Nigella Sativa Supplementation Modulates Exercise-Induced Oxidative Stress and Inflammation: A Randomized Controlled Trial
Year 2025,
Volume: 16 Issue: 2, 347 - 367, 30.08.2025
Roy Irawan
,
Heri Wahyudi
,
Mokhamad Bawono
,
Ananda Bakti
,
Abdul Rohim Tualeka
Abstract
Intense physical exercise can lead to oxidative stress and inflammation, which may impair muscle recovery and athletic performance. Nigella Sativa (N. sativa) possesses antioxidant and anti-inflammatory properties, however, limited studies have examined its effects on oxidative stress and inflammation biomarkers post-exercise. This randomized, double-blind, placebo-controlled trial investigated the impact of N. sativa supplementation on malondialdehyde (MDA) and high-mobility group box 1 (HMGB1) levels following eccentric exercise. Forty-two recreationally active males (aged 18–21 years) were randomly assigned to either the N. sativa group (500 mg/day, n=21) or the placebo group (starch capsules, n=21) for 28 days. After supplementation, participants performed a standardized eccentric step-down protocol to induce muscle damage, and blood samples were collected at three time points: pre-exercise (T0), immediately post-exercise (T1), and 24 hours post-exercise (T2). MDA and HMGB1 levels significantly increased post-exercise (T1) in both groups (p<0.001); however, the N. sativa group exhibited significantly lower MDA and HMGB1 levels compared to the placebo group at T1 and T2 (p<0.001). These findings suggest that N. sativa supplementation may play a protective role against exercise-induced muscle damage by mitigating oxidative stress and inflammation. Further research is warranted to explore long-term effects and optimal dosages in athletic populations.
Ethical Statement
This study complied with ethical guidelines and received approval from the Health Research Ethics Committee of the Faculty of Public Health, Airlangga University, under the assigned identification number 104/EA/KEPK/2023
Supporting Institution
Universitas Negeri Surabaya, Universitas Airlangga
Thanks
This research was supported by the Faculty of Sports and Health Sciences and Research and Community Service (LPPM), Universitas Negeri Surabaya (UNESA), through the Research and Community Service grant program in 2025. The author also gratefully acknowledges the Faculty of Sports and Health Sciences and Research and Community Service (LPPM), Universitas Negeri Surabaya (UNESA), for the research funding that facilitated this work.
Special thanks to all students who participated in this study, particularly those from the Sports Science Department, Universitas Negeri Surabaya, for their invaluable contributions. The author also extends appreciation to the research team from Faculty of Public Health Universitas Airlangga Surabaya for their collaboration and support in conducting this study
References
-
Akil, M., Gurbuz, U., Bicer, M., Sivrikaya, A., Mogulkoc, R., & Baltaci, A. K. (2011). Effect of Selenium Supplementation on Lipid Peroxidation, Antioxidant Enzymes, and Lactate Levels in Rats Immediately After Acute Swimming Exercise. Biological Trace Element Research, 142(3), 651–659. https://doi.org/10.1007/s12011-010-8785-z
-
Alsousi, A. A., & Igwe, O. J. (2018). Redox-active trace metal-induced release of high mobility group box 1(HMGB1) and inflammatory cytokines in fibroblast-like synovial cells is Toll-like receptor 4 (TLR4) dependent. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1864(11), 3847–3858. https://doi.org/10.1016/j.bbadis.2018.08.029
-
Ayubi, N., Kusnanik, N. W., Herawati, L., Callixte, C., Ming, J. W., Aljunaid, M., Mario, D. T., Komaini, A., & Padmasari, D. F. (2024). Potential of Curcumin to Reduce Serum Nuclear Factor-Kappa B (NF-kB) Levels After High-Intensity Exercise. Retos, 57, 616–622. https://doi.org/10.47197/retos.v57.103902
-
