Research Article
BibTex RIS Cite
Year 2024, , 81 - 88, 03.07.2024
https://doi.org/10.5281/zenodo.12626403

Abstract

Project Number

1919B012318796

References

  • 1. Martemucci G, Costagliola C, Mariano M, et al. Free Radical Properties, Source and Targets, Antioxidant Consumption and Health. Oxygen. 2022;2(2):48-78. [CrossRef]
  • 2. Unsal V, Cicek M, Sabancilar İ. Toxicity of carbon tetrachloride, free radicals and role of antioxidants. Rev. Environ. Health. 2021;36(2):279-295. [CrossRef]
  • 3. Hayes JD, Dinkova-Kostova AT, Tew KD. Oxidative Stress in Cancer. Cancer Cell. 2020;38(2):167-197. [CrossRef]
  • 4. Griendling KK, Camargo LL, Rios FJ, et al. Oxidative Stress and Hypertension. Circ. Res. 2021;128(7):993-1020. [CrossRef]
  • 5. Simpson DSA, Oliver PL. ROS Generation in Microglia: Understanding Oxidative Stress and Inflammation in Neurodegenerative Disease. Antioxidants. 2020;9(8):743. [CrossRef]
  • 6. Dubois-Deruy E, Peugnet V, Turkieh A, Pinet F. Oxidative Stress in Cardiovascular Diseases. Antioxidants. 2020;9(9):864. [CrossRef]
  • 7. Phaniendra A, Jestadi DB, Periyasamy L. Free Radicals: Properties, Sources, Targets, and Their Implication in Various Diseases. Int. J. Med. Biochem. 2015;30(1):11-26. [CrossRef]
  • 8. Kıran TR, Otlu O, Karabulut AB. Oxidative stress and antioxidants in health and disease. J. Lab. Med. 2023;47(1):1-11. [CrossRef]
  • 9. Alkadi H. A Review on Free Radicals and Antioxidants. Infect. Disord. Drug Targets. 2020;20(1):16-26. [CrossRef]
  • 10. Wahab S, Annadurai S, Abullais SS, et al. Glycyrrhiza glabra (Licorice): A Comprehensive Review on Its Phytochemistry, Biological Activities, Clinical Evidence and Toxicology. Plants. 2021;10(12):2751. [CrossRef]
  • 11. Villarreal-La Torre VE, Guarniz WS, Silva-Correa C, Cruzado-Razco L, Siche R. Antimicrobial Activity and Chemical Composition of Momordica Charantia: A Review. Pharmacogn. J. 2020;12(1):213-222. [CrossRef]
  • 12. Li Z, Xia A, Li S, et al. The Pharmacological Properties and Therapeutic Use of Bitter Melon (Momordica charantia L.). Curr. Pharmacol. Rep. 2020;6(3):103-109. [CrossRef]
  • 13. Gayathry KS, John JA. A comprehensive review on bitter gourd (Momordica charantia L.) as a gold mine of functional bioactive components for therapeutic foods. Food Prod. Process. Nutr. 2022;4(1):10. [CrossRef]
  • 14. Öztürk Hİ, Dönderalp V, Bulut H, Korkut R. Morphological and molecular characterization of some pumpkin (Cucurbita pepo L.) genotypes collected from Erzincan province of Turkey. Sci. Rep. 2022;12(1):6814. [CrossRef]
  • 15. Gayathry KS, John JA. A comprehensive review on bitter gourd (Momordica charantia L.) as a gold mine of functional bioactive components for therapeutic foods. Food Prod. Process. Nutr. 2022;4(1):10. [CrossRef]
  • 16. Golovinskaia O, Wang CK. Review of Functional and Pharmacological Activities of Berries. Molecules. 2021;26(13):3904. [CrossRef]
  • 17. Bisht D, Kumar D, Kumar D, Dua K, Chellappan DK. Phytochemistry and pharmacological activity of the genus artemisia. Arch. Pharm. Res. 2021;44(5):439-474. [CrossRef]
  • 18. Maphetu N, Unuofin JO, Masuku NP, Olisah C, Lebelo SL. Medicinal uses, pharmacological activities, phytochemistry, and the molecular mechanisms of Punica granatum L. (pomegranate) plant extracts: A review. Biomed. Pharmacother. 2022;153:113256. [CrossRef]
