Research Article
BibTex RIS Cite

Alternative day fasting protocol attenuates high fructose-induced activation of the TGF-beta/Smad signaling pathway

Year 2025, Volume: 18 Issue: 1, 167 - 178, 01.01.2025
https://doi.org/10.31362/patd.1583603

Abstract

Purpose: This study aims to explore the protective effects of alternate-day fasting (ADF) against metabolic
disturbances induced by high fructose (HF) intake, with a particular focus on modulating the transforming growth
factor-beta1 (TGF-β1) / mother against decapentaplegic homolog 2 (Smad2) signaling pathway.
Materials and methods: Four groups of rats (n=7 per group) were included: Control, ADF, HF (20% fructose
in drinking water), and HF+ADF. The ADF protocol was applied with 24 hours of ad libitum feeding followed
by 24 hours of fasting over a 5-week period. After five weeks, body weight (BW), muscle, and fat mass were
measured. Serum samples were analyzed using ELISA to assess levels of TGF-β1, Smad2, connective tissue
growth factor (CTGF), and total oxidant-antioxidant status (TOS-TAS).
Results: Results indicated that that HF significantly increased final BW, and ADF reduced this weight gain
(p=0.001). ADF also led to lower gastrocnemius-soleus muscle weights compared to controls (p=0.001), but
mitigated fructose-induced retroperitoneal fat accumulation. TAS levels were higher, and TOS levels were lower
in the ADF groups, showing an antioxidant shift (p<0.05). Moreover, ADF significantly attenuated the TGF-β1/
Smad2 pathway activation by decreasing serum TGF-β1, Smad2, and CTGF levels (p<0.05), suggesting a
protective role against fructose-induced metabolic dysregulation.
Conclusions: These findings suggest that ADF could be an effective dietary intervention for mitigating the
metabolic impact of excessive fructose intake, particularly by regulating oxidative stress and the TGF-β1/Smad2
pathway.

Ethical Statement

Ethics Committee approval, dated 27 June 2024 and numbered PAUHADYEK-2024/60758568-020-544586 was received from the Local Ethics Council of Animal Experiments, Pamukkale University.

