Research Article
BibTex RIS Cite

Solid Renal Lezyonların Karakterizasyonunda Difüzyon Ağırlıklı Görüntüleme ve Görünen Difüzyon Katsayısı Haritalarının Rolü

Year 2020, Volume: 2 Issue: 3, 138 - 144, 01.11.2020
https://doi.org/10.38175/phnx.806582

Abstract

Amaç: Bu çalışmanın amacı, benign ve malign solid renal lezyonları ayırt etmede Difüzyon Ağırlıklı Görüntüleme (DAG) ve Görünen Difüzyon Katsayısı (ADC) ile değerlendirmektir.
Gereç ve Yöntem: Abdomen MR'da solid renal lezyon saptanan toplam 47 hasta (yaş aralığı: 33-84, ort: 59.0 ± 11.3 yıl, 27 erkek, 20 kadın) çalışma grubumuza dahil edildi. ADC'ler, iki farklı b değerinin (b = 600 mm² / s ve b = 1000 mm² / s) DAG verilerinden hesaplanmıştır. Hem normal renal parankim hem de solid renal lezyonlar için ADC değerleri elde edildi. Daha sonra, eşik ADC'lerini belirlemek için ROI analizi gerçekleştirildi. Tüm olguların histopatolojik verileri elde edildi.
Bulgular: Histopatolojik olarak 13 benign ve 34 malign solid renal lezyondan malign lezyonlar, Renal Hücreli Karsinom alt tipleri (1 kromofob hücre, dört papiller hücre, 25 berrak hücre), 2 Geçiş Hücreli karsinom, bir metastaz, 1 Non-Hodgkin lenfomadır. İyi huylu solid böbrek lezyonları 2 onkositom ve 11 anjiyomiyolipomdan oluşuyordu. Malign lezyonların ortalama ADC değeri sırasıyla 1,33 x 10-3 mm² / s, onkositomlar için 1,76 x 10-3 mm² / s ve anjiyolipomlar 1,28 x 10-3 mm² / s idi (p< 0,001). Normal renal parankimin ortalama ADC değeri 2,22 x 10-3 mm² / s, benign ve malign kitlelerin ayrım yapılmaksızın ortalama ADC değeri 1,34 x 10-3 mm² / s idi (p <0,001).
Sonuç: ADC değerleri, solid renal kitlelerde malign-benign lezyonları ayırt etmede faydalı bir parametre olabilir. Ek olarak, RCC alt tipleri arasında ADC değerlerindeki önemli farklılıklar, ADC'nin RCC alt tip belirlemesinde kullanılabilirliğini gösterir.