  • 19. Abeyrathne EDNS, Nam K, Ahn DU. Analytical Methods for Lipid Oxidation and Antioxidant Capacity in Food Systems. Antioxidants. 2021;10(10):1587. [CrossRef]
  • 20. Xiao F, Xu T, Lu B, Liu R. Guidelines for antioxidant assays for food components. Food Front. 2020;1(1):60-69. [CrossRef]
  • 21. Gulcin İ, Alwasel SH. DPPH Radical Scavenging Assay. Processes. 2023;11(8):2248. [CrossRef]
  • 22. Singleton VL, Rossi JA. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965;16(3):144-158. [CrossRef]
  • 23. Benzie IFF, Strain JJ. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996;239(1):70-76. [CrossRef]
  • 24. Soler-Rivas C, Espín JC, Wichers HJ. An easy and fast test to compare total free radical scavenger capacity of foodstuffs. Phytochem. Anal. 2000;11(5):330-338. [CrossRef]
  • 25. Apak R, Güçlü K, Özyürek M, Karademir SE. Novel Total Antioxidant Capacity Index for Dietary Polyphenols and Vitamins C and E, Using Their Cupric Ion Reducing Capability in the Presence of Neocuproine: CUPRAC Method. J. Agric. Food Chem. 2004;52(26):7970-7981. [CrossRef]
  • 26. Tajner-Czopek A, Gertchen M, Rytel E, et al. Study of Antioxidant Activity of Some Medicinal Plants Having High Content of Caffeic Acid Derivatives. Antioxidants. 2020;9(5):412. [CrossRef]
  • 27. Johan Sukweenadhi, Oeke Yunita, Finna Setiawan, et al. Antioxidant activity screening of seven Indonesian herbal extract. Biodiversitas. 2020;21(5). [CrossRef]
  • 28. Khiya Z, Oualcadi Y, Gamar A, et al. Correlation of Total Polyphenolic Content with Antioxidant Activity of Hydromethanolic Extract and Their Fractions of the Salvia officinalis Leaves from Different Regions of Morocco. J. Chem. 2021;2021:1-11. [CrossRef]
  • 29. Chaves N, Santiago A, Alías JC. Quantification of the Antioxidant Activity of Plant Extracts: Analysis of Sensitivity and Hierarchization Based on the Method Used. Antioxidants. 2020;9(1):76. [CrossRef]
  • 30. Becerril-Sánchez AL, Quintero-Salazar B, Dublán-García O, Escalona-Buendía HB. Phenolic Compounds in Honey and Their Relationship with Antioxidant Activity, Botanical Origin, and Color. Antioxidants. 2021;10(11):1700. [CrossRef]
  • 31. Hu W, Sarengaowa, Guan Y, Feng K. Biosynthesis of Phenolic Compounds and Antioxidant Activity in Fresh-Cut Fruits and Vegetables. Front Microbiol. 2022;13. [CrossRef]
  • 32. Zlatić, Jakovljević, Stanković. Temporal, Plant Part, and Interpopulation Variability of Secondary Metabolites and Antioxidant Activity of Inula helenium L. Plants. 2019;8(6):179. [CrossRef]
  • 33. Pratyusha S. Phenolic Compounds in the Plant Development and Defense: An Overview. Physiology. 2022. [CrossRef]
  • 34. Yılmaz ZT, Odabaşoğlu HY, Şenel P, et al. A novel 3-((5-methylpyridin-2-yl)amino)isobenzofuran-1(3H)-one: Molecular structure describe, X-ray diffractions and DFT calculations, antioxidant activity, DNA binding and molecular docking studies. J. Mol. Struct. 2020;1205:127585. [CrossRef]
  • 35. Zwolak I. Protective Effects of Dietary Antioxidants against Vanadium-Induced Toxicity: A Review. Oxid. Med. Cell Longev. 2020;2020:1-14. [CrossRef]
  • 36. Chaves N, Santiago A, Alías JC. Quantification of the Antioxidant Activity of Plant Extracts: Analysis of Sensitivity and Hierarchization Based on the Method Used. Antioxidants. 2020;9(1):76. [CrossRef]

