Research Article
BibTex RIS Cite

ÇİFT-DUYGU AYRIŞTIRMA VE BULANIK RİSK ÖNCELİKLENDİRME (DSD-FRP): E-TİCARETTE TÜKETİCİ KARAR VERME BELİRSİZLİĞİNİN MODELLENMESİ

Year 2026, Volume: 19 Issue: 1, 97 - 117, 27.01.2026

Abstract

E-ticarette tüketici karar verme süreci doğası gereği belirsizdir ve çelişkili bilgiler, farklı kullanıcı deneyimleri ve hızla değişen dijital ortamlar tarafından şekillenir. Geleneksel pazarlama araştırmaları, algılanan riski ölçmek için anketlere dayanmış, ancak bu yöntemler maliyetli, yavaş ve ölçek açısından sınırlı kalmıştır. Bu çalışma, 551 binden fazla Amazon değerlendirmesine uygulanan anket gerektirmeyen bir çerçeve önermektedir: Çift-Duygu Ayrıştırma ve Bulanık Risk Önceliklendirme (DSD-FRP). Yöntem, tüketici yorumlarını iyimser ve kötümser sinyallere ayırarak aynı geri bildirim içindeki çelişkileri temsil eder. Bu sinyaller, belirsizliği yakalamak için Hata Türleri ve Etkileri Analizi’nin (FMEA) bulanık uzantılarından esinlenilerek şiddet, oluşma ve tespit edilebilirlik skorlarına dönüştürülür. Ampirik bulgular, müşteri hizmetleri ve marka güveninin en yüksek riskli boyutlar olduğunu, kalite ve fiyatın ise daha düşük risk skorları gösterdiğini ortaya koymaktadır. Bulanık modelin, keskin analizlere kıyasla öncelikleri değiştirmesi, belirsizliği açıkça modellemenin yönetsel sonuçları dönüştürdüğünü göstermektedir. Çalışma, bulanık risk önceliklendirmeyi tüketici karar verme bağlamına genişleterek literatüre katkı yapmakta ve çift-duygu modellemenin kullanıcı tarafından üretilen içerikteki değerini göstermektedir. Uygulayıcılar için sonuçlar, hizmet kalitesi ve marka güvenine yapılacak yatırımların, yalnızca fiyat rekabetinden daha etkili olabileceğini göstermektedir.