Supporting Institution

yok

Project Number

24/2009

References

  • Volpe A, Panzarella T, Rendon RA, Haider MA, Kondylis FI, Jewett MA. The natural history of incidentally detected small renal masses. Cancer 2004;100:738–45.
  • Doehn C, Grünwald V, Steiner T, Follmann M, Rexer H, Krege S. The Diagnosis, Treatment, and Follow-up of Renal Cell Carcinoma. Dtsch Arztebl Int. 2016;113:590-6.
  • Hecht EM, Israel GM, Krinsky GA Hahn WY, Kim DC, Belitskaya-Levy I et al. Renal masses: Quantitative analysis of enhancement with signal intensity measurements versus qualitative analysis of enhancement with image subtraction for diagnosing malignancy at MR imaging. Radiology, 2004;232: 373–8.
  • Ozturk M, Ekinci A, Elbir SF, Okur A, Doğan S, Karahan ÖI. The usefulness of the apparent diffusion coefficient of diffusion-weighted imaging for differential diagnosis of primary solid and cystic renal masses. Polish J Radiol. 2017;82:209–15.
  • Alle N, Tan N, Huss J, Huang J, Pantuck A, Raman SS. Percutaneous image-guided core biopsy of solid renal masses: analysis of safety, efficacy, pathologic interpretation, and clinical significance. Abdom Radiol (NY). 2018;43(7):1813-9.
  • Maturen KE, Nghiem HV, Caoili EM, Higgins EG, Wolf JS Jr, Wood DP Jr. Renal mass core biopsy: accuracy and impact on clinical management. AJR 2007; 188:563–570: 8.
  • Herts BR, Baker ME. The current role of percutaneous biopsy in the evaluation of renal masses. Semin Urol Oncol. 1995:13:254–61.
  • Jemal A, Murray T, Ward E, Samuels A, Tiwari RC, Ghafoor A et al. Cancer statistics. Cancer J Clin. 2005;55:10–30.
  • Le Bihan D. Diffusion and perfusion magnetic resonance imaging. Mal Vasc. 1995;20:203–214.
  • Colagrande S, Carbone SF, Carusi LM, Cova M, Villari N. Magnetic resonance diffusion-weighted imaging: extraneurological applications. Radiol med. 2006;111:392-419.
  • Rosenkrantz AB, Oei M, Babb JS, Niver B, Taouli B. DWI of the abdomen at 3.0 Tesla: Image quality and ADC reprocibility compared with 1.5 Tesla. J Magn Reson Imaging. 2011;33:128-35.
  • Le Bihan D: Molecular diffusion nuclear magnetic resonance imaging. Magn Reson Q. 1991;7:1–30.
  • Schaefer PW, Grant PE, Gonzalez RG. Diffusion weighted MR imaging of the brain. Radiology. 2000;217:331–45.
  • Müller MF, Prasad PV, Bimmler D. Functional imaging of the kidney by means of measurement of the apparent diffusion coefficient. Radiology. 1994;193:711–5.
  • Taouli B, Beer AJ, Chenevert T, Collins D, Lehman C, Matos C et al. Diffusion-Weighted Imaging outside the brain: Consensus statement from an ISMRM-Sponsored Workshop. J Magn Reson Imaging. 2016;44(3):521–40.
  • Doğanay S, Kocakoç E, Çiçekçi M, Ağlamış S, Akpolat N, Orhan I. Ability and utility of diffusion-weighted MRI with different b values in the evaluation of benign and malign renal lesions. Clin Radiol. 2011;66:420-5.
  • Paudyal B, Paudyal P, Tsushima Y, Oriuchi N, Amanuma M, Miyazaki M et al. The role of the ADC value in the characterization of renal carcinoma by diffusion-weighted MRI. Br J Radiol. 2010;83:336–43.
  • Zhang JL, Sigmund EE, Chandarana H, Rusinek H, Chen Q, Vivier PH, et al. Variability of renal apparent diffusion coefficients: limitations of the monoexponential model for diffusion quantification. Radiology. 2010;254:783–92.
  • Rofsky NM, Bosniak MA. MR evaluation of small (<3cm) renal masses. MR Clin N Am 1997; 5:67-81.
  • Cova M, Squillaci E, Stacul F, Manenti G, Gava S, Simonetti G, et al. DWI in the evaluation of renal lesions: preliminary results. Br J Radiol 2004;77:851-7.
  • Fukuda Y, Ohashi I, Hanafusa K. Anisotropic diffusion in kidney apparent diffusion coefficient measurements for clinical use. J Magn Reson Imaging. 2000; 11:156-60.
  • Thoeny HC, Grenier N. Science to practice: Can diffusion-weighted MR imaging findings be used as biomarkers to monitor the progression of renal fibrosis? Radiology. 2010;255(3):667-8.
  • Togao O, Doi S, Kuro-o M, Masaki T, Yorioka N, Takahashi M. Assessment of renal fi brosis with diffusion-weighted MR imaging: study with murine model of unilateral ureteral obstruction. Radiology. 2010;255:772-80.
  • Wang H, Cheng L, Zhang X, Wang D, Guo A, Gao Y, et al. Renal Cell Carcinoma: Diffusion-weighted MR imaging for subtype differentiation at 3.0 T. Radiology. 2010;257:135-43.
  • Xu J, Does MD, Gore JC. Sensitivity of MR diffusion measurements to variations in intracellular structure: effects of nuclear size. Magn Reson Med. 2009;61:828–33.
  • Harkins KD, Galons JP, Secomb TW, Trouard TP. Assessment of the effects of cellular tissue properties on ADC measurements by numerical simulation of water diffusion. Magn Reson Med. 2009;62:1414–22.
  • Surov A, Meyer HJ, Wienke A. Correlation between apparent diffusion coefficient (ADC) and cellularity is different in several tumors: a meta-analysis. Oncotarget. 2017;8(35):59492-99.
  • Taouli B, Thakur RK, Mannelli L, Babb JS, Kim S, Hecht EM, et al. Renal lesions: characterization with diffusion-weighted imaging versus contrast-enhanced MR imaging. Radiology. 2009;251:398–407.
  • Rosenkrantz AB, Niver BE, Fitzgerald FE, Babb JS, Chandarana H, Melamed J. Utility of the apparent diffusion coefficient for distinguishing clear cell renal cell carcinoma of low and high nuclear grade. AJR. 2010;195:344-51.
  • Sandrasegaran K, Sundaram CP, Ramaswamy R, Akişik F. Usefulness of DWI in the evaluation of renal masses. AJR. 2010;194:438-45.
  • Razek A, Farouk A, Mousa A, Nahil N. Role of Diffusion-Weighted magnetic resonance imaging for characterization of renal tumors. Journal Computer Assisted Tomography. 2011;35:332-6.
  • Rosenkrantz AB, Hindman N, Fitzgerald EF, Niver BE, Melamed J, Babb JS. MRI features of renal oncocytoma and chromophobe renal cell carcinoma. AJR. 2010;195:421–7.
  • Paschall AK, Mirmomen SM, Symons R, Pourmorteza A, Gautam R, Sahai A, et al. Differentiating papillary type I RCC from clear cell RCC and oncocytoma: application of whole-lesion volumetric ADC measurement. Abdom Radiol (NY). 2018;43(9):2424-30.