Bicer, M., Baltaci, S. B., Patlar, S., Mogulkoc, R., & Baltaci, A. K. (2018). Melatonin has a protective effect against lipid peroxidation in the bone tissue of diabetic rats subjected to acute swimming exercise. Hormone Molecular Biology and Clinical Investigation, 0(0). https://doi.org/10.1515/hmbci-2017-0079
-
Bjørklund, G., Shanaida, M., Lysiuk, R., Antonyak, H., Klishch, I., Shanaida, V., & Peana, M. (2022). Selenium: An Antioxidant with a Critical Role in Anti-Aging. Molecules, 27(19), 6613. https://doi.org/10.3390/molecules27196613
-
Bloomer, R. J. (2008). Chapter 1 Effect Of Exercise On Oxidative Stress Biomarkers (pp. 1–50). https://doi.org/10.1016/S0065-2423(08)00401-0
-
Bouviere, J., Fortunato, R. S., Dupuy, C., Werneck-de-Castro, J. P., Carvalho, D. P., & Louzada, R. A. (2021). Exercise-Stimulated ROS Sensitive Signaling Pathways in Skeletal Muscle. Antioxidants, 10(4), 537. https://doi.org/10.3390/antiox10040537
-
Choe, J. Y., Choi, C. H., Park, K. Y., & Kim, S. K. (2018). High-mobility group box 1 is responsible for monosodium urate crystal-induced inflammation in human U937 macrophages. Biochemical and Biophysical Research Communications, 503(4). https://doi.org/10.1016/j.bbrc.2018.08.139
-
Choi, Ban, Lee, Baik, & Kim. (2019). Puffing as a Novel Process to Enhance the Antioxidant and Anti-Inflammatory Properties of Curcuma longa L. (Turmeric). Antioxidants, 8(11), 506. https://doi.org/10.3390/antiox8110506
-
Di Meo, S., Napolitano, G., & Venditti, P. (2019). Mediators of Physical Activity Protection against ROS-Linked Skeletal Muscle Damage. International Journal of Molecular Sciences, 20(12), 3024. https://doi.org/10.3390/ijms20123024
-
Fernández-Lázaro, D., Fernandez-Lazaro, C. I., Mielgo-Ayuso, J., Navascués, L. J., Córdova Martínez, A., & Seco-Calvo, J. (2020). The Role of Selenium Mineral Trace Element in Exercise: Antioxidant Defense System, Muscle Performance, Hormone Response, and Athletic Performance. A Systematic Review. Nutrients, 12(6), 1790. https://doi.org/10.3390/nu12061790
-
Goh, J., & Behringer, M. (2018). Exercise alarms the immune system: A HMGB1 perspective. Cytokine, 110, 222–225. https://doi.org/10.1016/j.cyto.2018.06.031
-
Guadagnin, E. C., Stoelben, K. J. V., Carpes, F. P., & Vaz, M. A. (2022). Neuromuscular and functional responses to concentric and eccentric strength training in older adults. Kinesiology, 54(2), 357–367. https://doi.org/10.26582/k.54.2.17
-
Hannan, M. A., Zahan, M. S., Sarker, P. P., Moni, A., Ha, H., & Uddin, M. J. (2021). Protective Effects of Black Cumin (Nigella sativa) and Its Bioactive Constituent, Thymoquinone against Kidney Injury: An Aspect on Pharmacological Insights. International Journal of Molecular Sciences, 22(16), 9078. https://doi.org/10.3390/ijms22169078
-
Heiss, R., Lutter, C., Freiwald, J., Hoppe, M., Grim, C., Poettgen, K., Forst, R., Bloch, W., Hüttel, M., & Hotfiel, T. (2019). Advances in Delayed-Onset Muscle Soreness (DOMS) – Part II: Treatment and Prevention. Sportverletzung · Sportschaden, 33(01), 21–29. https://doi.org/10.1055/a-0810-3516
-
Huang, C.-C., Lee, M.-C., Ho, C.-S., Hsu, Y.-J., Ho, C.-C., & Kan, N.-W. (2021). Protective and Recovery Effects of Resveratrol Supplementation on Exercise Performance and Muscle Damage following Acute Plyometric Exercise. Nutrients, 13(9), 3217. https://doi.org/10.3390/nu13093217
-
Hyldahl, R. D., & Hubal, M. J. (2014). Lengthening our perspective: Morphological, cellular, and molecular responses to eccentric exercise. In Muscle and Nerve (Vol. 49, Issue 2). https://doi.org/10.1002/mus.24077
,
Irawan, R. J., Sulistyarto, S., & Rimawati, N. (2024). Kencur Supplementation for Attenuating Exercise-Induced Muscle Damage and Delayed-Onset Muscle Soreness. Kemas, 19(3), 438–446. https://doi.org/10.15294/kemas.v19i3.42151
-
Isaev, N. K., Genrikhs, E. E., & Stelmashook, E. V. (2023). Antioxidant Thymoquinone and Its Potential in the Treatment of Neurological Diseases. Antioxidants, 12(2), 433. https://doi.org/10.3390/antiox12020433
-