References

  • Archak, N., Ghose, A., & Ipeirotis, P. (2011). Deriving the pricing power of product features by mining consumer reviews. Management Science, 57(8), 1485–1509.
  • Bauer, R. A. (1960). Consumer behavior as risk taking. Dynamic Marketing for a Changing World, 398–398.
  • Bowles, J. B. (2004). An assessment of RPN prioritization in a failure modes effects and criticality analysis. Annual Reliability and Maintainability Symposium, 380–386.
  • Braglia, M., Frosolini, M., & Montanari, R. (2003). Fuzzy FMEA: A new approach to risk management in supply chains. International Journal of Logistics Research and Applications, 6(3), 181–194.
  • Chevalier, J. A., & Mayzlin, D. (2006). The effect of word of mouth on sales: Online book reviews. Journal of Marketing Research, 43(3), 345–354.
  • Dellarocas, C. (2003). The digitization of word-of-mouth: Promise and challenges of online feedback mechanisms. Management Science, 49(10), 1407–1424.
  • Featherman, M. S., & Pavlou, P. A. (2003). Predicting e-services adoption: A perceived risk facets perspective. International Journal of Human-Computer Studies, 59(4), 451–474.
  • Floyd, K., Freling, R., Alhoqail, S., Cho, H. Y., & Freling, T. (2014). How online product reviews affect retail sales: A meta-analysis. Journal of Retailing, 90(2), 217–232.
  • Forsythe, S., & Shi, B. (2003). Consumer patronage and risk perceptions in Internet shopping. Journal of Business Research, 56(11), 867–875.
  • Guo, F., Zhou, S., Chen, J., & Zhang, X. (2021). The influence of fuzzy logic in modeling consumer e-service decision-making. Frontiers in Psychology, 12, 742699.
  • Hruschka, H. (1986). Fuzzy cluster analysis for market segmentation. European Journal of Marketing, 20(2), 54–73.
  • Hu, N., Pavlou, P. A., & Zhang, J. (2017). On self-selection biases in online product reviews. MIS Quarterly, 41(2), 449–471.
  • Jacoby, J., & Kaplan, L. B. (1972). The components of perceived risk. Proceedings of the Third Annual Conference of the Association for Consumer Research, 382–393.
  • Karadayi-Usta, S. (2020). C2C E-Commerce fuzzy risk analysis with buyer perspective. International Journal of E-Business Research, 16(3), 1–20.
  • Liu, B. (2012). Sentiment analysis and opinion mining. Morgan & Claypool.
  • Liu, H. C., Liu, L., & Liu, N. (2013). Risk evaluation approaches in failure mode and effects analysis: A literature review. Expert Systems with Applications, 40(2), 828–838.
  • Luca, M. (2016). Reviews, reputation, and revenue: The case of Yelp.com. Harvard Business School NOM Unit Working Paper, 12–016.
  • Mitchell, V. W. (1999). Consumer perceived risk: Conceptualisations and models. European Journal of Marketing, 33(1/2), 163–195.
  • Nalbant, H., & Aydın, O. (2024). Geçmişten günümüze geleneksel pazarlamadan dijitalleşen pazarlamaya evrilen süreçte yapay zekâ ve metaverse faktörleri. Pazarlama ve Pazarlama Araştırmaları Dergisi, 17(1), 1–26.
  • Mukherjee, A. (2024). A fuzzy multi-criteria risk prioritization framework for service quality. The TQM Journal, 36(5), 1245–1264.
  • Parasuraman, A., Zeithaml, V. A., & Berry, L. L. (1988). SERVQUAL: A multiple-item scale for measuring consumer perceptions of service quality. Journal of Retailing, 64(1), 12–40.
  • Patil, S. (2022). Dual sentiment analysis with two sides of one review for polarity shift. International Journal of Data Science, 7(2), 89–104.
  • Park, J., & Han, S. H. (2002). A fuzzy rule based approach to modeling affective responses of users to product design. International Journal of Industrial Ergonomics, 29(2), 105–115. https://doi.org/10.1016/S0169-8141(01)00053-7
  • Pillay, A., & Wang, J. (2003). Modified failure mode and effects analysis using approximate reasoning. Reliability Engineering & System Safety, 79(1), 69–85.
  • Podsakoff, P. M., MacKenzie, S. B., Lee, J. Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: A critical review. Journal of Applied Psychology, 88(5), 879.
  • Pontiki, M., Galanis, D., Papageorgiou, H., Manandhar, S., & Androutsopoulos, I. (2016). Semeval-2016 task 5: Aspect based sentiment analysis. Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016), 19–30.
  • Stamatis, D. H. (2003). Failure mode and effect analysis: FMEA from theory to execution. ASQ Quality Press.
  • Stone, R. N., & Grønhaug, K. (1993). Perceived risk: Further considerations for the marketing discipline. European Journal of Marketing, 27(3), 39–50.
  • Suncak, H., Sak, N., & Öztay, A. (2024). Otellere dair müşteri tatmininin tahminlenmesi: Makine öğrenmesi teknikleri ile bir uygulama. Pazarlama ve Pazarlama Araştırmaları Dergisi, 17(1), 27–54.
  • Thet, T. T., Na, J. C., & Khoo, C. (2010). Aspect-based sentiment analysis of movie reviews using self-organizing maps. Proceedings of the International Conference on Information Retrieval & Knowledge Management, 38–43.
  • Thompson, M. M., Zanna, M. P., & Griffin, D. W. (1995). Let’s not be indifferent about (attitudinal) ambivalence. Attitude Strength: Antecedents and Consequences, 361–386.
  • Tsaur, S. H., Chang, T. Y., & Yen, C. H. (2002). The evaluation of airline service quality by fuzzy integral. Journal of Air Transport Management, 8(6), 419–425.
  • Wedel, M., & Kannan, P. K. (2016). Marketing analytics for data-rich environments. Journal of Marketing, 80(6), 97–121.
  • Xia, L., Monroe, K. B., & Cox, J. L. (2004). The price is unfair! A conceptual framework of price fairness perceptions. Journal of Marketing, 68(4), 1–15.
  • Xing, Y., Grant, D. B., & McKinnon, A. C. (2010). An empirical study of online retail logistics service quality. International Journal of Physical Distribution & Logistics Management, 40(5), 415–432.
  • Yu, H., Liu, X., & Li, Z. (2023). Picture fuzzy set-based decision framework for consumer trust risk ranking. Systems, 11(3), 160.
  • Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353.

