Review
PDF Zotero Mendeley EndNote BibTex Cite

Sinirbilim Araştırmalarında Caenorhabditis Elegans

Year 2021, Volume 3, Issue 3, 101 - 107, 01.11.2021
https://doi.org/10.38175/phnx.902744

Abstract

Sinirbilim, milyonlarca nöron ve milyarlarca sinapstan oluşan insan beyninin yapı ve fonksiyonlarını anlamaya çalışır. Laboratuvar ortamında böylesine gelişmiş bir sistem için model oluşturmak ve incelemek mümkün değildir. Yirmi yılı aşkın süredir, insan sinir sistemine benzer özellikleri ve kolay incelenebilir yapısı nedeniyle Caernohabditis elegans (C. elegans), nöral ağların davranışını anlamak için faydalı bir model olarak öne çıkmaktadır. Oluşturulan modeller, davranış ve nöral aktivitelerin nicel analizlerinin yapılmasını, sinir ağlarının işleyişinin anlaşılmasını kolaylaştırır. Böylece hem hücre hem de organizma düzeyinde araştırmalar yapılabilmektedir. Sinirbilim çalışmalarının amacı, etki sonrası duyu nöronlarından aktarılan bilginin, motor nöronlar tarafından nasıl bir tepkiye dönüştüğünü anlamak; bu tepkilerin tekrarlı, tutarlı bir davranış haline gelmesinde etkinin rolünü kavramaktır. Genomu haritalandırılmış ilk hayvan olma avantajına sahip, farklı tekniklerle gözlenmesi mümkün ve kolay olan, memeli nöral-davranışsal örgüye ışık tutan C. elegans bu araştırmalarda oldukça verimli kullanılmaktadır. Bu araştırmalarda 2000’li yılların sonrasında, besi yeri ve karakterizasyona bağlı gelişmelere de bağlı olarak artış yaşandığı düşünülmektedir. Bu alandaki araştırmalar 2000’li yılların başından, 2021’e kadar katlanarak artmıştır. C. elegans ile yapılan sinirbilim araştırmaları ülkelere göre incelendiğinde, başı Amerika ve Almanya gibi ülkelerin çektiği görülmüştür. Bu konuda SCI-Expanded dergilerde yapılan 245 yayının 67’sini sinirbilim araştırmacıları oluştururken, 40’ını multidisipliner alanlarda çalışan araştırmacılar gerçekleştirmiştir. Bu çalışmada, C. elegans’ın genel özelliklerine ve sinirbilim araştırmalarındaki yerine değinilecek ve bu araştırmaların yıllara ve ülkelere göre dağılımları değerlendirilecektir.

