/10.3390/biology9110348
  • 25. Bassit GE, Patel RS, Carter G, et al. MALAT1 in human adipose stem cells modulates survival and alternative splicing of PKCδII in HT22 cells. Endocrinology 2017;158:183-195. https://doi.org/10.1210/en.2016-1819
  • 26. Apostolatos A, Song S, Acosta S, et al. Insulin promotes neuronal survival via the alternatively spliced protein kinase CδII isoform. J Biol Chem 2012;287:9299-9310. https://doi.org/10.1074/jbc.M111.313080
  • 27. Harrill JA, Robinette BL, Freudenrich TM, Mundy WR. Media formulation influences chemical effects on neuronal growth and morphology. In Vitro Cell Dev Biol Anim 2015;51:612-629. https://doi.org/10.1007/s11626-015-9873-3
  • 28. He M, Liu J, Cheng S, Xing Y, Suo WZ. Differentiation renders susceptibility to excitotoxicity in HT22 neurons. Neural Regen Res 2013;8:1297-1306. https://doi.org/10.3969/j.issn.1673-5374.2013.14.006
  • 29. Zhao Z, Lu R, Zhang B, et al. Differentiation of HT22 neurons induces expression of NMDA receptor that mediates homocysteine cytotoxicity. Neurol Res 2012;34:38-43. https://doi.org/10.1179/1743132811Y.0000000057
There are 28 citations in total.

Details

Primary Language English
Subjects Clinical Sciences (Other)
Journal Section Research Article
Authors

Melek Tunç-ata 0000-0002-0384-2356

Fatih Altıntaş This is me 0000-0001-8779-0110

Early Pub Date November 27, 2023
Publication Date January 1, 2024
Submission Date August 11, 2023
Acceptance Date November 27, 2023
Published in Issue Year 2024 Volume: 17 Issue: 1

Cite

AMA Tunç-ata M, Altıntaş F. HT22 cell differentiation reduces insulin receptor levels. Pam Med J. January 2024;17(1):79-85. doi:10.31362/patd.1338766

Creative Commons Lisansı
Pamukkale Medical Journal is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License