DUAL-SENTIMENT DECOMPOSITION AND FUZZY RISK PRIORITIZATION (DSD–FRP): MODELING CONSUMER DECISIONMAKING UNCERTAINTY IN E-COMMERCE

Year 2026, Volume: 19 Issue: 1, 97 - 117, 27.01.2026

Abstract

Consumer decision-making in e-commerce is inherently uncertain, shaped by contradictory information, heterogeneous experiences, and rapidly changing environments. Traditional marketing research has relied on survey-based methods to capture perceived risk, but such approaches are costly, slow, and limited in scale. This study proposes a survey-free framework—Dual-Sentiment Decomposition and Fuzzy Risk Prioritization (DSD-FRP)— applied to over 551,000 Amazon reviews. The method decomposes reviews into optimistic and pessimistic signals, enabling representation of contradictions within the same feedback. These signals are then mapped into fuzzy severity, occurrence, and detectability scores, inspired by fuzzy extensions of Failure Mode and Effects Analysis (FMEA). Empirical findings show that service and brand trust represent the highest-risk decision dimensions, while quality and price— though most frequently mentioned—exhibit lower risk scores. Notably, the fuzzy model reordered priorities compared to crisp analysis, underscoring that explicitly modeling uncertainty alters managerial conclusions. This study contributes to marketing literature by extending fuzzy risk prioritization into consumer decision-making contexts and by demonstrating the value of dual-sentiment modeling in user-generated content. For practitioners, results suggest that investments in service quality and brand authenticity may reduce decision uncertainty more effectively than price competition alone.