References

  • Laurent G. On the value of model diversity in neuroscience. Nat Rev Neurosci. 2020;21(8):395-396. DOI: 10.1038/s41583-020-0323-1.
  • Klass MR. A method for the isolation of longevity mutants in the nematode Caenorhabditis elegans and initial results. Mech Ageing Dev. 1983;22(3-4):279-86. DOI: 10.1016/0047-6374(83)90082-9.
  • Cook SJ, Jarrell TA, Brittin CA, Wang Y, Bloniarz AE, Yakovlev MA, Nguyen KCQ, et al. Whole-animal connectomes of both Caenorhabditis elegans sexes. Nature. 2019;571(7763):63-71. DOI: 10.1038/s41586-019-1352-7.
  • Rougvie AE, Moss EG. Developmental transitions in C. elegans larval stages. Curr Top Dev Biol. 2013;105:153-180. DOI: 10.1016/B978-0-12-396968-2.00006-3.
  • Sengupta P, Samuel AD. Caenorhabditis elegans: a model system for systems neuroscience. Curr Opin Neurobiol. 2009;19(6):637-643. DOI: 10.1016/j.conb.2009.09.009.
  • Anderson JL, Albergotti L, Proulx S, Peden C, Huey RB, Phillips PC. Thermal preference of Caenorhabditis elegans: a null model and empirical tests. J Exp Biol. 2007;210(Pt 17):3107-3116. DOI: 10.1242/jeb.007351.
  • White JG, Southgate E, Thomson JN, Brenner S. The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci. 1986;314(1165):1-340. DOI: 10.1098/rstb.1986.0056.
  • Chronis N, Zimmer M, Bargmann CI. Microfluidics for in vivo imaging of neuronal and behavioral activity in Caenorhabditis elegans. Nat Methods. 2007;4(9):727-731. DOI: 10.1038/nmeth1075. Epub 2007 Aug 19.
  • Chalfie M, Sulston JE, White JG, Southgate E, Thomson JN, Brenner S. The neural circuit for touch sensitivity in Caenorhabditis elegans. J Neurosci. 1985;5(4):956-964. DOI: 10.1523/JNEUROSCI.05-04-00956.1985.
  • Izquierdo EJ, Beer RD. The whole worm: brain-body-environment models of C. elegans. Curr Opin Neurobiol. 2016;40:23-30. DOI: 10.1016/j.conb.2016.06.005. Epub 2016 Jun 20.
  • Erdös P, Niebur E. The neural basis of the locomotion of nematodes. Stat Mech Neural Networks. 2008;368:253–267. DOI: 10.1007/3540532676_54.
  • Niebur E, Erdös P. Theory of the locomotion of nematodes: Dynamics of undulatory progression on a surface. Biophys J. 1991;60(5):1132-1146. DOI: 10.1016/S0006-3495(91)82149-X. PMID: 19431807
  • Majmudar T, Keaveny EE, Zhang J, Shelley MJ. Experiments and theory of undulatory locomotion in a simple structured medium. J R Soc Interface. 2012;9(73):1809-1823. DOI: 10.1098/rsif.2011.0856. Epub 2012 Feb 8.
  • Portegys TE. Training sensory-motor behavior in the connectome of an artificial C. elegans. Neurocomputing. 2015;168:128–134. DOI: 10.1016/j.neucom.2015.06.007.
  • Kunert J, Shlizerman E, Kutz JN. Low-dimensional functionality of complex network dynamics: neurosensory integration in the Caenorhabditis Elegans connectome. Phys Rev E Stat Nonlin Soft Matter Phys. 2014;89(5):052805. DOI: 10.1103/PhysRevE.89.052805. Epub 2014 May 12.
  • Deng X, Xu JX, Wang J, Wang G yin, Chen Q song. Biological modeling the undulatory locomotion of C. elegans using dynamic neural network approach. Neurocomputing. 2016;186:207–217. DOI: 10.1016/j.neucom.2015.12.090
  • Boyle JH, Berri S, Cohen N. Gait Modulation in C. elegans: An Integrated Neuromechanical Model. Front Comput Neurosci. 2012;6:10. DOI: 10.3389/fncom.2012.00010.
  • Lockery SR. The computational worm: spatial orientation and its neuronal basis in C. elegans. Curr Opin Neurobiol. 2011;21(5):782-790. DOI: 10.1016/j.conb.2011.06.009. Epub 2011 Jul 18.
  • Lino Y, Yoshida K. Parallel use of two behavioral mechanisms for chemotaxis in Caenorhabditis elegans. J Neurosci. 2009;29(17):5370-5380. DOI: 10.1523/JNEUROSCI.3633-08.2009.
  • Pierce-Shimomura JT, Morse TM, Lockery SR. The fundamental role of pirouettes in Caenorhabditis elegans chemotaxis. J Neurosci. 1999;19(21):9557-9569. DOI: 10.1523/JNEUROSCI.19-21-09557.1999.
  • Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974;77(1):71-94.
  • Porta-de-la-Riva M, Fontrodona L, Villanueva A, Cerón J. Basic Caenorhabditis elegans methods: synchronization and observation. J Vis Exp. 2012;(64):e4019. DOI: 10.3791/4019.
  • Baugh LR. To grow or not to grow: nutritional control of development during Caenorhabditis elegans L1 arrest. Genetics. 2013;194(3):539-555. DOI: 10.1534/genetics.113.150847.
  • Artyukhin AB, Yim JJ, Cheong Cheong M, Avery L. Starvation-induced collective behavior in C. elegans. Sci Rep. 2015;5:10647. DOI: 10.1038/srep10647.
  • Sugi T, Ito H, Nishimura M, Nagai KH. C. elegans collectively forms dynamical networks. Nat Commun. 2019;10(1):683. DOI: 10.1038/s41467-019-08537-y.
  • Moss BJ, Park L, Dahlberg CL, Juo P. The CaM Kinase CMK-1 Mediates a negative feedback mechanism coupling the C. elegans glutamate receptor GLR-1 with its own transcription. PLoS Genet. 2016;12(7):e1006180. DOI: 10.1371/journal.pgen.1006180.
  • Rao AU, Carta LK, Lesuisse E, Hamza I. Lack of heme synthesis in a free-living eukaryote. Proc Natl Acad Sci U S A. 2005;102(12):4270-4275. DOI: 10.1073/pnas.0500877102. Epub 2005 Mar 14.
  • Schvarzstein M, Spence AM. The C. elegans sex-determining GLI protein TRA-1A is regulated by sex-specific proteolysis. Dev Cell. 2006;11(5):733-740. DOI: 10.1016/j.devcel.2006.09.017.
  • Szewczyk NJ, Kozak E, Conley CA. Chemically defined medium and Caenorhabditis elegans. BMC Biotechnol. 2003;3:19. DOI: 10.1186/1472-6750-3-19.
  • Watts JL, Ristow M. Lipid and carbohydrate metabolism in Caenorhabditis elegans. Genetics. 2017;207(2):413-446. DOI: 10.1534/genetics.117.300106.
  • Balachandar R, Lu NC. Nutritional requirements for pantothenate, pantethine or coenzyme A in the free-living nematode Caenorhabditis elegans. Nematology. 2005;7(5):761–766. DOI: 10.1163/156854105775142900
  • Zečić A, Dhondt I, Braeckman BP. The nutritional requirements of Caenorhabditis elegans. Genes Nutr. 2019;14(1):1–13. DOI: 10.1186/s12263-019-0637-7.
  • Dusenbery DB. Countercurrent separation: a new method for studying behavior of small aquatic organisms. Proc Natl Acad Sci U S A. 1973;70(5):1349-1352. DOI: 10.1073/pnas.70.5.1349.
  • Ward S. Chemotaxis by the nematode Caenorhabditis elegans: identification of attractants and analysis of the response by use of mutants. Proc Natl Acad Sci U S A. 1973;70(3):817-821. DOI: 10.1073/pnas.70.3.817.
  • Hart MP, Hobert O. Sexual Dimorphism: Mystery Neurons Control Sex-Specific Behavioral Plasticity. Curr Biol. 2015;25(24):R1170-1172. DOI: 10.1016/j.cub.2015.11.002.
  • Wu Q, Li Y, Tang M, Wang D. Evaluation of environmental safety concentrations of DMSA coated Fe2O3-NPs using different assay systems in nematode caenorhabditis elegans. PLoS One. 2012;7(8):e43729. DOI: 10.1371/journal.pone.0043729.
  • Riddle DL, Blumenthal T, Meyer BJ, Priess JR, editors. C. elegans II. 2nd ed. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 1997. PMID: 21413221.
  • Antonopoulos CG. Dynamic range in the C. elegans brain network. Chaos. 2016 Jan;26(1):013102. DOI: 10.1063/1.4939837.
  • Jamjoom BA, Jamjoom AB. Impact of country-specific characteristics on scientific productivity in clinical neurology research. eNeurologicalSci. 2016;4:1-3. DOI: 10.1016/j.ensci.2016.03.002.

