Research Article
BibTex RIS Cite

Estimating Energy Savings in Office Lighting: The Impact of Illuminance Distribution and Fixture Types of Luminaires

Year 2025, Volume: 9 Issue: 1, 99 - 108, 15.03.2025
https://doi.org/10.54864/planarch.1549649

Abstract

Artificial lighting is a crucial component of office environments and a significant energy consumer. Effective lighting design in offices must balance the well-being and visual comfort of workers with energy efficiency. Therefore, designers need more focus on lighting design for providing more eye-comfort space for workers who spend most of their time in office. This study examines various artificial lighting distributions and fixtures concerning their potential for energy savings and visual comfort. Utilizing a quantitative research approach, both literature review and simulations were conducted. Four recommended lighting fixtures, each with similar power and flux and different shapes from different brands, were selected for analysis. Small, medium, and big office rooms were modelled using the room index formula for diverse office layouts. The simulations of the offices with varied lighting fixtures were carried out in DIALux Evo 11. This study aims to find the optimal lighting fixture for energy saving in the workplace. The findings from the simulation indicated that as the room index increased, there was a slight reduction in both the illuminance levels and uniformity. While the illuminance levels remained above the standard, the uniformity fell short of the required standard. In accordance with the results of the analysis, the optimal choice for lighting in the rooms is a square lighting fixture, which fulfills the necessary standards across various room sizes. Based on simulation results, the recommended artificial lighting fixtures of brands can provide an energy-consuming environment, but they do not consistently ensure visual comfort across all office layouts.