References

  • Archak, N., Ghose, A., & Ipeirotis, P. (2011). Deriving the pricing power of product features by mining consumer reviews. Management Science, 57(8), 1485–1509.
  • Bauer, R. A. (1960). Consumer behavior as risk taking. Dynamic Marketing for a Changing World, 398–398.
  • Bowles, J. B. (2004). An assessment of RPN prioritization in a failure modes effects and criticality analysis. Annual Reliability and Maintainability Symposium, 380–386.
  • Braglia, M., Frosolini, M., & Montanari, R. (2003). Fuzzy FMEA: A new approach to risk management in supply chains. International Journal of Logistics Research and Applications, 6(3), 181–194.
  • Chevalier, J. A., & Mayzlin, D. (2006). The effect of word of mouth on sales: Online book reviews. Journal of Marketing Research, 43(3), 345–354.
  • Dellarocas, C. (2003). The digitization of word-of-mouth: Promise and challenges of online feedback mechanisms. Management Science, 49(10), 1407–1424.
  • Featherman, M. S., & Pavlou, P. A. (2003). Predicting e-services adoption: A perceived risk facets perspective. International Journal of Human-Computer Studies, 59(4), 451–474.
  • Floyd, K., Freling, R., Alhoqail, S., Cho, H. Y., & Freling, T. (2014). How online product reviews affect retail sales: A meta-analysis. Journal of Retailing, 90(2), 217–232.
  • Forsythe, S., & Shi, B. (2003). Consumer patronage and risk perceptions in Internet shopping. Journal of Business Research, 56(11), 867–875.
  • Guo, F., Zhou, S., Chen, J., & Zhang, X. (2021). The influence of fuzzy logic in modeling consumer e-service decision-making. Frontiers in Psychology, 12, 742699.
  • Hruschka, H. (1986). Fuzzy cluster analysis for market segmentation. European Journal of Marketing, 20(2), 54–73.
  • Hu, N., Pavlou, P. A., & Zhang, J. (2017). On self-selection biases in online product reviews. MIS Quarterly, 41(2), 449–471.
  • Jacoby, J., & Kaplan, L. B. (1972). The components of perceived risk. Proceedings of the Third Annual Conference of the Association for Consumer Research, 382–393.
  • Karadayi-Usta, S. (2020). C2C E-Commerce fuzzy risk analysis with buyer perspective. International Journal of E-Business Research, 16(3), 1–20.
  • Liu, B. (2012). Sentiment analysis and opinion mining. Morgan & Claypool.
  • Liu, H. C., Liu, L., & Liu, N. (2013). Risk evaluation approaches in failure mode and effects analysis: A literature review. Expert Systems with Applications, 40(2), 828–838.
  • Luca, M. (2016). Reviews, reputation, and revenue: The case of Yelp.com. Harvard Business School NOM Unit Working Paper, 12–016.
  • Mitchell, V. W. (1999). Consumer perceived risk: Conceptualisations and models. European Journal of Marketing, 33(1/2), 163–195.
  • Nalbant, H., & Aydın, O. (2024). Geçmişten günümüze geleneksel pazarlamadan dijitalleşen pazarlamaya evrilen süreçte yapay zekâ ve metaverse faktörleri. Pazarlama ve Pazarlama Araştırmaları Dergisi, 17(1), 1–26.
  • Mukherjee, A. (2024). A fuzzy multi-criteria risk prioritization framework for service quality. The TQM Journal, 36(5), 1245–1264.
  • Parasuraman, A., Zeithaml, V. A., & Berry, L. L. (1988). SERVQUAL: A multiple-item scale for measuring consumer perceptions of service quality. Journal of Retailing, 64(1), 12–40.
  • Patil, S. (2022). Dual sentiment analysis with two sides of one review for polarity shift. International Journal of Data Science, 7(2), 89–104.
  • Park, J., & Han, S. H. (2002). A fuzzy rule based approach to modeling affective responses of users to product design. International Journal of Industrial Ergonomics, 29(2), 105–115. https://doi.org/10.1016/S0169-8141(01)00053-7
  • Pillay, A., & Wang, J. (2003). Modified failure mode and effects analysis using approximate reasoning. Reliability Engineering & System Safety, 79(1), 69–85.
  • Podsakoff, P. M., MacKenzie, S. B., Lee, J. Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: A critical review. Journal of Applied Psychology, 88(5), 879.
  • Pontiki, M., Galanis, D., Papageorgiou, H., Manandhar, S., & Androutsopoulos, I. (2016). Semeval-2016 task 5: Aspect based sentiment analysis. Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016), 19–30.
  • Stamatis, D. H. (2003). Failure mode and effect analysis: FMEA from theory to execution. ASQ Quality Press.
  • Stone, R. N., & Grønhaug, K. (1993). Perceived risk: Further considerations for the marketing discipline. European Journal of Marketing, 27(3), 39–50.
  • Suncak, H., Sak, N., & Öztay, A. (2024). Otellere dair müşteri tatmininin tahminlenmesi: Makine öğrenmesi teknikleri ile bir uygulama. Pazarlama ve Pazarlama Araştırmaları Dergisi, 17(1), 27–54.
  • Thet, T. T., Na, J. C., & Khoo, C. (2010). Aspect-based sentiment analysis of movie reviews using self-organizing maps. Proceedings of the International Conference on Information Retrieval & Knowledge Management, 38–43.
  • Thompson, M. M., Zanna, M. P., & Griffin, D. W. (1995). Let’s not be indifferent about (attitudinal) ambivalence. Attitude Strength: Antecedents and Consequences, 361–386.
  • Tsaur, S. H., Chang, T. Y., & Yen, C. H. (2002). The evaluation of airline service quality by fuzzy integral. Journal of Air Transport Management, 8(6), 419–425.
  • Wedel, M., & Kannan, P. K. (2016). Marketing analytics for data-rich environments. Journal of Marketing, 80(6), 97–121.
  • Xia, L., Monroe, K. B., & Cox, J. L. (2004). The price is unfair! A conceptual framework of price fairness perceptions. Journal of Marketing, 68(4), 1–15.
  • Xing, Y., Grant, D. B., & McKinnon, A. C. (2010). An empirical study of online retail logistics service quality. International Journal of Physical Distribution & Logistics Management, 40(5), 415–432.
  • Yu, H., Liu, X., & Li, Z. (2023). Picture fuzzy set-based decision framework for consumer trust risk ranking. Systems, 11(3), 160.
  • Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353.
There are 37 citations in total.

Details

Primary Language English
Subjects Customer Relationship Management, Marketing Research Methodology, Marketing Technology
Journal Section Research Article
Authors

Alp Par 0000-0002-4174-8651

Submission Date September 4, 2025
Acceptance Date December 2, 2025
Publication Date January 27, 2026
Published in Issue Year 2026 Volume: 19 Issue: 1

Cite

APA Par, A. (2026). DUAL-SENTIMENT DECOMPOSITION AND FUZZY RISK PRIORITIZATION (DSD–FRP): MODELING CONSUMER DECISIONMAKING UNCERTAINTY IN E-COMMERCE. Pazarlama Ve Pazarlama Araştırmaları Dergisi, 19(1), 97-117.