Supporting Institution

Pamukkale University

References

  • Pan Y, Kong LD. High fructose diet-induced metabolic syndrome: Pathophysiological mechanism and treatment by traditional Chinese medicine. Pharmacol Res. 2018;130:438-450. doi:10.1016/j.phrs.2018.02.020
  • Herman MA, Samuel VT. The Sweet Path to Metabolic Demise: Fructose and Lipid Synthesis. Trends Endocrinol Metab. 2016;27:719-730. doi:10.1016/j.tem.2016.06.005
  • Zhao L, Guo X, Wang O, et al. Fructose and glucose combined with free fatty acids induce metabolic disorders in HepG2 cell: A new model to study the impacts of high-fructose/sucrose and high-fat diets in vitro. Mol Nutr Food Res. 2016;60:909-921. doi:10.1002/mnfr.201500635
  • Johnson RJ, Nakagawa T, Sanchez Lozada LG, et al. Sugar, uric acid, and the etiology of diabetes and obesity. Diabetes. 2013;62:3307-3315. doi:10.2337/db12-1814
  • Stanhope KL, Schwarz JM, Keim NL, et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Invest. 2009;119:1322-1334. doi:10.1172/JCI37385
  • Nagayama Yu, Masako Kawamoto, Kayo Masuko. A Potential Role of Fructose to Modulate Fibroblast Growth and Expression of Connective Tissue Growth Factor In Vitro. Advances in Research. 2016;6:1-7. doi:10.9734/AIR/2016/25173
  • Dinicolantonio JJ, Mehta V, Onkaramurthy N, O'Keefe JH. Fructose-induced inflammation and increased cortisol: A new mechanism for how sugar induces visceral adiposity. Prog Cardiovasc Dis. 2018;61:3-9. doi:10.1016/j.pcad.2017.12.001
  • Baharuddin B. The Impact of Fructose Consumption on Human Health: Effects on Obesity, Hyperglycemia, Diabetes, Uric Acid, and Oxidative Stress With a Focus on the Liver. Cureus. 2024;16:e70095. doi:10.7759/cureus.70095
  • Wang Y, Qi W, Song G, et al. High-Fructose Diet Increases Inflammatory Cytokines and Alters Gut Microbiota Composition in Rats. Mediators Inflamm. 2020;2020:6672636. doi:10.1155/2020/6672636
  • Boon MR, van der Horst G, van der Pluijm G, Tamsma JT, Smit JW, Rensen PC. Bone morphogenetic protein 7: a broad-spectrum growth factor with multiple target therapeutic potency. Cytokine Growth Factor Rev. 2011;22;221-229 doi:10.1016/j.cytogfr.2011.08.001
  • Lee HS. Paracrine role for TGF-β-induced CTGF and VEGF in mesangial matrix expansion in progressive glomerular disease. Histol Histopathol. 2012;27;1131-1141. doi:10.14670/HH-27.1131
  • Tang PM, Zhang YY, Mak TS, Tang PC, Huang XR, Lan HY. Transforming growth factor‐β signalling in renal fibrosis: from Smads to non‐coding RNAs. J Physio.l 2018;596:3493-3503. doi:10.1113/JP274492
  • Kohli R, Kirby M, Xanthakos SA, et al. High-fructose, medium chain trans fat diet induces liver fibrosis and elevates plasma coenzyme Q9 in a novel murine model of obesity and nonalcoholic steatohepatitis. Hepatology. 2010;52:934-944. doi:10.1002/hep.23797
  • Mohamad HE, Abdelhady MA, Abdel Aal SM, Elrashidy RA. Dulaglutide mitigates high dietary fructose-induced renal fibrosis in rats through suppressing epithelial-mesenchymal transition mediated by GSK-3β/TGF-β1/Smad3 signaling pathways. Life Sci. 2022;309:120999. doi:10.1016/j.lfs.2022.120999
  • Zhang D, Jin W, Wu R, et al. High glucose intake exacerbates autoimmunity through reactive-oxygen-species-mediated TGF-beta cytokine activation. Immunity 2019;51:671-681. doi:10.1016/j.immuni.2019.08.001
  • Wan R, Camandola S, Mattson MP. Intermittent fasting and dietary supplementation with 2-deoxy-D-glucose improve functional and metabolic cardiovascular risk factors in rats. FASEB J. 2003;17:1133-1134. doi:10.1096/fj.02-0996fje