Caenorhabditis Elegans in Neuroscience Research

Year 2021, Volume 3, Issue 3, 101 - 107, 01.11.2021
https://doi.org/10.38175/phnx.902744

Abstract

Neuroscience tries to understand the structure and functions of the human brain, which is made up of millions of neurons and billions of synapses. It is not possible to create and examine a model for such an advanced system in a laboratory environment. For more than two decades, Caernohabditis elegans (C. elegans) has come to the fore as a useful model for understanding the behavior of neural networks, due to its characteristics similar to the human nervous system and its easily observable structure. The created models facilitate quantitative analysis of behavior and neural activities and understanding the functioning of neural networks. Thus, research can be done at both the cell and the organism level. Since the purpose of neuroscience studies is to understand how the information transmitted from sensory neurons under the influence turns into an output response by motor neurons and to understand the role of the effect in making these responses a repetitive, consistent behavior; C. elegans, which has the advantage of being the first animal whose genome has been completely sequenced, is easy to observe with different techniques, and sheds light on the mammalian neural-behavioral pattern, has been used quite efficiently in these studies. In these researches, it is thought that there has been an increase after the 2000s, depending on the developments related to the medium and characterization. Research in this area has increased exponentially from the early 2000s until 2021. When neuroscience studies with C. elegans were examined by country, it was seen that countries such as America and Germany were the leading ones. While 67 of the 245 publications made in SCI-Expanded journals on this subject were neuroscience researches, 40 of them were made by researchers working in multidisciplinary fields. In this study, the general characteristics of C. elegans and its place in neuroscience research will be mentioned and the distribution of these studies by years and countries will be evaluated.