Antioxidant Activities of Glycyrrhiza glabra L. and Momordica charantia L. Collected From Kahramanmaraş Charantia L. Collected From Kahramanmaraş Kahramanmaraş, Türkiye

Year 2024, , 81 - 88, 03.07.2024
https://doi.org/10.5281/zenodo.12626403

Abstract

Objective: Türkiye is one of the countries that are rich in plant biodiversity. This geographical structure and climatic conditions of Kahramanmaraş allow various plant species to coexist. The usefulness of bioactive molecules as a source of novel antioxidant chemicals may be revealed by studies aimed at determining the antioxidant activity of plant species. The antioxidant capacity of the crude products from two Kahramanmaraş plants, licorice (Glycyrrhiza glabra) and bitter melon (Momordica charantia L.), was examined.

Methods: This study systematically investigates, for the first time, various combinations of temperature, stirring rpm and time, and solvent to optimally extract the bioactive properties from these plants. Using ferric ion antioxidant potential (FRAP) reduction and DPPH (1,1-diphenyl-2-picrylhydrazyl free radical) scavenging tests, the antioxidant capabilities of plant extracts were investigated. Additionally, measurements were made of their total polyphenol levels (TPC), copper (II) ion reducing antioxidant capacity (CUPRAC), and iron (II) chelation activity (FIC).

Results: The results of the FRAP assay and the DPPH assay showed a good connection, suggesting that the extracts included chemicals that could reduce ferric ions and scavenge free radicals. A strong association between TPC and other findings indicated that the extracts' polyphenols contributed to some of the antioxidant activity.

Conclusion: The investigation indicates that consuming these plants would have a lot of advantageous effects due to the antioxidant properties they possess.

Supporting Institution

This study was funded by the Scientific and Technological Research Council of Turkey (TUBITAK) ARDEB 2209-A (Project code: 1919B012318796).