  • Tinsley GM, La Bounty PM. Effects of intermittent fasting on body composition and clinical health markers in humans. Nutr Rev. 2015;73:661-674. doi:10.1093/nutrit/nuv041
  • Mattson MP, Longo VD, Harvie M. Impact of intermittent fasting on health and disease processes. Ageing Res Rev 2017;39:46-58. doi:10.1016/j.arr.2016.10.005
  • Fernandez MAR, Vilca CMC, Batista LO, Ramos VW, Cinelli LP, de Albuquerque KT. Intermittent food restriction in female rats induces SREBP high expression in hypothalamus and immediately postfasting hyperphagia. Nutrition. 2018;48:122-126. doi:1016/j.arr.2016.10.005
  • Park J, Seo YG, Paek YJ, Song HJ, Park KH, Noh HM. Effect of alternate-day fasting on obesity and cardiometabolic risk: a systematic review and metaanalysis. Metabolism. 2020;111:154336. doi:10.1016/j.metabol.2020.154336
  • Longo VD, Mattson MP. Fasting: molecular mechanisms and clinical applications. Cell Metab. 2014;19:181-192. doi:10.1016/j.cmet.2013.12.008
  • Zhang X, Zou Q, Zhao B, et al. Effects of alternate-day fasting, time-restricted fasting and intermittent energy restriction DSS-o induced n colitis and behavioral disorders. Redox Biol. 2020;32:101535. doi:10.1016/j.redox.2020.101535
  • Elortegui Pascual P, Rolands MR, Eldridge AL, et al. A Meta‐Analysis comparing the effectiveness of alternate day fasting, the 5: 2 diet, and Time‐Restricted eating for weight loss. Obesity. 2021;31:9-21. doi:10.1002/oby.23568
  • Ferretti F, Mariani M. Sugar-sweetened beverage affordability and the prevalence of overweight and obesity in a cross section of countries. Global Health. 2019;15:1-14. doi:10.1186/s12992-019-0474-x
  • Feyisa TO, Melka DS, Menon M, Labisso WL, Habte ML. Investigation of the effect of coffee on body weight, serum glucose, uric acid and lipid profile levels in male albino Wistar rats feeding on high-fructose diet. Lab Anim Res. 2019;18:35-29. doi:10.1186/s42826-019-0024-y
  • Tanaka K, Shoko N, Shizuka T, Mihoko K, Hiroshi S. Anti-obesity and hypotriglyceridemic properties of coffee bean extract in SD rats. Food Sci Technol Res. 2009;15:147-152. doi:10.3136/fstr.15.147
  • Batista LO, Ramos VW, Rosas Fernandez MA, Concha Vilca CM, Albuquerque KT. Oral solution of fructose promotes SREBP-1c high-expression in the hypothalamus of Wistar rats. Nutr Neurosci. 2019;22:648-654. doi:10.1080/1028415X.2018.1427659
  • Eyikudamaci G, Ege H, Ensen N, Yelmen N. Role of insulin resistance and leptin in the effect of intermittent feeding with a high-protein ketogenic diet on body composition in rats. Nutrition. 2024;117:112213. doi:10.1016/j.nut.2023.112213
  • Catenacci VA, Pan Z, Ostendorf D, et al. A randomized pilot study comparing zero-calorie alternate-day fasting to daily caloric restriction in adults with obesity. Obesity. 2016;24:1874-1883. doi:10.1002/oby.21581
  • Matsuda M, Shimomura I. Increased oxidative stress in obesity: implications for metabolic syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer. Obes Res Clin Pract. 2013;7:e330-e341. doi:10.1016/j.orcp.2013.05.004
  • Tappy L, Le KA. Metabolic effects of fructose and the worldwide increase in obesity. Physiol Rev. 2010;90:23-46. doi:10.1152/physrev.00019.2009
  • Chatterjee S. Oxidative stress, inflammation, and disease. In Oxidative stress and biomaterials. 2016;35-58. doi:10.1016/B978-0-12-803269-5.00002-4
  • Marczuk Krynicka D, Hryniewiecki T, Piatek J, Paluszak J. The effect of brief food withdrawal on the level of free radicals and other parameters of oxidative status in the liver. Med Sci Monit. 2003;9:131-135.
  • Sorensen M, Sanz A, Gomez J, et al. Effects of fasting on oxidative stress in rat liver mitochondria. Free Radic Res. 2006;40:339-347. doi:10.1080/10715760500250182