References

  • Laurent G. On the value of model diversity in neuroscience. Nat Rev Neurosci. 2020;21(8):395-396. DOI: 10.1038/s41583-020-0323-1.
  • Klass MR. A method for the isolation of longevity mutants in the nematode Caenorhabditis elegans and initial results. Mech Ageing Dev. 1983;22(3-4):279-86. DOI: 10.1016/0047-6374(83)90082-9.
  • Cook SJ, Jarrell TA, Brittin CA, Wang Y, Bloniarz AE, Yakovlev MA, Nguyen KCQ, et al. Whole-animal connectomes of both Caenorhabditis elegans sexes. Nature. 2019;571(7763):63-71. DOI: 10.1038/s41586-019-1352-7.
  • Rougvie AE, Moss EG. Developmental transitions in C. elegans larval stages. Curr Top Dev Biol. 2013;105:153-180. DOI: 10.1016/B978-0-12-396968-2.00006-3.
  • Sengupta P, Samuel AD. Caenorhabditis elegans: a model system for systems neuroscience. Curr Opin Neurobiol. 2009;19(6):637-643. DOI: 10.1016/j.conb.2009.09.009.
  • Anderson JL, Albergotti L, Proulx S, Peden C, Huey RB, Phillips PC. Thermal preference of Caenorhabditis elegans: a null model and empirical tests. J Exp Biol. 2007;210(Pt 17):3107-3116. DOI: 10.1242/jeb.007351.
  • White JG, Southgate E, Thomson JN, Brenner S. The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci. 1986;314(1165):1-340. DOI: 10.1098/rstb.1986.0056.
  • Chronis N, Zimmer M, Bargmann CI. Microfluidics for in vivo imaging of neuronal and behavioral activity in Caenorhabditis elegans. Nat Methods. 2007;4(9):727-731. DOI: 10.1038/nmeth1075. Epub 2007 Aug 19.
  • Chalfie M, Sulston JE, White JG, Southgate E, Thomson JN, Brenner S. The neural circuit for touch sensitivity in Caenorhabditis elegans. J Neurosci. 1985;5(4):956-964. DOI: 10.1523/JNEUROSCI.05-04-00956.1985.
  • Izquierdo EJ, Beer RD. The whole worm: brain-body-environment models of C. elegans. Curr Opin Neurobiol. 2016;40:23-30. DOI: 10.1016/j.conb.2016.06.005. Epub 2016 Jun 20.
  • Erdös P, Niebur E. The neural basis of the locomotion of nematodes. Stat Mech Neural Networks. 2008;368:253–267. DOI: 10.1007/3540532676_54.
  • Niebur E, Erdös P. Theory of the locomotion of nematodes: Dynamics of undulatory progression on a surface. Biophys J. 1991;60(5):1132-1146. DOI: 10.1016/S0006-3495(91)82149-X. PMID: 19431807
  • Majmudar T, Keaveny EE, Zhang J, Shelley MJ. Experiments and theory of undulatory locomotion in a simple structured medium. J R Soc Interface. 2012;9(73):1809-1823. DOI: 10.1098/rsif.2011.0856. Epub 2012 Feb 8.
  • Portegys TE. Training sensory-motor behavior in the connectome of an artificial C. elegans. Neurocomputing. 2015;168:128–134. DOI: 10.1016/j.neucom.2015.06.007.
  • Kunert J, Shlizerman E, Kutz JN. Low-dimensional functionality of complex network dynamics: neurosensory integration in the Caenorhabditis Elegans connectome. Phys Rev E Stat Nonlin Soft Matter Phys. 2014;89(5):052805. DOI: 10.1103/PhysRevE.89.052805. Epub 2014 May 12.
  • Deng X, Xu JX, Wang J, Wang G yin, Chen Q song. Biological modeling the undulatory locomotion of C. elegans using dynamic neural network approach. Neurocomputing. 2016;186:207–217. DOI: 10.1016/j.neucom.2015.12.090
  • Boyle JH, Berri S, Cohen N. Gait Modulation in C. elegans: An Integrated Neuromechanical Model. Front Comput Neurosci. 2012;6:10. DOI: 10.3389/fncom.2012.00010.
  • Lockery SR. The computational worm: spatial orientation and its neuronal basis in C. elegans. Curr Opin Neurobiol. 2011;21(5):782-790. DOI: 10.1016/j.conb.2011.06.009. Epub 2011 Jul 18.
  • Lino Y, Yoshida K. Parallel use of two behavioral mechanisms for chemotaxis in Caenorhabditis elegans. J Neurosci. 2009;29(17):5370-5380. DOI: 10.1523/JNEUROSCI.3633-08.2009.