References

  • Benya, J., Heschong, L., McGowan, T., Miller, N., Rubinstein, F. (2001). Lighting Design Considerations. In Advanced lighting guidelines (pp. 4-1-4–33). New Buildings Institute, Inc. [CrossRef]
  • Boyce, P., Veitch, J. A., Newsham, G. R., Jones, C. C., Heerwagen, J., Myer, M., & Hunter, C. M. (2006). Lighting quality and office work: two field simulation experiments. Lighting Research & Technology, 38(3), 191–223. [CrossRef]
  • Ceelen, E. (2002). The luminaire efficiency factor for professional luminaires. Right Light 5 Conference, p. 307–309. Nice, France.
  • Chraibi, S. S., Lashina, T. T., Shrubsole, P., Aries, M. M., Van Loenen, E. E., & Rosemann, A. A. (2016). Satisfying light conditions: A field study on perception of consensus light in Dutch open office environments. Building and Environment, 105, 116–127. [CrossRef]
  • Chraibi, S. S., Crommentuijn, L., Van Loenen, E. E., & Rosemann, A. A. (2017). Influence of wall luminance and uniformity on preferred task illuminance. Building and Environment, 117, 24–35. [CrossRef]
  • EN 12464-1, 2021. Light and lighting – Lighting of work places – Part 1: Indoor work places. European Committee for Standardization.
  • Ghisi, E., & Tinker, J. (2001). Optimising energy consumption in offices as a function of window area and room size. Proceedings of Building Simulation 2001: 7th Conference of IBPSA, p. 1307–1314. [CrossRef]
  • Hsieh, M. (2012). The energy-saving effect and prediction method under various illuminance distribution types. Building and Environment, 58, 145–151. [CrossRef]
  • Hsieh, M. (2015). Effects of illuminance distribution, color temperature and illuminance level on positive and negative moods. Journal of Asian Architecture and Building Engineering, 14(3), 709–716. [CrossRef]
  • ISO 8995-1, 2002. Lighting of work places – Part 1: Indoor. International Organization for Standardization, Geneva, Switzerland.
  • Jang, S., Baik, Y.-K., & Kim, S. (2024). Analyzing the effects of illuminance variations on workers’ visual perceptions to determine permissible dimming controls of lighting in a small office. Building and Environment, 254, 111322. [CrossRef]
  • Mattsson, P., & Laike, T. (2015). Optimal office lighting use: a Swedish case study. Facilities, 33(9/10), 573–587. [CrossRef]
  • Muneeb, A., Ijaz, S., Khalid, S., & Mughal, A. (2017). Research Study on Gained Energy Efficiency in a Commercial Setup by Replacing Conventional Lights with Modern Energy Saving Lights. Journal of Architectural Engineering Technology, 06(02). [CrossRef]
  • Pracki, P. (2018). Impact of Direct Lighting Luminaires’ Luminous Intensity Distribution on Lighting Quality in Interiors. 2018 VII. Lighting Conference of the Visegrad Countries (Lumen V4). [CrossRef]
  • Pracki, P., Dziedzicki, M., & Komorzycka, P. (2020). Ceiling and wall illumination, utilance, and power in interior lighting. Energies, 13(18), 4744. [CrossRef]
  • SLL Code for Lighting, 2022. Society of Light and Lighting (CIBSE).
  • Soori, P. K., & Alzubaidi, S. (2011). Study on improving the energy efficiency of office building’s lighting system design. IEEE Conference Publication | IEEE Xplore. [CrossRef]
  • Soori, P. K., & Vishwas, M. (2013). Lighting control strategy for energy efficient office lighting system design. Energy and Buildings, 66, 329–337. [CrossRef]
  • Spunei, E., Piroi, I., & Chioncel, C. P. (2017). The experimental determination of the luminous flux emitted by a few types of lighting sources. IOP Conference Series, p. 163, 012023. [CrossRef]
  • Stockmar, A. (2002). Luminaire efficiency factor system for general lighting. Right Light 5 Conference, p. 311–318. Nice, France.
  • Suriyothin, P. (2021). Landscape Luminaire Design for Part of the Conservation of Chudhadhuj Royal Residence, Sichang Island. Nakhara: Journal of Environmental Design and Planning, 20(3), Article 117. [CrossRef]
  • Takei, Y. (2009). Energy Saving Lighting Efficiency Technologies. Science & Technology Trends: Quarterly Review, No.32. [CrossRef]
  • Tuaycharoen, N. (2020). An Investigation of a Modified Formula of Daylight Glare and Limiting Daylight Glare Indices in the Thai Elderly. Nakhara: Journal of Environmental Design and Planning, 18, 83–96. [CrossRef]
  • TS EN 12464-1, 2013. Light and lighting – Lighting of work places – Part 1: Indoor work places. Turkish Standards Institute, Ankara, Türkiye. (in Turkish)
  • URL-1. Intensity (Candlepower) Distribution Curve, retrieved from https://www.ies.org/definitions/intensity-candlepower-distribution-curve/ (last access: 05.12.2024).
  • URL-2. Luminous Efficacy of a Source, retrieved from https://www.ies.org/definitions/luminous-efficacy-of-a-source/ (last access: 05.12.2024).
  • URL-3. Luminous Flux, retrieved from https://www.ies.org/definitions/luminous-flux/ (last access: 05.12.2024).
  • Uygun, İ. (2018). An Optimization Model for Luminaire Layout Design in Office Spaces: OptimLUM. Doctoral dissertation, Izmir Institute of Technology, Architecture, Izmir. [CrossRef]
  • Viitanen, J., Lehtovaara, J., Tetri, E., & Halonen, L. (2013). User preferences in office lighting: A case study Comparing LED and T5 lighting. LEUKOS, 9(4), 261–290. [CrossRef]
  • Xu, Y. (2019). Nature and source of light for plant factory. M. Anpo, H. Fukuda, & T. Wada (Ed.). Plant factory using artificial light (pp. 47–69). Elsevier. [CrossRef]
  • Zanker A. (1980) Calculation of room index and estimation of coefficient of utilisation of luminaires by means of a nomograph. Lighting Research & Technology, 12(2), 107-109. [CrossRef]

Ofis Aydınlatmasında Enerji Tasarrufunun Tahmini: Aydınlatma Dağılımı ve Armatür Türlerinin Etkisi

Year 2025, Volume: 9 Issue: 1, 99 - 108, 15.03.2025
https://doi.org/10.54864/planarch.1549649