  • Kılıç Erkek Ö, Gündoğdu G. Gender-specific effects of alternate-day fasting on body weight, oxidative stress, and metabolic health in middle-aged rats. Pamukkale Medical Journal. 2024;17:690-701. doi:10.31362/patd.1487708
  • Li L, Wang Z, Zuo Z. Chronic intermittent fasting improves cognitive functions and brain structures in mice. PloS one. 2013;8:e66069. doi:10.1371/journal.pone.0066069
  • Direnzo DM, Chaudhary MA, Shi X, et al. A crosstalk between TGF-β/Smad3 and Wnt/β-catenin pathways promotes vascular smooth muscle cell proliferation. Cell Signal. 2016;28:498-505. doi:10.1016/j.cellsig.2016.02.01
  • Walton KL, Johnson KE, Harrison CA. Targeting TGF-β Mediated SMAD Signaling for the Prevention of Fibrosis. Front Pharmacol. 2017;8:461. doi:10.3389/fphar.2017.00461
  • Candido R, Forbes JM, Thomas MC, et al. A breaker of advanced glycation end products attenuates diabetes-induced myocardial structural changes. Circ Res. 2003;92:785-792. doi:10.1161/01.RES.0000065620.39919.20
  • Ichimura M, Masuzumi M, Kawase M, et al. A diet-induced Sprague–Dawley rat model of nonalcoholic steatohepatitis-related cirrhosis. J Nutr Biochem. 2016;40:62-69. doi:10.1016/j.jnutbio.2016.10.007
  • Tsurutani Y, Fujimoto M, Takemoto M, et al. The roles of transforming growth factor-beta and Smad3 signaling in adipocyte differentiation and obesity. Biochem Biophys Res Commun. 2011;407:68-73. doi:10.1016/j.bbrc.2011.02.106
  • Matsumoto T, Kiuchi S, Murase T. Synergistic activation of thermogenic adipocytes by a combination of PPARgamma activation, SMAD3 inhibition and adrenergic receptor activation ameliorates metabolic abnormalities in rodents. Diabetologia. 2019;62:1915-1927. doi:10.1007/s00125-019-4938-6
  • Breitkopf K, Godoy P, Ciuclan L, Singer MV, Dooley S. TGF-β/Smad signaling in the injured liver. Z Gastroenterol. 2006;44:57-66. doi:10.1055/s-2005-858989
  • Yang YZ, Zhao XJ, Xu HJ, et al. Magnesium isoglycyrrhizinate ameliorates high fructose-induced liver fibrosis in rat by increasing miR-375-3p to suppress JAK2/STAT3 pathway and TGF-β1/Smad signaling. Acta Pharmacol Sin. 2019;40:879-894. doi:10.1038/s41401-018-0194-4
  • Zhang Y, Zhang Y. Toll-like receptor-6 (TLR6) deficient mice are protected from myocardial fibrosis induced by high fructose feeding through anti-oxidant and inflammatory signaling pathway. Biochem Biophys Res Commun. 2016;473:388-395. doi:10.1016/j.bbrc.2016.02.111
  • Kang LL, Zhang DM, Jiao RQ, et al. Pterostilbene Attenuates Fructose-Induced Myocardial Fibrosis by Inhibiting ROS-Driven Pitx2c/miR-15b Pathway. Oxid Med Cell Longev. 2019;2019:1243215. doi:10.1155/2019/1243215
  • Han J, Tan C, Wang Y, Yang S, Tan D. Betanin reduces the accumulation and cross-links of collagen in high-fructose-fed rat heart through inhibiting non-enzymatic glycation. Chem Biol İnteract. 2015;227:37-44. doi:10.1016/j.cbi.2014.12.032
  • Liu X, Luo F, Pan K, Wu W, Chen H. High glucose upregulates connective tissue growth factor expression in human vascular smooth muscle cells. BMC Cell Biol. 2007;8:1. doi:10.1186/1471-2121-8-1
  • Han SC, Kang JI, Choi YK, et al. Intermittent Fasting Modulates Immune Response by Generating Tregs via TGF-β Dependent Mechanisms in Obese Mice with Allergic Contact Dermatitis. Biomol Ther. (Seoul) 2024;32:136-145. doi:10.4062/biomolther.2023.053
  • Raji Amirhasani A, Khaksari M, Shahrokhi N, et al. Comparison of the effects of different dietary regimens on susceptibility to experimental acute kidney injury: The roles of SIRT1 and TGF-β1. Nutrition. 2022;96:111588. doi:10.1016/j.nut.2022.111588