Jakubczyk, K., Melkis, K., Maciejewska-Markiewicz, D., Muzykiewicz-Szymańska, A., Nowak, A., & Skonieczna-Żydecka, K. (2025). Innovative approaches to enhancing kombucha through flavour additives: a phytochemical and antioxidant analysis. Food & Function, 16(4), 1442–1457. https://doi.org/10.1039/D4FO05135A
-
Jomova, K., Raptova, R., Alomar, S. Y., Alwasel, S. H., Nepovimova, E., Kuca, K., & Valko, M. (2023). Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Archives of Toxicology, 97(10), 2499–2574. https://doi.org/10.1007/s00204-023-03562-9
-
Li, J., Wu, D., Wang, Z., Wang, X., Ke, Z., & Wang, R. (2023). The Role of Autophagy Regulator HMGB1 in Skeletal Muscle Autophagy After Eccentric Exercise. Journal of Science in Sport and Exercise, 5(3), 280–288. https://doi.org/10.1007/s42978-022-00182-0
-
Lin, C.-H., Lin, Y.-A., Chen, S.-L., Hsu, M.-C., & Hsu, C.-C. (2021). American Ginseng Attenuates Eccentric Exercise-Induced Muscle Damage via the Modulation of Lipid Peroxidation and Inflammatory Adaptation in Males. Nutrients, 14(1), 78. https://doi.org/10.3390/nu14010078
-
Lin, L., Li, J., Song, Q., Cheng, W., & Chen, P. (2022). The role of HMGB1/RAGE/TLR4 signaling pathways in cigarette smoke‐induced inflammation in chronic obstructive pulmonary disease. Immunity, Inflammation and Disease, 10(11). https://doi.org/10.1002/iid3.711
-
Massaro, M., Scoditti, E., Carluccio, M., Kaltsatou, A., & Cicchella, A. (2019). Effect of Cocoa Products and Its Polyphenolic Constituents on Exercise Performance and Exercise-Induced Muscle Damage and Inflammation: A Review of Clinical Trials. Nutrients, 11(7), 1471. https://doi.org/10.3390/nu11071471
-
Matta, L., Fonseca, T. S., Faria, C. C., Lima-Junior, N. C., De Oliveira, D. F., Maciel, L., Boa, L. F., Pierucci, A. P. T. R., Ferreira, A. C. F., Nascimento, J. H. M., Carvalho, D. P., & Fortunato, R. S. (2021). The Effect of Acute Aerobic Exercise on Redox Homeostasis and Mitochondrial Function of Rat White Adipose Tissue. Oxidative Medicine and Cellular Longevity, 2021, 1–15. https://doi.org/10.1155/2021/4593496
-
Middelbeek, R. J. W., Motiani, P., Brandt, N., Nigro, P., Zheng, J., Virtanen, K. A., Kalliokoski, K. K., Hannukainen, J. C., & Goodyear, L. J. (2021). Exercise intensity regulates cytokine and klotho responses in men. Nutrition & Diabetes, 11(1), 5. https://doi.org/10.1038/s41387-020-00144-x
-
Nandi, A., Yan, L.-J., Jana, C. K., & Das, N. (2019). Role of Catalase in Oxidative Stress- and Age-Associated Degenerative Diseases. Oxidative Medicine and Cellular Longevity, 2019, 1–19. https://doi.org/10.1155/2019/9613090
-
Newham, D. J., Jones, D. A., & Edwards, R. H. T. (1983). Large delayed plasma creatine kinase changes after stepping exercise. Muscle & Nerve, 6(5), 380–385. https://doi.org/10.1002/mus.880060507
-
O’Connor, E., Mündel, T., & Barnes, M. J. (2022). Nutritional Compounds to Improve Post-Exercise Recovery. Nutrients, 14(23), 5069. https://doi.org/10.3390/nu14235069
-
Ottestad, W., Rognes, I. N., Skaga, E., Frisvoll, C., Haraldsen, G., Eken, T., & Lundbäck, P. (2019). HMGB1 concentration measurements in trauma patients: Assessment of pre-analytical conditions and sample material. Molecular Medicine, 26(1). https://doi.org/10.1186/s10020-019-0131-0
-
Patel, V., Dial, K., Wu, J., Gauthier, A. G., Wu, W., Lin, M., Espey, M. G., Thomas, D. D., Ashby, C. R., & Mantell, L. L. (2020). Dietary Antioxidants Significantly Attenuate Hyperoxia-Induced Acute Inflammatory Lung Injury by Enhancing Macrophage Function via Reducing the Accumulation of Airway HMGB1. International Journal of Molecular Sciences, 21(3), 977. https://doi.org/10.3390/ijms21030977
-
Powers, S. K., Duarte, J., Kavazis, A. N., & Talbert, E. E. (2010). Reactive oxygen species are signalling molecules for skeletal muscle adaptation. Experimental Physiology, 95(1), 1–9. https://doi.org/10.1113/expphysiol.2009.050526
-
Pyne, D. B. (n.d.). Exercise-induced muscle damage and inflammation: a review. Australian Journal of Science and Medicine in Sport, 26(3–4), 49–58.