Abstract

Yapay aydınlatma, ofis mekanlarının önemli bir bileşeni ve aynı zamanda önemli bir enerji tüketicisidir. Ofislerde etkili aydınlatma tasarımı, çalışanların refah ve görsel konforunu enerji verimliliği ile dengelemelidir. Bu nedenle tasarımcıların, zamanlarının çoğunu ofiste geçiren çalışanlar için daha fazla göz konforu sağlayacak bir ortam sağlamak adına aydınlatma tasarımına daha fazla odaklanmaları gerekmektedir. Bu çalışma, enerji tasarrufu ve görsel konfor potansiyelleri açısından farklı tiplerdeki yapay aydınlatma armatürlerinin ışık dağılımlarının etkisini incelemektedir. Nicel bir araştırma yaklaşımı kullanılarak literatür taraması ve simülasyonlar yapılmıştır. Analiz için her biri benzer güç ve ışık akısına sahip, farklı şekillerde ve farklı markalardan ofisler için önerilen dört aydınlatma armatürü seçilmiştir. Oda indeksi formülüne göre küçük, orta ve büyük olarak tanımlanan ofis odaları, farklı ofis yerleşim düzenleri modellenmiştir. Farklı aydınlatma armatürlerine sahip ofislerin simülasyonları DIALux Evo 11 programında gerçekleştirilmiştir. Bu çalışma, iş yerinde enerji tasarrufu sağlayacak en uygun aydınlatma armatürünü bulmayı amaçlamaktadır. Simülasyondan elde edilen bulgular göstermektedir ki; oda endeksi arttıkça hem aydınlatma seviyelerinde (E) hem de düzgünlük değerinde (U) hafif bir azalma olmaktadır. Aydınlatma seviyeleri standardın üzerinde kalırken, düzgünlük değeri önerilen standardın altında kalmaktadır. Analiz sonuçlarına göre, farklı oda boyutlarına sahip ofislerde aydınlatma için en uygun seçim, gerekli standartları karşılayan kare aydınlatma armatürüdür. Sonuçlar, markalar tarafından ofisler için önerilen yapay aydınlatma armatürlerinin enerji tüketimini azaltan bir ortam sağlayabileceğini, ancak farklı ofis düzenlerinde görsel konforu tutarlı bir şekilde garanti etmediğini göstermektedir.

