Total Phenolic Content and Antioxidant Activity of Different Extracts of Aronia melanocarpa L. Fruit
Year 2024,
, 1 - 6, 17.01.2024
Lale Duysak
,
Mehmet Şekeroğulları
,
Nurcan Kılıç Baygutalp
Abstract
Objective: Aronia melanocarpa L. (aronia) fruit contains anthocyanins, flavonoids, phenolic acids, and compounds from the polyphenol group. The fruits of this plant are the most abundant natural source of anthocyanins. The aim of this study is to determine the total phenolic compound amount of methanol and ethanol extract in the fruit of the aronia plant and to investigate its
antioxidant effects.
Methods: Ethanol and methanol extracts from aronia fruits were obtained. The Folin–Ciocalteu Reagent (FCR) was used to determine the total phenolic component levels in the extracts of aronia. By using the 1,1-diphenyl-2-picrylhydrazyl (DPPH), iron ion reducing antioxidant power (FRAP), and Cu2+ ion reducing (CUPRAC) techniques, antioxidant activities were assessed. To calculate the extracts’ equivalent antioxidant capacity, different reference sample concentrations ranging from 125 to 500 g/mL were prepared.
Results: Both ethanol and methanol aronia extracts showed the highest phenolic component at a concentration of 500 µL/mL. Similary, both extracts FRAP and CUPRAC (Trolox Eq g/mL) activities and DPPH radical scavenging capacity (inhibition %) were highest at the concentration of 500 µL/mL.
Conclusion: Aronia stands out as an antioxidant fruit and a potential natural therapeutic agents to alleviate oxidative stress. More research is needed to elucidate the exact mechanisms of action, optimum extraction method, optimal dosage, and potential side effects of the extracts
Ethical Statement
Ethical approval was not required as this study was conducted in vitro.
Supporting Institution
The authors declare that this study received no financial support.
References
- 1. Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev. 2010;4(8):118-126. [CrossRef]
- 2. Bilaloğlu G, Harmandar M, Flavonoidler, Bakanlar Matbaacılık Ltd. Şti. İstanbul; 1999:336.
- 3. Faydaoğlu E. Sürücüoğlu M. Tibbi ve aromatik bitkilerin antimikrobiyal, antioksidan aktiviteleri ve kullanim olanaklari. Erzincan Univ J Sci Technol. 2013;6:233-265.
- 4. Özdemir K, Ee Ö. Aronia sp. Meyvelerinin Kimyasal Bileşimi ve Biyolojik aktiviteleri. J Fac Pharm Ank Univ. 2020;44:557-570.
- 5. Beattie J, Crozier A, Duthie GG. Potential health benefits of berries. Curr Nutr Food Sci. 2005;1(1):71-86. [CrossRef]
- 6. Niedworok J, Brzozowski F. The investigation of a biological and phytotherapeutical properties of the Aronia melanocarpa E anthocyanins. Postępy Fitoterapii. 2001.
- 7. Strigl A, Leitner E. Pfannhauser W. Die Schwarze Apfelbeere (Aronia melanocarpa) als natürliche Farbstoffquelle. Dtsch Lebensm Rundsch. 1995;91:177-180.
- 8. Oszmianski J, Sapis JC. Anthocyanins in fruits of Aronia melanocarpa (chokeberry). J Food Sci. 1988;53(4):1241-1242. [CrossRef]
- 9. Broncel M, Koziróg-Kołacińska M, Andryskowski G, et al. Effect of anthocyanins from Aronia melanocarpa on blood pressure, concentration of endothelin-1 and lipids in patients with metabolic syndrome. Pol Merkur Lekarski. 2007;23(134):116-119.
- 10. Kulling SE, Rawel HM. Chokeberry (Aronia melanocarpa)–A review on the characteristic components and potential health effects. Planta Med. 2008;74(13):1625-1634. [CrossRef]
- 11. Sikora J, Markowicz M, Mikiciuk-Olasik E. Rola i właściwości lecznicze aronii czarnoowocowej w profilaktyce chorób cywilizacyjnych. Bromat Chem Toksykol. 2009;42:10-17.