-
Ratheesh, M., Svenia, J. P., Sangeeth, S., Sheethal, S., Sony, R., Sandya, S., & Krishnakumar, I. M. (2021). Antioxidant, Anti-inflammatory, and Anti-arthritic Effect of Thymoquinone-rich Black Cumin (Nigella sativa) oil (BlaQmax®) on Adjuvant-induced Arthritis. Journal of Food Research, 10(1), 52. https://doi.org/10.5539/jfr.v10n1p52
-
Righi, N. C., Schuch, F. B., De Nardi, A. T., Pippi, C. M., de Almeida Righi, G., Puntel, G. O., da Silva, A. M. V., & Signori, L. U. (2020). Effects of vitamin C on oxidative stress, inflammation, muscle soreness, and strength following acute exercise: meta-analyses of randomized clinical trials. European Journal of Nutrition, 59(7), 2827–2839. https://doi.org/10.1007/s00394-020-02215-2
-
Sawada, Y., Ichikawa, H., Ebine, N., Minamiyama, Y., Alharbi, A. A. D., Iwamoto, N., & Fukuoka, Y. (2023). Effects of High-Intensity Anaerobic Exercise on the Scavenging Activity of Various Reactive Oxygen Species and Free Radicals in Athletes. Nutrients, 15(1), 222. https://doi.org/10.3390/nu15010222
-
Slavin, M. B., Khemraj, P., & Hood, D. A. (2024). Exercise, mitochondrial dysfunction and inflammasomes in skeletal muscle. Biomedical Journal, 47(1), 100636. https://doi.org/10.1016/j.bj.2023.100636
-
Supruniuk, E., Górski, J., & Chabowski, A. (2023). Endogenous and Exogenous Antioxidants in Skeletal Muscle Fatigue Development during Exercise. Antioxidants, 12(2), 501. https://doi.org/10.3390/antiox12020501
-
Suzuki, K. (2021). Recent Progress in Applicability of Exercise Immunology and Inflammation Research to Sports Nutrition. Nutrients, 13(12), 4299. https://doi.org/10.3390/nu13124299
-
Syukri, A., Budu, Hatta, M., Amir, M., Rohman, M. S., Mappangara, I., Kaelan, C., Wahyuni, S., Bukhari, A., Junita, A. R., Primaguna, M. R., Dwiyanti, R., & Febrianti, A. (2022). Doxorubicin induced immune abnormalities and inflammatory responses via HMGB1, HIF1-α and VEGF pathway in progressive of cardiovascular damage. Annals of Medicine & Surgery, 76. https://doi.org/10.1016/j.amsu.2022.103501
-
Ta Na, H. Sen, An, M., Zhang, T., Deni, W., Hou, L., & Jin, K. (2022). Dexmedetomidine inhibits microglial activation through SNHG14/HMGB1 pathway in spinal cord ischemia-reperfusion injury mice. International Journal of Neuroscience, 132(1), 77–88. https://doi.org/10.1080/00207454.2020.1835901
-
Thirupathi, A., Wang, M., Lin, J. K., Fekete, G., István, B., Baker, J. S., & Gu, Y. (2021). Effect of Different Exercise Modalities on Oxidative Stress: A Systematic Review. BioMed Research International, 2021, 1–10. https://doi.org/10.1155/2021/1947928
-
Torre, M. F., Martinez-Ferran, M., Vallecillo, N., Jiménez, S. L., Romero-Morales, C., & Pareja-Galeano, H. (2021). Supplementation with Vitamins C and E and Exercise-Induced Delayed-Onset Muscle Soreness: A Systematic Review. Antioxidants, 10(2), 279. https://doi.org/10.3390/antiox10020279
-
Tu, H., & Li, Y.-L. (2023). Inflammation balance in skeletal muscle damage and repair. Frontiers in Immunology, 14. https://doi.org/10.3389/fimmu.2023.1133355
-
Volpe-Fix, A. R., de França, E., Silvestre, J. C., & Thomatieli-Santos, R. V. (2023). The Use of Some Polyphenols in the Modulation of Muscle Damage and Inflammation Induced by Physical Exercise: A Review. Foods, 12(5), 916. https://doi.org/10.3390/foods12050916