The Role of Diffusion-Weighted Imaging and Apparent Diffusion Coefficient Maps in Characterization of Solid Renal Lesions

Year 2020, Volume: 2 Issue: 3, 138 - 144, 01.11.2020
https://doi.org/10.38175/phnx.806582

Abstract

Objectives: The purpose of this study was to evaluate the added value of Diffusion-Weighted Imaging (DWI) and Apparent Diffusion Coefficient (ADC) in distinguishing between benign from malignant solid renal lesions.
Material and Method: A total of forty-seven patients (age range: 33-84, mean: 59.0± 11.3 years, 27 men, 20 women) with solid renal lesions detected on abdominal MR were included in our study group. The ADCs were calculated from DWI data of two different b values (b=600 mm²/s and b=1000 mm²/s). ADC values for both normal renal parenchyma and solid renal lesions were obtained. Subsequently, ROI analysis was performed to identify threshold ADCs. In all cases, the histopathological data were obtained and correlated.
Results: The histopathological outcome comprises 13 benign and 34 malignant solid renal lesions. The solid malignant lesions were Renal Cell Carcinoma subtypes (1 chromophobe cell, four papillary cells, 25 clear cells), 2 Transitional Cell carcinomas, one metastasis, 1 Non-Hodgkin lymphoma. The benign solid renal lesions consisted of 2 oncocytomas and 11 angiomyolipomas. The mean ADC value of malignant lesions was 1,33 x 10-3 mm²/s, benign masses for oncocytomas 1,76 x 10-3 mm²/s, and angiolipomas 1,28 x 10-3 mm²/s respectively (p<0.001). The mean ADC value of normal renal parenchyma was 2,22 x 10-3 mm²/s, and the mean ADC value of benign and malignant masses without discrimination was 1.34 x 10-3 mm²/s (p <0.001).
Conclusion: ADC values can be a useful parameter to differentiate malignant solid renal lesions in renal masses. Also, significant differences in ADC values among RCC subtypes indicate the availability of ADC in RCC subtype determination.

