Conference Paper
BibTex RIS Cite
Year 2019, Volume: 1 Issue: 1, 16 - 21, 15.06.2019

Abstract

References

  • [1] D. Zhang, G. Li, X. Jia and H. Li, Simultaneous Inversion for Space-Dependent Difiusion Coeficient and Source Magnitude in the Time Fractional Difiusion Equation. J. Math. Research. Vol. 5, No. 2; 2013.
  • [2] J.Huang, Y.Tang, L.Vazquez, J.Yang, Two nite difierence schemes for time-fractional difiusion-wave equation. Numer. Algor. 64, 707-720 (2013).
  • [3] C. Li, F. Zeng, Numerical Methods for Fractional Calculus, CRC Press Taylor&Francis Group, 2015.
  • [4] Z. Amina, Etude d'un probleme inverse pour une equation de difiusion fractionnaire, Master thesis, Mohamed Boudiaf University, M'sila, Algeria, 2018.
  • [5] A. Nour Elhouda, Probleme inverse pour une equation de difiusion-onde fractionnaire, Master thesis, Mohamed Boudiaf University, M'sila, Algeria, 2019.

An Inverse Diffusion-Wave Problem Defined in Heterogeneous Medium with Additional Boundary Measurement

Year 2019, Volume: 1 Issue: 1, 16 - 21, 15.06.2019

Abstract

This paper deals with an inverse problem to determine a space-dependent coefficient in a one-dimensional time fractional diffusion-wave equation defined in heterogeneous medium with additional boundary measurement. Then, we construct the explicit finite difference scheme for the direct problem based on the equivalent partial integro-differential equation and Simpson's rule. Using the matrix analysis and mathematical induction,  we prove that our scheme is stable and convergent . The least squares method with homotopy regularization is introduced to determine the space-dependent coefficient, and an inversion algorithm is performed by one numerical example. This inversion algorithm is effective at least for this inverse problem.

References

  • [1] D. Zhang, G. Li, X. Jia and H. Li, Simultaneous Inversion for Space-Dependent Difiusion Coeficient and Source Magnitude in the Time Fractional Difiusion Equation. J. Math. Research. Vol. 5, No. 2; 2013.
  • [2] J.Huang, Y.Tang, L.Vazquez, J.Yang, Two nite difierence schemes for time-fractional difiusion-wave equation. Numer. Algor. 64, 707-720 (2013).
  • [3] C. Li, F. Zeng, Numerical Methods for Fractional Calculus, CRC Press Taylor&Francis Group, 2015.
  • [4] Z. Amina, Etude d'un probleme inverse pour une equation de difiusion fractionnaire, Master thesis, Mohamed Boudiaf University, M'sila, Algeria, 2018.
  • [5] A. Nour Elhouda, Probleme inverse pour une equation de difiusion-onde fractionnaire, Master thesis, Mohamed Boudiaf University, M'sila, Algeria, 2019.
There are 5 citations in total.

Details

Primary Language English
Subjects Software Engineering (Other)
Journal Section Articles
Authors

Nouiri Brahim

Djerioui Khayra This is me

Publication Date June 15, 2019
Acceptance Date November 20, 2019
Published in Issue Year 2019 Volume: 1 Issue: 1

Cite

Creative Commons License
The published articles in PIMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.