-
Wadley, A. J., Keane, G., Cullen, T., James, L., Vautrinot, J., Davies, M., Hussey, B., Hunter, D. J., Mastana, S., Holliday, A., Petersen, S. V., Bishop, N. C., Lindley, M. R., & Coles, S. J. (2019). Characterization of extracellular redox enzyme concentrations in response to exercise in humans. Journal of Applied Physiology, 127(3), 858–866. https://doi.org/10.1152/japplphysiol.00340.2019
-
Wang, H. (2022). Regulation of HMGB1 Release in Health and Diseases. Cells, 12(1), 46. https://doi.org/10.3390/cells12010046
-
Wu, N., Bredin, S., Guan, Y., Dickinson, K., Kim, D., Chua, Z., Kaufman, K., & Warburton, D. (2019). Cardiovascular Health Benefits of Exercise Training in Persons Living with Type 1 Diabetes: A Systematic Review and Meta-Analysis. Journal of Clinical Medicine, 8(2), 253. https://doi.org/10.3390/jcm8020253
-
Xie, J., Xiong, S., Li, Y., Xia, B., Li, M., Zhang, Z., Shi, Z., Peng, Q., Li, C., Lin, L., & Liao, D. (2024). Phenolic acids from medicinal and edible homologous plants: a potential anti-inflammatory agent for inflammatory diseases. Frontiers in Immunology, 15. https://doi.org/10.3389/fimmu.2024.1345002
-
Yoshida, R., Nakamura, M., & Ikegami, R. (2022). The Effect of Single Bout Treatment of Heat or Cold Intervention on Delayed Onset Muscle Soreness Induced by Eccentric Contraction. Healthcare, 10(12), 2556. https://doi.org/10.3390/healthcare10122556
Year 2025,
Volume: 16 Issue: 2, 347 - 367, 30.08.2025
Roy Irawan
,
Heri Wahyudi
,
Mokhamad Bawono
,
Ananda Bakti
,
Abdul Rohim Tualeka
References
-
Akil, M., Gurbuz, U., Bicer, M., Sivrikaya, A., Mogulkoc, R., & Baltaci, A. K. (2011). Effect of Selenium Supplementation on Lipid Peroxidation, Antioxidant Enzymes, and Lactate Levels in Rats Immediately After Acute Swimming Exercise. Biological Trace Element Research, 142(3), 651–659. https://doi.org/10.1007/s12011-010-8785-z
-
Alsousi, A. A., & Igwe, O. J. (2018). Redox-active trace metal-induced release of high mobility group box 1(HMGB1) and inflammatory cytokines in fibroblast-like synovial cells is Toll-like receptor 4 (TLR4) dependent. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1864(11), 3847–3858. https://doi.org/10.1016/j.bbadis.2018.08.029
-
Ayubi, N., Kusnanik, N. W., Herawati, L., Callixte, C., Ming, J. W., Aljunaid, M., Mario, D. T., Komaini, A., & Padmasari, D. F. (2024). Potential of Curcumin to Reduce Serum Nuclear Factor-Kappa B (NF-kB) Levels After High-Intensity Exercise. Retos, 57, 616–622. https://doi.org/10.47197/retos.v57.103902
-
Bicer, M., Baltaci, S. B., Patlar, S., Mogulkoc, R., & Baltaci, A. K. (2018). Melatonin has a protective effect against lipid peroxidation in the bone tissue of diabetic rats subjected to acute swimming exercise. Hormone Molecular Biology and Clinical Investigation, 0(0). https://doi.org/10.1515/hmbci-2017-0079
-
Bjørklund, G., Shanaida, M., Lysiuk, R., Antonyak, H., Klishch, I., Shanaida, V., & Peana, M. (2022). Selenium: An Antioxidant with a Critical Role in Anti-Aging. Molecules, 27(19), 6613. https://doi.org/10.3390/molecules27196613