Project Number

24/2009

References

  • Volpe A, Panzarella T, Rendon RA, Haider MA, Kondylis FI, Jewett MA. The natural history of incidentally detected small renal masses. Cancer 2004;100:738–45.
  • Doehn C, Grünwald V, Steiner T, Follmann M, Rexer H, Krege S. The Diagnosis, Treatment, and Follow-up of Renal Cell Carcinoma. Dtsch Arztebl Int. 2016;113:590-6.
  • Hecht EM, Israel GM, Krinsky GA Hahn WY, Kim DC, Belitskaya-Levy I et al. Renal masses: Quantitative analysis of enhancement with signal intensity measurements versus qualitative analysis of enhancement with image subtraction for diagnosing malignancy at MR imaging. Radiology, 2004;232: 373–8.
  • Ozturk M, Ekinci A, Elbir SF, Okur A, Doğan S, Karahan ÖI. The usefulness of the apparent diffusion coefficient of diffusion-weighted imaging for differential diagnosis of primary solid and cystic renal masses. Polish J Radiol. 2017;82:209–15.
  • Alle N, Tan N, Huss J, Huang J, Pantuck A, Raman SS. Percutaneous image-guided core biopsy of solid renal masses: analysis of safety, efficacy, pathologic interpretation, and clinical significance. Abdom Radiol (NY). 2018;43(7):1813-9.
  • Maturen KE, Nghiem HV, Caoili EM, Higgins EG, Wolf JS Jr, Wood DP Jr. Renal mass core biopsy: accuracy and impact on clinical management. AJR 2007; 188:563–570: 8.
  • Herts BR, Baker ME. The current role of percutaneous biopsy in the evaluation of renal masses. Semin Urol Oncol. 1995:13:254–61.
  • Jemal A, Murray T, Ward E, Samuels A, Tiwari RC, Ghafoor A et al. Cancer statistics. Cancer J Clin. 2005;55:10–30.
  • Le Bihan D. Diffusion and perfusion magnetic resonance imaging. Mal Vasc. 1995;20:203–214.
  • Colagrande S, Carbone SF, Carusi LM, Cova M, Villari N. Magnetic resonance diffusion-weighted imaging: extraneurological applications. Radiol med. 2006;111:392-419.
  • Rosenkrantz AB, Oei M, Babb JS, Niver B, Taouli B. DWI of the abdomen at 3.0 Tesla: Image quality and ADC reprocibility compared with 1.5 Tesla. J Magn Reson Imaging. 2011;33:128-35.
  • Le Bihan D: Molecular diffusion nuclear magnetic resonance imaging. Magn Reson Q. 1991;7:1–30.
  • Schaefer PW, Grant PE, Gonzalez RG. Diffusion weighted MR imaging of the brain. Radiology. 2000;217:331–45.
  • Müller MF, Prasad PV, Bimmler D. Functional imaging of the kidney by means of measurement of the apparent diffusion coefficient. Radiology. 1994;193:711–5.
  • Taouli B, Beer AJ, Chenevert T, Collins D, Lehman C, Matos C et al. Diffusion-Weighted Imaging outside the brain: Consensus statement from an ISMRM-Sponsored Workshop. J Magn Reson Imaging. 2016;44(3):521–40.
  • Doğanay S, Kocakoç E, Çiçekçi M, Ağlamış S, Akpolat N, Orhan I. Ability and utility of diffusion-weighted MRI with different b values in the evaluation of benign and malign renal lesions. Clin Radiol. 2011;66:420-5.
  • Paudyal B, Paudyal P, Tsushima Y, Oriuchi N, Amanuma M, Miyazaki M et al. The role of the ADC value in the characterization of renal carcinoma by diffusion-weighted MRI. Br J Radiol. 2010;83:336–43.
  • Zhang JL, Sigmund EE, Chandarana H, Rusinek H, Chen Q, Vivier PH, et al. Variability of renal apparent diffusion coefficients: limitations of the monoexponential model for diffusion quantification. Radiology. 2010;254:783–92.
  • Rofsky NM, Bosniak MA. MR evaluation of small (<3cm) renal masses. MR Clin N Am 1997; 5:67-81.