Project Number

1919B012318796

References

  • 1. Martemucci G, Costagliola C, Mariano M, et al. Free Radical Properties, Source and Targets, Antioxidant Consumption and Health. Oxygen. 2022;2(2):48-78. [CrossRef]
  • 2. Unsal V, Cicek M, Sabancilar İ. Toxicity of carbon tetrachloride, free radicals and role of antioxidants. Rev. Environ. Health. 2021;36(2):279-295. [CrossRef]
  • 3. Hayes JD, Dinkova-Kostova AT, Tew KD. Oxidative Stress in Cancer. Cancer Cell. 2020;38(2):167-197. [CrossRef]
  • 4. Griendling KK, Camargo LL, Rios FJ, et al. Oxidative Stress and Hypertension. Circ. Res. 2021;128(7):993-1020. [CrossRef]
  • 5. Simpson DSA, Oliver PL. ROS Generation in Microglia: Understanding Oxidative Stress and Inflammation in Neurodegenerative Disease. Antioxidants. 2020;9(8):743. [CrossRef]
  • 6. Dubois-Deruy E, Peugnet V, Turkieh A, Pinet F. Oxidative Stress in Cardiovascular Diseases. Antioxidants. 2020;9(9):864. [CrossRef]
  • 7. Phaniendra A, Jestadi DB, Periyasamy L. Free Radicals: Properties, Sources, Targets, and Their Implication in Various Diseases. Int. J. Med. Biochem. 2015;30(1):11-26. [CrossRef]
  • 8. Kıran TR, Otlu O, Karabulut AB. Oxidative stress and antioxidants in health and disease. J. Lab. Med. 2023;47(1):1-11. [CrossRef]
  • 9. Alkadi H. A Review on Free Radicals and Antioxidants. Infect. Disord. Drug Targets. 2020;20(1):16-26. [CrossRef]
  • 10. Wahab S, Annadurai S, Abullais SS, et al. Glycyrrhiza glabra (Licorice): A Comprehensive Review on Its Phytochemistry, Biological Activities, Clinical Evidence and Toxicology. Plants. 2021;10(12):2751. [CrossRef]
  • 11. Villarreal-La Torre VE, Guarniz WS, Silva-Correa C, Cruzado-Razco L, Siche R. Antimicrobial Activity and Chemical Composition of Momordica Charantia: A Review. Pharmacogn. J. 2020;12(1):213-222. [CrossRef]
  • 12. Li Z, Xia A, Li S, et al. The Pharmacological Properties and Therapeutic Use of Bitter Melon (Momordica charantia L.). Curr. Pharmacol. Rep. 2020;6(3):103-109. [CrossRef]
  • 13. Gayathry KS, John JA. A comprehensive review on bitter gourd (Momordica charantia L.) as a gold mine of functional bioactive components for therapeutic foods. Food Prod. Process. Nutr. 2022;4(1):10. [CrossRef]
  • 14. Öztürk Hİ, Dönderalp V, Bulut H, Korkut R. Morphological and molecular characterization of some pumpkin (Cucurbita pepo L.) genotypes collected from Erzincan province of Turkey. Sci. Rep. 2022;12(1):6814. [CrossRef]
  • 15. Gayathry KS, John JA. A comprehensive review on bitter gourd (Momordica charantia L.) as a gold mine of functional bioactive components for therapeutic foods. Food Prod. Process. Nutr. 2022;4(1):10. [CrossRef]
  • 16. Golovinskaia O, Wang CK. Review of Functional and Pharmacological Activities of Berries. Molecules. 2021;26(13):3904. [CrossRef]
  • 17. Bisht D, Kumar D, Kumar D, Dua K, Chellappan DK. Phytochemistry and pharmacological activity of the genus artemisia. Arch. Pharm. Res. 2021;44(5):439-474. [CrossRef]
  • 18. Maphetu N, Unuofin JO, Masuku NP, Olisah C, Lebelo SL. Medicinal uses, pharmacological activities, phytochemistry, and the molecular mechanisms of Punica granatum L. (pomegranate) plant extracts: A review. Biomed. Pharmacother. 2022;153:113256. [CrossRef]
  • 19. Abeyrathne EDNS, Nam K, Ahn DU. Analytical Methods for Lipid Oxidation and Antioxidant Capacity in Food Systems. Antioxidants. 2021;10(10):1587. [CrossRef]
  • 20. Xiao F, Xu T, Lu B, Liu R. Guidelines for antioxidant assays for food components. Food Front. 2020;1(1):60-69. [CrossRef]
  • 21. Gulcin İ, Alwasel SH. DPPH Radical Scavenging Assay. Processes. 2023;11(8):2248. [CrossRef]