Alternatif günlerde açlık yüksek fruktoz kaynaklı TGF-beta/Smad sinyal yolağının aktivasyonunu azaltır

Year 2025, Volume: 18 Issue: 1, 167 - 178, 01.01.2025
https://doi.org/10.31362/patd.1583603

Abstract

Amaç: Bu çalışma, yüksek fruktoz (HF) alımının yol açtığı metabolik bozukluklara karşı alternatif gün orucu
(ADF) uygulamasının koruyucu etkilerini incelemeyi amaçlamakta olup, özellikle transformasyon büyüme faktörübeta1
(TGF-β1) / decapentaplegic homolog 2'ye karşı ana protein (Smad2) sinyal yolunun modülasyonuna
odaklanmaktadır.
Gereç ve yöntem: Sıçanlar dört grupta (her grup için n=7) çalışmaya dahil edilmiştir: Kontrol, ADF, HF (içme
suyunda %20 fruktoz), ve HF+ADF. ADF protokolü, 5 hafta boyunca 24 saat serbest yem tüketimi ve onu takiben
24 saat açlık olarak gerçekleştirilmiştir. Beş hafta sonunda vücut ağırlığı (VA), kas ve yağ kütlesi ölçülmüştür.
Serum örneklerinde TGF-β1, Smad2, bağ dokusu büyüme faktörü (CTGF) ve total oksidan-antioksidan (TOSTAS)
düzeyleri ELISA yöntemi ile analiz edilmiştir.
Bulgular: Sonuçlar, HF'nin final BW'yi anlamlı derecede artırdığını ve ADF'nin bu kilo alımını azalttığını
göstermiştir (p=0,001). ADF, kontrol grubuna kıyasla gastrocnemius-soleus kas ağırlıklarını azaltmış (p=0,001),
ancak fruktoz kaynaklı retroperitoneal yağ birikimini hafifletmiştir. ADF gruplarında TAS düzeyleri daha yüksek,
TOS düzeyleri ise daha düşük bulunmuş olup, bu da bir antioksidan kaymasına işaret etmiştir (p<0,05). Ayrıca,
ADF, serum TGF-β1, Smad2 ve CTGF seviyelerini düşürerek TGF-β1/Smad2 yolunun aktivasyonunu önemli
ölçüde azaltmış (p<0,05) ve fruktoz kaynaklı metabolik düzensizliklere karşı koruyucu bir role işaret etmektedir.
Sonuç: Elde edilen veriler ADF'nin, özellikle oksidatif stres ve TGF-β1/Smad2 yolağını düzenleyerek, aşırı fruktoz
alımı ile gerçekleşen metabolik etkileri hafifletmek için etkili bir diyet müdahalesi olabileceğini düşündürmektedir.