  • Cova M, Squillaci E, Stacul F, Manenti G, Gava S, Simonetti G, et al. DWI in the evaluation of renal lesions: preliminary results. Br J Radiol 2004;77:851-7.
  • Fukuda Y, Ohashi I, Hanafusa K. Anisotropic diffusion in kidney apparent diffusion coefficient measurements for clinical use. J Magn Reson Imaging. 2000; 11:156-60.
  • Thoeny HC, Grenier N. Science to practice: Can diffusion-weighted MR imaging findings be used as biomarkers to monitor the progression of renal fibrosis? Radiology. 2010;255(3):667-8.
  • Togao O, Doi S, Kuro-o M, Masaki T, Yorioka N, Takahashi M. Assessment of renal fi brosis with diffusion-weighted MR imaging: study with murine model of unilateral ureteral obstruction. Radiology. 2010;255:772-80.
  • Wang H, Cheng L, Zhang X, Wang D, Guo A, Gao Y, et al. Renal Cell Carcinoma: Diffusion-weighted MR imaging for subtype differentiation at 3.0 T. Radiology. 2010;257:135-43.
  • Xu J, Does MD, Gore JC. Sensitivity of MR diffusion measurements to variations in intracellular structure: effects of nuclear size. Magn Reson Med. 2009;61:828–33.
  • Harkins KD, Galons JP, Secomb TW, Trouard TP. Assessment of the effects of cellular tissue properties on ADC measurements by numerical simulation of water diffusion. Magn Reson Med. 2009;62:1414–22.
  • Surov A, Meyer HJ, Wienke A. Correlation between apparent diffusion coefficient (ADC) and cellularity is different in several tumors: a meta-analysis. Oncotarget. 2017;8(35):59492-99.
  • Taouli B, Thakur RK, Mannelli L, Babb JS, Kim S, Hecht EM, et al. Renal lesions: characterization with diffusion-weighted imaging versus contrast-enhanced MR imaging. Radiology. 2009;251:398–407.
  • Rosenkrantz AB, Niver BE, Fitzgerald FE, Babb JS, Chandarana H, Melamed J. Utility of the apparent diffusion coefficient for distinguishing clear cell renal cell carcinoma of low and high nuclear grade. AJR. 2010;195:344-51.
  • Sandrasegaran K, Sundaram CP, Ramaswamy R, Akişik F. Usefulness of DWI in the evaluation of renal masses. AJR. 2010;194:438-45.
  • Razek A, Farouk A, Mousa A, Nahil N. Role of Diffusion-Weighted magnetic resonance imaging for characterization of renal tumors. Journal Computer Assisted Tomography. 2011;35:332-6.
  • Rosenkrantz AB, Hindman N, Fitzgerald EF, Niver BE, Melamed J, Babb JS. MRI features of renal oncocytoma and chromophobe renal cell carcinoma. AJR. 2010;195:421–7.
  • Paschall AK, Mirmomen SM, Symons R, Pourmorteza A, Gautam R, Sahai A, et al. Differentiating papillary type I RCC from clear cell RCC and oncocytoma: application of whole-lesion volumetric ADC measurement. Abdom Radiol (NY). 2018;43(9):2424-30.
There are 33 citations in total.

Details

Primary Language English
Subjects Radiology and Organ Imaging
Journal Section Research Articles
Authors

Kıymet Tokat 0000-0002-8012-8017

Türkan İkizceli 0000-0002-5683-0391

Project Number 24/2009
Publication Date November 1, 2020
Submission Date October 6, 2020
Acceptance Date October 22, 2020
Published in Issue Year 2020 Volume: 2 Issue: 3

Cite

Vancouver Tokat K, İkizceli T. The Role of Diffusion-Weighted Imaging and Apparent Diffusion Coefficient Maps in Characterization of Solid Renal Lesions. Phnx Med J. 2020;2(3):138-44.

Creative Commons License
Phoenix Medical Journal is licensed under a Creative Commons Attribution 4.0 International License.


600x200

Phoenix Medical Journal has signed the Budapest Open Access Declaration.