  • 22. Singleton VL, Rossi JA. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965;16(3):144-158. [CrossRef]
  • 23. Benzie IFF, Strain JJ. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996;239(1):70-76. [CrossRef]
  • 24. Soler-Rivas C, Espín JC, Wichers HJ. An easy and fast test to compare total free radical scavenger capacity of foodstuffs. Phytochem. Anal. 2000;11(5):330-338. [CrossRef]
  • 25. Apak R, Güçlü K, Özyürek M, Karademir SE. Novel Total Antioxidant Capacity Index for Dietary Polyphenols and Vitamins C and E, Using Their Cupric Ion Reducing Capability in the Presence of Neocuproine: CUPRAC Method. J. Agric. Food Chem. 2004;52(26):7970-7981. [CrossRef]
  • 26. Tajner-Czopek A, Gertchen M, Rytel E, et al. Study of Antioxidant Activity of Some Medicinal Plants Having High Content of Caffeic Acid Derivatives. Antioxidants. 2020;9(5):412. [CrossRef]
  • 27. Johan Sukweenadhi, Oeke Yunita, Finna Setiawan, et al. Antioxidant activity screening of seven Indonesian herbal extract. Biodiversitas. 2020;21(5). [CrossRef]
  • 28. Khiya Z, Oualcadi Y, Gamar A, et al. Correlation of Total Polyphenolic Content with Antioxidant Activity of Hydromethanolic Extract and Their Fractions of the Salvia officinalis Leaves from Different Regions of Morocco. J. Chem. 2021;2021:1-11. [CrossRef]
  • 29. Chaves N, Santiago A, Alías JC. Quantification of the Antioxidant Activity of Plant Extracts: Analysis of Sensitivity and Hierarchization Based on the Method Used. Antioxidants. 2020;9(1):76. [CrossRef]
  • 30. Becerril-Sánchez AL, Quintero-Salazar B, Dublán-García O, Escalona-Buendía HB. Phenolic Compounds in Honey and Their Relationship with Antioxidant Activity, Botanical Origin, and Color. Antioxidants. 2021;10(11):1700. [CrossRef]
  • 31. Hu W, Sarengaowa, Guan Y, Feng K. Biosynthesis of Phenolic Compounds and Antioxidant Activity in Fresh-Cut Fruits and Vegetables. Front Microbiol. 2022;13. [CrossRef]
  • 32. Zlatić, Jakovljević, Stanković. Temporal, Plant Part, and Interpopulation Variability of Secondary Metabolites and Antioxidant Activity of Inula helenium L. Plants. 2019;8(6):179. [CrossRef]
  • 33. Pratyusha S. Phenolic Compounds in the Plant Development and Defense: An Overview. Physiology. 2022. [CrossRef]
  • 34. Yılmaz ZT, Odabaşoğlu HY, Şenel P, et al. A novel 3-((5-methylpyridin-2-yl)amino)isobenzofuran-1(3H)-one: Molecular structure describe, X-ray diffractions and DFT calculations, antioxidant activity, DNA binding and molecular docking studies. J. Mol. Struct. 2020;1205:127585. [CrossRef]
  • 35. Zwolak I. Protective Effects of Dietary Antioxidants against Vanadium-Induced Toxicity: A Review. Oxid. Med. Cell Longev. 2020;2020:1-14. [CrossRef]
  • 36. Chaves N, Santiago A, Alías JC. Quantification of the Antioxidant Activity of Plant Extracts: Analysis of Sensitivity and Hierarchization Based on the Method Used. Antioxidants. 2020;9(1):76. [CrossRef]
There are 36 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences (Other)
Journal Section Research Articles
Authors

Abdullah Al Faysal 0000-0001-6151-074X

Beril S. Kaya 0009-0007-3387-3202

Hatice Elmacioglu 0009-0006-4472-9508

Ayşegül Gölcü 0000-0001-5228-1682

Project Number 1919B012318796
Publication Date July 3, 2024
Submission Date May 23, 2024
Acceptance Date June 24, 2024
Published in Issue Year 2024

Cite

EndNote Faysal AA, Kaya BS, Elmacioglu H, Gölcü A (July 1, 2024) Antioxidant Activities of Glycyrrhiza glabra L. and Momordica charantia L. Collected From Kahramanmaraş Charantia L. Collected From Kahramanmaraş Kahramanmaraş, Türkiye. Pharmata 4 3 81–88.

Content of this journal is licensed under a Creative Commons Attribution NonCommercial 4.0 International License

29929