- 12. Kokotkiewicz A, Jaremicz Z, Luczkiewicz M. Aronia plants: a review of traditional use, biological activities, and perspectives for modern medicine. J Med Food. 2010;13(2):255-269. [CrossRef]
- 13. Jurikova T, Mlcek J, Skrovankova S, et al. Fruits of black chokeberry Aronia melanocarpa in the prevention of chronic diseases. Molecules. 2017;22(6):944. [CrossRef]
- 14. Benvenuti S, Pellati F, Melegari M, Bertelli D. Polyphenols, anthocyanins, ascorbic acid, and radical scavenging activity of Rubus, Ribes, and Aronia. J Food Sci. 2004;69(3). [CrossRef]: Fundação Para a Ciência e a Tecnologia. FCT169. (https://doi.org/10.1111/j.1365-2621.2004. tb13352.x)
- 15. Mikulic-Petkovsek M, Schmitzer V, Slatnar A, Stampar F, Veberic R. Composition of sugars, organic acids, and total phenolics in 25 wild or cultivated berry species. J Food Sci. 2012;77(10):C1064-C1070.
- 16. Sidor A, Gramza-Michałowska A. Black chokeberry Aronia melanocarpa L.—A qualitative composition, phenolic profile and antioxidant potential. Molecules. 2019;24(20):3710. [CrossRef]
- 17. Bardakçı Ö. Bazı sentetik antioksidanların 2, 2-difenil-1-pikrilhidrazil (DPPH) radikal süpürme kapasitesi yöntemi ile antioksidan aktivitelerinin araştırılması. 2017.
- 18. Yüksel TN, Yayla M, Duygu K, et al. Investigation of the protective effects of pomegranate (Punica Granatum L.) Peel extract on lipopolysaccharide-induced uveitis in rats. Trakya Univ J Nat Sci.
2023;24:11-20. (doi: [CrossRef])
- 19. Slinkard K, Singleton VL. Total phenol analysis: automation and comparison with manual methods. Am J Enol Vitic. 1977;28(1):49-55. [CrossRef]
- 20. Brand-WilliamsW, Cuvelier ME, Berset C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol. 1995;28(1):25- 30. [CrossRef]
- 21. Huang DJ, Ou BX, Prior RL. The chemistry behind antioxidant capacity assays. J Agric Food Chem. 2005;53(6):1841-1856.
- 22. Apak R, Güçlü K, Ozyürek M, Karademir SE. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J Agric Food Chem. 2004;52(26):7970-7981.
- 23. Phaniendra A, Jestadi DB, Periyasamy L. Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem. 2015;30(1):11-26. [CrossRef]
- 24. Uchida K, Kawakishi S. 2-Oxo-histidine as a novel biological marker for oxidatively modified proteins. FEBS Lett. 1993;332(3):208-210.
- 25. Smith CD, Carney JM, Starke-Reed PE, et al. Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease. Proc Natl Acad Sci U S A. 1991;88(23):10540-10543.
- 26. Munteanu IG, Apetrei C. Analytical methods used in determining antioxidant activity: a review. Int J Mol Sci. 2021;22(7):3380. [CrossRef]
- 27. Apak R, Capanoglu E, Shahidi F. Measurement of Antioxidant Activity and Capacity: Recent Trends and Applications; 2017. [CrossRef]
- 28. Çağlar M, Demirci M. Üzümsü meyvelerde bulunan fenolik bileşikler ve beslenmedeki önemi. Avrupa Bilim Teknoloji Derg. 2017;7:18-26.
- 29. Skrede G, Wrolstad RE, Durst RW. Changes in anthocyanins and Polyphenolics during juice processing of highbush blueberries (Vaccinium corymbosum L.). J Food Sci. 2000;65(2):357-364.
- 30. Zhang Y, Zhao Y, Liu X, et al. Chokeberry (Aronia melanocarpa) as a new functional food relationship with health: an overview. J Future Foods. 2021;1(2):168-178. [CrossRef]
- 31. Metİner EE, Ersus S. Farklı kurutma tekniklerinin kuru Aronya (Aronia melanocarpa) meyvesi ve tozunun kalitesine etkisi. Ege Univ Ziraat Fak Derg. 2023;60(2):353-362. [CrossRef]
- 32. Shahin L, Phaal SS, Vaidya BN, Brown JE, Joshee N. Aronia (chokeberry): an underutilized, highly nutraceutical plant. J Medicinally Act Plants. 2019;8:46-63. [CrossRef]
- 33. Arancibia-Avila P, Namiesnik J, Toledo F, et al. The influence of different time durations of thermal processing on berries quality. Food Control. 2012;26(2):587-593. [CrossRef]
- 34. Borowska S, Brzóska MM. Chokeberries (Aronia melanocarpa) and their products as a possible means for the prevention and treatment of noncommunicable diseases and unfavorable health effects due to exposure to xenobiotics. Compr Rev Food Sci Food Saf. 2016;15(6):982- 1017. [CrossRef]
Total Phenolic Content and Antioxidant Activity of Different Extracts of Aronia melanocarpa L. Fruit
Year 2024,
, 1 - 6, 17.01.2024
Lale Duysak
,
Mehmet Şekeroğulları
,
Nurcan Kılıç Baygutalp
Abstract
Objective: Aronia melanocarpa L. (aronia) fruit contains anthocyanins, flavonoids, phenolic acids, and compounds from the polyphenol group. The fruits of this plant are the most abundant natural source of anthocyanins. The aim of this study is to determine the total phenolic compound amount of methanol and ethanol extract in the fruit of the aronia plant and to investigate its
antioxidant effects.