-
Bloomer, R. J. (2008). Chapter 1 Effect Of Exercise On Oxidative Stress Biomarkers (pp. 1–50). https://doi.org/10.1016/S0065-2423(08)00401-0
-
Bouviere, J., Fortunato, R. S., Dupuy, C., Werneck-de-Castro, J. P., Carvalho, D. P., & Louzada, R. A. (2021). Exercise-Stimulated ROS Sensitive Signaling Pathways in Skeletal Muscle. Antioxidants, 10(4), 537. https://doi.org/10.3390/antiox10040537
-
Choe, J. Y., Choi, C. H., Park, K. Y., & Kim, S. K. (2018). High-mobility group box 1 is responsible for monosodium urate crystal-induced inflammation in human U937 macrophages. Biochemical and Biophysical Research Communications, 503(4). https://doi.org/10.1016/j.bbrc.2018.08.139
-
Choi, Ban, Lee, Baik, & Kim. (2019). Puffing as a Novel Process to Enhance the Antioxidant and Anti-Inflammatory Properties of Curcuma longa L. (Turmeric). Antioxidants, 8(11), 506. https://doi.org/10.3390/antiox8110506
-
Di Meo, S., Napolitano, G., & Venditti, P. (2019). Mediators of Physical Activity Protection against ROS-Linked Skeletal Muscle Damage. International Journal of Molecular Sciences, 20(12), 3024. https://doi.org/10.3390/ijms20123024
-
Fernández-Lázaro, D., Fernandez-Lazaro, C. I., Mielgo-Ayuso, J., Navascués, L. J., Córdova Martínez, A., & Seco-Calvo, J. (2020). The Role of Selenium Mineral Trace Element in Exercise: Antioxidant Defense System, Muscle Performance, Hormone Response, and Athletic Performance. A Systematic Review. Nutrients, 12(6), 1790. https://doi.org/10.3390/nu12061790
-
Goh, J., & Behringer, M. (2018). Exercise alarms the immune system: A HMGB1 perspective. Cytokine, 110, 222–225. https://doi.org/10.1016/j.cyto.2018.06.031
-
Guadagnin, E. C., Stoelben, K. J. V., Carpes, F. P., & Vaz, M. A. (2022). Neuromuscular and functional responses to concentric and eccentric strength training in older adults. Kinesiology, 54(2), 357–367. https://doi.org/10.26582/k.54.2.17
-
Hannan, M. A., Zahan, M. S., Sarker, P. P., Moni, A., Ha, H., & Uddin, M. J. (2021). Protective Effects of Black Cumin (Nigella sativa) and Its Bioactive Constituent, Thymoquinone against Kidney Injury: An Aspect on Pharmacological Insights. International Journal of Molecular Sciences, 22(16), 9078. https://doi.org/10.3390/ijms22169078
-
Heiss, R., Lutter, C., Freiwald, J., Hoppe, M., Grim, C., Poettgen, K., Forst, R., Bloch, W., Hüttel, M., & Hotfiel, T. (2019). Advances in Delayed-Onset Muscle Soreness (DOMS) – Part II: Treatment and Prevention. Sportverletzung · Sportschaden, 33(01), 21–29. https://doi.org/10.1055/a-0810-3516
-
Huang, C.-C., Lee, M.-C., Ho, C.-S., Hsu, Y.-J., Ho, C.-C., & Kan, N.-W. (2021). Protective and Recovery Effects of Resveratrol Supplementation on Exercise Performance and Muscle Damage following Acute Plyometric Exercise. Nutrients, 13(9), 3217. https://doi.org/10.3390/nu13093217
-
Hyldahl, R. D., & Hubal, M. J. (2014). Lengthening our perspective: Morphological, cellular, and molecular responses to eccentric exercise. In Muscle and Nerve (Vol. 49, Issue 2). https://doi.org/10.1002/mus.24077
,
Irawan, R. J., Sulistyarto, S., & Rimawati, N. (2024). Kencur Supplementation for Attenuating Exercise-Induced Muscle Damage and Delayed-Onset Muscle Soreness. Kemas, 19(3), 438–446. https://doi.org/10.15294/kemas.v19i3.42151