  • Pierce-Shimomura JT, Morse TM, Lockery SR. The fundamental role of pirouettes in Caenorhabditis elegans chemotaxis. J Neurosci. 1999;19(21):9557-9569. DOI: 10.1523/JNEUROSCI.19-21-09557.1999.
  • Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974;77(1):71-94.
  • Porta-de-la-Riva M, Fontrodona L, Villanueva A, Cerón J. Basic Caenorhabditis elegans methods: synchronization and observation. J Vis Exp. 2012;(64):e4019. DOI: 10.3791/4019.
  • Baugh LR. To grow or not to grow: nutritional control of development during Caenorhabditis elegans L1 arrest. Genetics. 2013;194(3):539-555. DOI: 10.1534/genetics.113.150847.
  • Artyukhin AB, Yim JJ, Cheong Cheong M, Avery L. Starvation-induced collective behavior in C. elegans. Sci Rep. 2015;5:10647. DOI: 10.1038/srep10647.
  • Sugi T, Ito H, Nishimura M, Nagai KH. C. elegans collectively forms dynamical networks. Nat Commun. 2019;10(1):683. DOI: 10.1038/s41467-019-08537-y.
  • Moss BJ, Park L, Dahlberg CL, Juo P. The CaM Kinase CMK-1 Mediates a negative feedback mechanism coupling the C. elegans glutamate receptor GLR-1 with its own transcription. PLoS Genet. 2016;12(7):e1006180. DOI: 10.1371/journal.pgen.1006180.
  • Rao AU, Carta LK, Lesuisse E, Hamza I. Lack of heme synthesis in a free-living eukaryote. Proc Natl Acad Sci U S A. 2005;102(12):4270-4275. DOI: 10.1073/pnas.0500877102. Epub 2005 Mar 14.
  • Schvarzstein M, Spence AM. The C. elegans sex-determining GLI protein TRA-1A is regulated by sex-specific proteolysis. Dev Cell. 2006;11(5):733-740. DOI: 10.1016/j.devcel.2006.09.017.
  • Szewczyk NJ, Kozak E, Conley CA. Chemically defined medium and Caenorhabditis elegans. BMC Biotechnol. 2003;3:19. DOI: 10.1186/1472-6750-3-19.
  • Watts JL, Ristow M. Lipid and carbohydrate metabolism in Caenorhabditis elegans. Genetics. 2017;207(2):413-446. DOI: 10.1534/genetics.117.300106.
  • Balachandar R, Lu NC. Nutritional requirements for pantothenate, pantethine or coenzyme A in the free-living nematode Caenorhabditis elegans. Nematology. 2005;7(5):761–766. DOI: 10.1163/156854105775142900
  • Zečić A, Dhondt I, Braeckman BP. The nutritional requirements of Caenorhabditis elegans. Genes Nutr. 2019;14(1):1–13. DOI: 10.1186/s12263-019-0637-7.
  • Dusenbery DB. Countercurrent separation: a new method for studying behavior of small aquatic organisms. Proc Natl Acad Sci U S A. 1973;70(5):1349-1352. DOI: 10.1073/pnas.70.5.1349.
  • Ward S. Chemotaxis by the nematode Caenorhabditis elegans: identification of attractants and analysis of the response by use of mutants. Proc Natl Acad Sci U S A. 1973;70(3):817-821. DOI: 10.1073/pnas.70.3.817.
  • Hart MP, Hobert O. Sexual Dimorphism: Mystery Neurons Control Sex-Specific Behavioral Plasticity. Curr Biol. 2015;25(24):R1170-1172. DOI: 10.1016/j.cub.2015.11.002.
  • Wu Q, Li Y, Tang M, Wang D. Evaluation of environmental safety concentrations of DMSA coated Fe2O3-NPs using different assay systems in nematode caenorhabditis elegans. PLoS One. 2012;7(8):e43729. DOI: 10.1371/journal.pone.0043729.
  • Riddle DL, Blumenthal T, Meyer BJ, Priess JR, editors. C. elegans II. 2nd ed. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 1997. PMID: 21413221.
  • Antonopoulos CG. Dynamic range in the C. elegans brain network. Chaos. 2016 Jan;26(1):013102. DOI: 10.1063/1.4939837.
  • Jamjoom BA, Jamjoom AB. Impact of country-specific characteristics on scientific productivity in clinical neurology research. eNeurologicalSci. 2016;4:1-3. DOI: 10.1016/j.ensci.2016.03.002.