References

  • Pan Y, Kong LD. High fructose diet-induced metabolic syndrome: Pathophysiological mechanism and treatment by traditional Chinese medicine. Pharmacol Res. 2018;130:438-450. doi:10.1016/j.phrs.2018.02.020
  • Herman MA, Samuel VT. The Sweet Path to Metabolic Demise: Fructose and Lipid Synthesis. Trends Endocrinol Metab. 2016;27:719-730. doi:10.1016/j.tem.2016.06.005
  • Zhao L, Guo X, Wang O, et al. Fructose and glucose combined with free fatty acids induce metabolic disorders in HepG2 cell: A new model to study the impacts of high-fructose/sucrose and high-fat diets in vitro. Mol Nutr Food Res. 2016;60:909-921. doi:10.1002/mnfr.201500635
  • Johnson RJ, Nakagawa T, Sanchez Lozada LG, et al. Sugar, uric acid, and the etiology of diabetes and obesity. Diabetes. 2013;62:3307-3315. doi:10.2337/db12-1814
  • Stanhope KL, Schwarz JM, Keim NL, et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Invest. 2009;119:1322-1334. doi:10.1172/JCI37385
  • Nagayama Yu, Masako Kawamoto, Kayo Masuko. A Potential Role of Fructose to Modulate Fibroblast Growth and Expression of Connective Tissue Growth Factor In Vitro. Advances in Research. 2016;6:1-7. doi:10.9734/AIR/2016/25173
  • Dinicolantonio JJ, Mehta V, Onkaramurthy N, O'Keefe JH. Fructose-induced inflammation and increased cortisol: A new mechanism for how sugar induces visceral adiposity. Prog Cardiovasc Dis. 2018;61:3-9. doi:10.1016/j.pcad.2017.12.001
  • Baharuddin B. The Impact of Fructose Consumption on Human Health: Effects on Obesity, Hyperglycemia, Diabetes, Uric Acid, and Oxidative Stress With a Focus on the Liver. Cureus. 2024;16:e70095. doi:10.7759/cureus.70095
  • Wang Y, Qi W, Song G, et al. High-Fructose Diet Increases Inflammatory Cytokines and Alters Gut Microbiota Composition in Rats. Mediators Inflamm. 2020;2020:6672636. doi:10.1155/2020/6672636
  • Boon MR, van der Horst G, van der Pluijm G, Tamsma JT, Smit JW, Rensen PC. Bone morphogenetic protein 7: a broad-spectrum growth factor with multiple target therapeutic potency. Cytokine Growth Factor Rev. 2011;22;221-229 doi:10.1016/j.cytogfr.2011.08.001
  • Lee HS. Paracrine role for TGF-β-induced CTGF and VEGF in mesangial matrix expansion in progressive glomerular disease. Histol Histopathol. 2012;27;1131-1141. doi:10.14670/HH-27.1131
  • Tang PM, Zhang YY, Mak TS, Tang PC, Huang XR, Lan HY. Transforming growth factor‐β signalling in renal fibrosis: from Smads to non‐coding RNAs. J Physio.l 2018;596:3493-3503. doi:10.1113/JP274492
  • Kohli R, Kirby M, Xanthakos SA, et al. High-fructose, medium chain trans fat diet induces liver fibrosis and elevates plasma coenzyme Q9 in a novel murine model of obesity and nonalcoholic steatohepatitis. Hepatology. 2010;52:934-944. doi:10.1002/hep.23797
  • Mohamad HE, Abdelhady MA, Abdel Aal SM, Elrashidy RA. Dulaglutide mitigates high dietary fructose-induced renal fibrosis in rats through suppressing epithelial-mesenchymal transition mediated by GSK-3β/TGF-β1/Smad3 signaling pathways. Life Sci. 2022;309:120999. doi:10.1016/j.lfs.2022.120999
  • Zhang D, Jin W, Wu R, et al. High glucose intake exacerbates autoimmunity through reactive-oxygen-species-mediated TGF-beta cytokine activation. Immunity 2019;51:671-681. doi:10.1016/j.immuni.2019.08.001
  • Wan R, Camandola S, Mattson MP. Intermittent fasting and dietary supplementation with 2-deoxy-D-glucose improve functional and metabolic cardiovascular risk factors in rats. FASEB J. 2003;17:1133-1134. doi:10.1096/fj.02-0996fje
  • Tinsley GM, La Bounty PM. Effects of intermittent fasting on body composition and clinical health markers in humans. Nutr Rev. 2015;73:661-674. doi:10.1093/nutrit/nuv041
  • Mattson MP, Longo VD, Harvie M. Impact of intermittent fasting on health and disease processes. Ageing Res Rev 2017;39:46-58. doi:10.1016/j.arr.2016.10.005