Methods: Ethanol and methanol extracts from aronia fruits were obtained. The Folin–Ciocalteu Reagent (FCR) was used to determine the total phenolic component levels in the extracts of aronia. By using the 1,1-diphenyl-2-picrylhydrazyl (DPPH), iron ion reducing antioxidant power (FRAP), and Cu2+ ion reducing (CUPRAC) techniques, antioxidant activities were assessed. To calculate the extracts’ equivalent antioxidant capacity, different reference sample concentrations ranging from 125 to 500 g/mL were prepared.
Results: Both ethanol and methanol aronia extracts showed the highest phenolic component at a concentration of 500 µL/mL. Similary, both extracts FRAP and CUPRAC (Trolox Eq g/mL) activities and DPPH radical scavenging capacity (inhibition %) were highest at the concentration of 500 µL/mL.
Conclusion: Aronia stands out as an antioxidant fruit and a potential natural therapeutic agents to alleviate oxidative stress. More research is needed to elucidate the exact mechanisms of action, optimum extraction method, optimal dosage, and potential side effects of the extracts.
Ethical Statement
Ethical approval was not required as this study was conducted in vitro.
Supporting Institution
The authors declare that they have no competing interest.
References
- 1. Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev. 2010;4(8):118-126. [CrossRef]
- 2. Bilaloğlu G, Harmandar M, Flavonoidler, Bakanlar Matbaacılık Ltd. Şti. İstanbul; 1999:336.
- 3. Faydaoğlu E. Sürücüoğlu M. Tibbi ve aromatik bitkilerin antimikrobiyal, antioksidan aktiviteleri ve kullanim olanaklari. Erzincan Univ J Sci Technol. 2013;6:233-265.
- 4. Özdemir K, Ee Ö. Aronia sp. Meyvelerinin Kimyasal Bileşimi ve Biyolojik aktiviteleri. J Fac Pharm Ank Univ. 2020;44:557-570.
- 5. Beattie J, Crozier A, Duthie GG. Potential health benefits of berries. Curr Nutr Food Sci. 2005;1(1):71-86. [CrossRef]
- 6. Niedworok J, Brzozowski F. The investigation of a biological and phytotherapeutical properties of the Aronia melanocarpa E anthocyanins. Postępy Fitoterapii. 2001.
- 7. Strigl A, Leitner E. Pfannhauser W. Die Schwarze Apfelbeere (Aronia melanocarpa) als natürliche Farbstoffquelle. Dtsch Lebensm Rundsch. 1995;91:177-180.
- 8. Oszmianski J, Sapis JC. Anthocyanins in fruits of Aronia melanocarpa (chokeberry). J Food Sci. 1988;53(4):1241-1242. [CrossRef]
- 9. Broncel M, Koziróg-Kołacińska M, Andryskowski G, et al. Effect of anthocyanins from Aronia melanocarpa on blood pressure, concentration of endothelin-1 and lipids in patients with metabolic syndrome. Pol Merkur Lekarski. 2007;23(134):116-119.
- 10. Kulling SE, Rawel HM. Chokeberry (Aronia melanocarpa)–A review on the characteristic components and potential health effects. Planta Med. 2008;74(13):1625-1634. [CrossRef]
- 11. Sikora J, Markowicz M, Mikiciuk-Olasik E. Rola i właściwości lecznicze aronii czarnoowocowej w profilaktyce chorób cywilizacyjnych. Bromat Chem Toksykol. 2009;42:10-17.