Details

Primary Language Turkish
Subjects Neurosciences
Journal Section Review
Authors

Neslihan DEMİRCİ
BAHÇEŞEHİR ÜNİVERSİTESİ, TIP FAKÜLTESİ, TEMEL TIP BİLİMLERİ BÖLÜMÜ, BİYOFİZİK ANABİLİM DALI
0000-0001-5988-3010
Türkiye


Recep ÜSTÜNSOY
İSTANBUL ÜNİVERSİTESİ, İSTANBUL TIP FAKÜLTESİ, TEMEL TIP BİLİMLERİ BÖLÜMÜ, BİYOFİZİK ANABİLİM DALI
0000-0002-0448-9531
Türkiye


Bircan DİNÇ (Primary Author)
Bahçeşehir Üniversitesi, Tıp Fakültesi, Biyofizik Anabilim Dalı
0000-0002-9717-6410
Türkiye

Supporting Institution Bahçeşehir Üniversitesi
Publication Date November 1, 2021
Application Date March 24, 2021
Acceptance Date June 29, 2021
Published in Issue Year 2021, Volume 3, Issue 3

Cite

AMA Demirci N. , Üstünsoy R. , Dinç B. Sinirbilim Araştırmalarında Caenorhabditis Elegans. Phnx Med J. 2021; 3(3): 101-107.

Creative Commons License
Phoenix Medical Journal is licensed under a Creative Commons Attribution 4.0 International License.

Our journal has adopted the Open Access Policy, and no fees will be charged from the authors at any stage of the publication for the articles submitted.