  • Fernandez MAR, Vilca CMC, Batista LO, Ramos VW, Cinelli LP, de Albuquerque KT. Intermittent food restriction in female rats induces SREBP high expression in hypothalamus and immediately postfasting hyperphagia. Nutrition. 2018;48:122-126. doi:1016/j.arr.2016.10.005
  • Park J, Seo YG, Paek YJ, Song HJ, Park KH, Noh HM. Effect of alternate-day fasting on obesity and cardiometabolic risk: a systematic review and metaanalysis. Metabolism. 2020;111:154336. doi:10.1016/j.metabol.2020.154336
  • Longo VD, Mattson MP. Fasting: molecular mechanisms and clinical applications. Cell Metab. 2014;19:181-192. doi:10.1016/j.cmet.2013.12.008
  • Zhang X, Zou Q, Zhao B, et al. Effects of alternate-day fasting, time-restricted fasting and intermittent energy restriction DSS-o induced n colitis and behavioral disorders. Redox Biol. 2020;32:101535. doi:10.1016/j.redox.2020.101535
  • Elortegui Pascual P, Rolands MR, Eldridge AL, et al. A Meta‐Analysis comparing the effectiveness of alternate day fasting, the 5: 2 diet, and Time‐Restricted eating for weight loss. Obesity. 2021;31:9-21. doi:10.1002/oby.23568
  • Ferretti F, Mariani M. Sugar-sweetened beverage affordability and the prevalence of overweight and obesity in a cross section of countries. Global Health. 2019;15:1-14. doi:10.1186/s12992-019-0474-x
  • Feyisa TO, Melka DS, Menon M, Labisso WL, Habte ML. Investigation of the effect of coffee on body weight, serum glucose, uric acid and lipid profile levels in male albino Wistar rats feeding on high-fructose diet. Lab Anim Res. 2019;18:35-29. doi:10.1186/s42826-019-0024-y
  • Tanaka K, Shoko N, Shizuka T, Mihoko K, Hiroshi S. Anti-obesity and hypotriglyceridemic properties of coffee bean extract in SD rats. Food Sci Technol Res. 2009;15:147-152. doi:10.3136/fstr.15.147
  • Batista LO, Ramos VW, Rosas Fernandez MA, Concha Vilca CM, Albuquerque KT. Oral solution of fructose promotes SREBP-1c high-expression in the hypothalamus of Wistar rats. Nutr Neurosci. 2019;22:648-654. doi:10.1080/1028415X.2018.1427659
  • Eyikudamaci G, Ege H, Ensen N, Yelmen N. Role of insulin resistance and leptin in the effect of intermittent feeding with a high-protein ketogenic diet on body composition in rats. Nutrition. 2024;117:112213. doi:10.1016/j.nut.2023.112213
  • Catenacci VA, Pan Z, Ostendorf D, et al. A randomized pilot study comparing zero-calorie alternate-day fasting to daily caloric restriction in adults with obesity. Obesity. 2016;24:1874-1883. doi:10.1002/oby.21581
  • Matsuda M, Shimomura I. Increased oxidative stress in obesity: implications for metabolic syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer. Obes Res Clin Pract. 2013;7:e330-e341. doi:10.1016/j.orcp.2013.05.004
  • Tappy L, Le KA. Metabolic effects of fructose and the worldwide increase in obesity. Physiol Rev. 2010;90:23-46. doi:10.1152/physrev.00019.2009
  • Chatterjee S. Oxidative stress, inflammation, and disease. In Oxidative stress and biomaterials. 2016;35-58. doi:10.1016/B978-0-12-803269-5.00002-4
  • Marczuk Krynicka D, Hryniewiecki T, Piatek J, Paluszak J. The effect of brief food withdrawal on the level of free radicals and other parameters of oxidative status in the liver. Med Sci Monit. 2003;9:131-135.
  • Sorensen M, Sanz A, Gomez J, et al. Effects of fasting on oxidative stress in rat liver mitochondria. Free Radic Res. 2006;40:339-347. doi:10.1080/10715760500250182
  • Kılıç Erkek Ö, Gündoğdu G. Gender-specific effects of alternate-day fasting on body weight, oxidative stress, and metabolic health in middle-aged rats. Pamukkale Medical Journal. 2024;17:690-701. doi:10.31362/patd.1487708
  • Li L, Wang Z, Zuo Z. Chronic intermittent fasting improves cognitive functions and brain structures in mice. PloS one. 2013;8:e66069. doi:10.1371/journal.pone.0066069