References

  • Benya, J., Heschong, L., McGowan, T., Miller, N., Rubinstein, F. (2001). Lighting Design Considerations. In Advanced lighting guidelines (pp. 4-1-4–33). New Buildings Institute, Inc. [CrossRef]
  • Boyce, P., Veitch, J. A., Newsham, G. R., Jones, C. C., Heerwagen, J., Myer, M., & Hunter, C. M. (2006). Lighting quality and office work: two field simulation experiments. Lighting Research & Technology, 38(3), 191–223. [CrossRef]
  • Ceelen, E. (2002). The luminaire efficiency factor for professional luminaires. Right Light 5 Conference, p. 307–309. Nice, France.
  • Chraibi, S. S., Lashina, T. T., Shrubsole, P., Aries, M. M., Van Loenen, E. E., & Rosemann, A. A. (2016). Satisfying light conditions: A field study on perception of consensus light in Dutch open office environments. Building and Environment, 105, 116–127. [CrossRef]
  • Chraibi, S. S., Crommentuijn, L., Van Loenen, E. E., & Rosemann, A. A. (2017). Influence of wall luminance and uniformity on preferred task illuminance. Building and Environment, 117, 24–35. [CrossRef]
  • EN 12464-1, 2021. Light and lighting – Lighting of work places – Part 1: Indoor work places. European Committee for Standardization.
  • Ghisi, E., & Tinker, J. (2001). Optimising energy consumption in offices as a function of window area and room size. Proceedings of Building Simulation 2001: 7th Conference of IBPSA, p. 1307–1314. [CrossRef]
  • Hsieh, M. (2012). The energy-saving effect and prediction method under various illuminance distribution types. Building and Environment, 58, 145–151. [CrossRef]
  • Hsieh, M. (2015). Effects of illuminance distribution, color temperature and illuminance level on positive and negative moods. Journal of Asian Architecture and Building Engineering, 14(3), 709–716. [CrossRef]
  • ISO 8995-1, 2002. Lighting of work places – Part 1: Indoor. International Organization for Standardization, Geneva, Switzerland.
  • Jang, S., Baik, Y.-K., & Kim, S. (2024). Analyzing the effects of illuminance variations on workers’ visual perceptions to determine permissible dimming controls of lighting in a small office. Building and Environment, 254, 111322. [CrossRef]
  • Mattsson, P., & Laike, T. (2015). Optimal office lighting use: a Swedish case study. Facilities, 33(9/10), 573–587. [CrossRef]
  • Muneeb, A., Ijaz, S., Khalid, S., & Mughal, A. (2017). Research Study on Gained Energy Efficiency in a Commercial Setup by Replacing Conventional Lights with Modern Energy Saving Lights. Journal of Architectural Engineering Technology, 06(02). [CrossRef]
  • Pracki, P. (2018). Impact of Direct Lighting Luminaires’ Luminous Intensity Distribution on Lighting Quality in Interiors. 2018 VII. Lighting Conference of the Visegrad Countries (Lumen V4). [CrossRef]
  • Pracki, P., Dziedzicki, M., & Komorzycka, P. (2020). Ceiling and wall illumination, utilance, and power in interior lighting. Energies, 13(18), 4744. [CrossRef]
  • SLL Code for Lighting, 2022. Society of Light and Lighting (CIBSE).
  • Soori, P. K., & Alzubaidi, S. (2011). Study on improving the energy efficiency of office building’s lighting system design. IEEE Conference Publication | IEEE Xplore. [CrossRef]
  • Soori, P. K., & Vishwas, M. (2013). Lighting control strategy for energy efficient office lighting system design. Energy and Buildings, 66, 329–337. [CrossRef]
  • Spunei, E., Piroi, I., & Chioncel, C. P. (2017). The experimental determination of the luminous flux emitted by a few types of lighting sources. IOP Conference Series, p. 163, 012023. [CrossRef]
  • Stockmar, A. (2002). Luminaire efficiency factor system for general lighting. Right Light 5 Conference, p. 311–318. Nice, France.
  • Suriyothin, P. (2021). Landscape Luminaire Design for Part of the Conservation of Chudhadhuj Royal Residence, Sichang Island. Nakhara: Journal of Environmental Design and Planning, 20(3), Article 117. [CrossRef]
  • Takei, Y. (2009). Energy Saving Lighting Efficiency Technologies. Science & Technology Trends: Quarterly Review, No.32. [CrossRef]
  • Tuaycharoen, N. (2020). An Investigation of a Modified Formula of Daylight Glare and Limiting Daylight Glare Indices in the Thai Elderly. Nakhara: Journal of Environmental Design and Planning, 18, 83–96. [CrossRef]
  • TS EN 12464-1, 2013. Light and lighting – Lighting of work places – Part 1: Indoor work places. Turkish Standards Institute, Ankara, Türkiye. (in Turkish)
  • URL-1. Intensity (Candlepower) Distribution Curve, retrieved from https://www.ies.org/definitions/intensity-candlepower-distribution-curve/ (last access: 05.12.2024).
  • URL-2. Luminous Efficacy of a Source, retrieved from https://www.ies.org/definitions/luminous-efficacy-of-a-source/ (last access: 05.12.2024).
  • URL-3. Luminous Flux, retrieved from https://www.ies.org/definitions/luminous-flux/ (last access: 05.12.2024).
  • Uygun, İ. (2018). An Optimization Model for Luminaire Layout Design in Office Spaces: OptimLUM. Doctoral dissertation, Izmir Institute of Technology, Architecture, Izmir. [CrossRef]
  • Viitanen, J., Lehtovaara, J., Tetri, E., & Halonen, L. (2013). User preferences in office lighting: A case study Comparing LED and T5 lighting. LEUKOS, 9(4), 261–290. [CrossRef]
  • Xu, Y. (2019). Nature and source of light for plant factory. M. Anpo, H. Fukuda, & T. Wada (Ed.). Plant factory using artificial light (pp. 47–69). Elsevier. [CrossRef]
  • Zanker A. (1980) Calculation of room index and estimation of coefficient of utilisation of luminaires by means of a nomograph. Lighting Research & Technology, 12(2), 107-109. [CrossRef]
There are 31 citations in total.

Details

Primary Language English
Subjects Information Technologies in Architecture and Design, Sustainable Architecture
Journal Section Research Articles
Authors

Narmin Hasanova 0009-0003-4887-0021

İlknur Uygun 0000-0002-1387-7296

Early Pub Date March 16, 2025
Publication Date March 15, 2025
Submission Date September 18, 2024
Acceptance Date March 6, 2025
Published in Issue Year 2025 Volume: 9 Issue: 1

Cite

APA Hasanova, N., & Uygun, İ. (2025). Estimating Energy Savings in Office Lighting: The Impact of Illuminance Distribution and Fixture Types of Luminaires. PLANARCH - Design and Planning Research, 9(1), 99-108. https://doi.org/10.54864/planarch.1549649

Content of this journal is licensed under a Creative Commons Attribution NonCommercial 4.0 International License

29929