- 12. Kokotkiewicz A, Jaremicz Z, Luczkiewicz M. Aronia plants: a review of traditional use, biological activities, and perspectives for modern medicine. J Med Food. 2010;13(2):255-269. [CrossRef]
- 13. Jurikova T, Mlcek J, Skrovankova S, et al. Fruits of black chokeberry Aronia melanocarpa in the prevention of chronic diseases. Molecules. 2017;22(6):944. [CrossRef]
- 14. Benvenuti S, Pellati F, Melegari M, Bertelli D. Polyphenols, anthocyanins, ascorbic acid, and radical scavenging activity of Rubus, Ribes, and Aronia. J Food Sci. 2004;69(3). [CrossRef]: Fundação Para a Ciência e a Tecnologia. FCT169. (https://doi.org/10.1111/j.1365-2621.2004. tb13352.x)
- 15. Mikulic-Petkovsek M, Schmitzer V, Slatnar A, Stampar F, Veberic R. Composition of sugars, organic acids, and total phenolics in 25 wild or cultivated berry species. J Food Sci. 2012;77(10):C1064-C1070.
- 16. Sidor A, Gramza-Michałowska A. Black chokeberry Aronia melanocarpa L.—A qualitative composition, phenolic profile and antioxidant potential. Molecules. 2019;24(20):3710. [CrossRef]
- 17. Bardakçı Ö. Bazı sentetik antioksidanların 2, 2-difenil-1-pikrilhidrazil (DPPH) radikal süpürme kapasitesi yöntemi ile antioksidan aktivitelerinin araştırılması. 2017.
- 18. Yüksel TN, Yayla M, Duygu K, et al. Investigation of the protective effects of pomegranate (Punica Granatum L.) Peel extract on lipopolysaccharide-induced uveitis in rats. Trakya Univ J Nat Sci.
2023;24:11-20. (doi: [CrossRef])
- 19. Slinkard K, Singleton VL. Total phenol analysis: automation and comparison with manual methods. Am J Enol Vitic. 1977;28(1):49-55. [CrossRef]
- 20. Brand-WilliamsW, Cuvelier ME, Berset C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol. 1995;28(1):25- 30. [CrossRef]
- 21. Huang DJ, Ou BX, Prior RL. The chemistry behind antioxidant capacity assays. J Agric Food Chem. 2005;53(6):1841-1856.
- 22. Apak R, Güçlü K, Ozyürek M, Karademir SE. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J Agric Food Chem. 2004;52(26):7970-7981.
- 23. Phaniendra A, Jestadi DB, Periyasamy L. Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem. 2015;30(1):11-26. [CrossRef]
- 24. Uchida K, Kawakishi S. 2-Oxo-histidine as a novel biological marker for oxidatively modified proteins. FEBS Lett. 1993;332(3):208-210.
- 25. Smith CD, Carney JM, Starke-Reed PE, et al. Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease. Proc Natl Acad Sci U S A. 1991;88(23):10540-10543.
- 26. Munteanu IG, Apetrei C. Analytical methods used in determining antioxidant activity: a review. Int J Mol Sci. 2021;22(7):3380. [CrossRef]
- 27. Apak R, Capanoglu E, Shahidi F. Measurement of Antioxidant Activity and Capacity: Recent Trends and Applications; 2017. [CrossRef]
- 28. Çağlar M, Demirci M. Üzümsü meyvelerde bulunan fenolik bileşikler ve beslenmedeki önemi. Avrupa Bilim Teknoloji Derg. 2017;7:18-26.
- 29. Skrede G, Wrolstad RE, Durst RW. Changes in anthocyanins and Polyphenolics during juice processing of highbush blueberries (Vaccinium corymbosum L.). J Food Sci. 2000;65(2):357-364.
- 30. Zhang Y, Zhao Y, Liu X, et al. Chokeberry (Aronia melanocarpa) as a new functional food relationship with health: an overview. J Future Foods. 2021;1(2):168-178. [CrossRef]
- 31. Metİner EE, Ersus S. Farklı kurutma tekniklerinin kuru Aronya (Aronia melanocarpa) meyvesi ve tozunun kalitesine etkisi. Ege Univ Ziraat Fak Derg. 2023;60(2):353-362. [CrossRef]
- 32. Shahin L, Phaal SS, Vaidya BN, Brown JE, Joshee N. Aronia (chokeberry): an underutilized, highly nutraceutical plant. J Medicinally Act Plants. 2019;8:46-63. [CrossRef]
- 33. Arancibia-Avila P, Namiesnik J, Toledo F, et al. The influence of different time durations of thermal processing on berries quality. Food Control. 2012;26(2):587-593. [CrossRef]
- 34. Borowska S, Brzóska MM. Chokeberries (Aronia melanocarpa) and their products as a possible means for the prevention and treatment of noncommunicable diseases and unfavorable health effects due to exposure to xenobiotics. Compr Rev Food Sci Food Saf. 2016;15(6):982- 1017. [CrossRef]