  • Direnzo DM, Chaudhary MA, Shi X, et al. A crosstalk between TGF-β/Smad3 and Wnt/β-catenin pathways promotes vascular smooth muscle cell proliferation. Cell Signal. 2016;28:498-505. doi:10.1016/j.cellsig.2016.02.01
  • Walton KL, Johnson KE, Harrison CA. Targeting TGF-β Mediated SMAD Signaling for the Prevention of Fibrosis. Front Pharmacol. 2017;8:461. doi:10.3389/fphar.2017.00461
  • Candido R, Forbes JM, Thomas MC, et al. A breaker of advanced glycation end products attenuates diabetes-induced myocardial structural changes. Circ Res. 2003;92:785-792. doi:10.1161/01.RES.0000065620.39919.20
  • Ichimura M, Masuzumi M, Kawase M, et al. A diet-induced Sprague–Dawley rat model of nonalcoholic steatohepatitis-related cirrhosis. J Nutr Biochem. 2016;40:62-69. doi:10.1016/j.jnutbio.2016.10.007
  • Tsurutani Y, Fujimoto M, Takemoto M, et al. The roles of transforming growth factor-beta and Smad3 signaling in adipocyte differentiation and obesity. Biochem Biophys Res Commun. 2011;407:68-73. doi:10.1016/j.bbrc.2011.02.106
  • Matsumoto T, Kiuchi S, Murase T. Synergistic activation of thermogenic adipocytes by a combination of PPARgamma activation, SMAD3 inhibition and adrenergic receptor activation ameliorates metabolic abnormalities in rodents. Diabetologia. 2019;62:1915-1927. doi:10.1007/s00125-019-4938-6
  • Breitkopf K, Godoy P, Ciuclan L, Singer MV, Dooley S. TGF-β/Smad signaling in the injured liver. Z Gastroenterol. 2006;44:57-66. doi:10.1055/s-2005-858989
  • Yang YZ, Zhao XJ, Xu HJ, et al. Magnesium isoglycyrrhizinate ameliorates high fructose-induced liver fibrosis in rat by increasing miR-375-3p to suppress JAK2/STAT3 pathway and TGF-β1/Smad signaling. Acta Pharmacol Sin. 2019;40:879-894. doi:10.1038/s41401-018-0194-4
  • Zhang Y, Zhang Y. Toll-like receptor-6 (TLR6) deficient mice are protected from myocardial fibrosis induced by high fructose feeding through anti-oxidant and inflammatory signaling pathway. Biochem Biophys Res Commun. 2016;473:388-395. doi:10.1016/j.bbrc.2016.02.111
  • Kang LL, Zhang DM, Jiao RQ, et al. Pterostilbene Attenuates Fructose-Induced Myocardial Fibrosis by Inhibiting ROS-Driven Pitx2c/miR-15b Pathway. Oxid Med Cell Longev. 2019;2019:1243215. doi:10.1155/2019/1243215
  • Han J, Tan C, Wang Y, Yang S, Tan D. Betanin reduces the accumulation and cross-links of collagen in high-fructose-fed rat heart through inhibiting non-enzymatic glycation. Chem Biol İnteract. 2015;227:37-44. doi:10.1016/j.cbi.2014.12.032
  • Liu X, Luo F, Pan K, Wu W, Chen H. High glucose upregulates connective tissue growth factor expression in human vascular smooth muscle cells. BMC Cell Biol. 2007;8:1. doi:10.1186/1471-2121-8-1
  • Han SC, Kang JI, Choi YK, et al. Intermittent Fasting Modulates Immune Response by Generating Tregs via TGF-β Dependent Mechanisms in Obese Mice with Allergic Contact Dermatitis. Biomol Ther. (Seoul) 2024;32:136-145. doi:10.4062/biomolther.2023.053
  • Raji Amirhasani A, Khaksari M, Shahrokhi N, et al. Comparison of the effects of different dietary regimens on susceptibility to experimental acute kidney injury: The roles of SIRT1 and TGF-β1. Nutrition. 2022;96:111588. doi:10.1016/j.nut.2022.111588
There are 50 citations in total.

Details

Primary Language English
Subjects Medical Physiology (Other)
Journal Section Research Article
Authors

Gülşah Gündoğdu 0000-0002-9924-5176

Özgen Kılıç Erkek 0000-0001-8037-099X

Ezgi Duman 0009-0007-8504-5759

Early Pub Date December 9, 2024
Publication Date January 1, 2025
Submission Date November 13, 2024
Acceptance Date December 9, 2024
Published in Issue Year 2025 Volume: 18 Issue: 1

Cite

AMA Gündoğdu G, Kılıç Erkek Ö, Duman E. Alternative day fasting protocol attenuates high fructose-induced activation of the TGF-beta/Smad signaling pathway. Pam Med J. January 2025;18(1):167-178. doi:10.31362/patd.1583603

Creative Commons Lisansı
Pamukkale Medical Journal is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License