-
Isaev, N. K., Genrikhs, E. E., & Stelmashook, E. V. (2023). Antioxidant Thymoquinone and Its Potential in the Treatment of Neurological Diseases. Antioxidants, 12(2), 433. https://doi.org/10.3390/antiox12020433
-
Jakubczyk, K., Melkis, K., Maciejewska-Markiewicz, D., Muzykiewicz-Szymańska, A., Nowak, A., & Skonieczna-Żydecka, K. (2025). Innovative approaches to enhancing kombucha through flavour additives: a phytochemical and antioxidant analysis. Food & Function, 16(4), 1442–1457. https://doi.org/10.1039/D4FO05135A
-
Jomova, K., Raptova, R., Alomar, S. Y., Alwasel, S. H., Nepovimova, E., Kuca, K., & Valko, M. (2023). Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Archives of Toxicology, 97(10), 2499–2574. https://doi.org/10.1007/s00204-023-03562-9
-
Li, J., Wu, D., Wang, Z., Wang, X., Ke, Z., & Wang, R. (2023). The Role of Autophagy Regulator HMGB1 in Skeletal Muscle Autophagy After Eccentric Exercise. Journal of Science in Sport and Exercise, 5(3), 280–288. https://doi.org/10.1007/s42978-022-00182-0
-
Lin, C.-H., Lin, Y.-A., Chen, S.-L., Hsu, M.-C., & Hsu, C.-C. (2021). American Ginseng Attenuates Eccentric Exercise-Induced Muscle Damage via the Modulation of Lipid Peroxidation and Inflammatory Adaptation in Males. Nutrients, 14(1), 78. https://doi.org/10.3390/nu14010078
-
Lin, L., Li, J., Song, Q., Cheng, W., & Chen, P. (2022). The role of HMGB1/RAGE/TLR4 signaling pathways in cigarette smoke‐induced inflammation in chronic obstructive pulmonary disease. Immunity, Inflammation and Disease, 10(11). https://doi.org/10.1002/iid3.711
-
Massaro, M., Scoditti, E., Carluccio, M., Kaltsatou, A., & Cicchella, A. (2019). Effect of Cocoa Products and Its Polyphenolic Constituents on Exercise Performance and Exercise-Induced Muscle Damage and Inflammation: A Review of Clinical Trials. Nutrients, 11(7), 1471. https://doi.org/10.3390/nu11071471
-
Matta, L., Fonseca, T. S., Faria, C. C., Lima-Junior, N. C., De Oliveira, D. F., Maciel, L., Boa, L. F., Pierucci, A. P. T. R., Ferreira, A. C. F., Nascimento, J. H. M., Carvalho, D. P., & Fortunato, R. S. (2021). The Effect of Acute Aerobic Exercise on Redox Homeostasis and Mitochondrial Function of Rat White Adipose Tissue. Oxidative Medicine and Cellular Longevity, 2021, 1–15. https://doi.org/10.1155/2021/4593496
-
Middelbeek, R. J. W., Motiani, P., Brandt, N., Nigro, P., Zheng, J., Virtanen, K. A., Kalliokoski, K. K., Hannukainen, J. C., & Goodyear, L. J. (2021). Exercise intensity regulates cytokine and klotho responses in men. Nutrition & Diabetes, 11(1), 5. https://doi.org/10.1038/s41387-020-00144-x
-
Nandi, A., Yan, L.-J., Jana, C. K., & Das, N. (2019). Role of Catalase in Oxidative Stress- and Age-Associated Degenerative Diseases. Oxidative Medicine and Cellular Longevity, 2019, 1–19. https://doi.org/10.1155/2019/9613090
-
Newham, D. J., Jones, D. A., & Edwards, R. H. T. (1983). Large delayed plasma creatine kinase changes after stepping exercise. Muscle & Nerve, 6(5), 380–385. https://doi.org/10.1002/mus.880060507
-
O’Connor, E., Mündel, T., & Barnes, M. J. (2022). Nutritional Compounds to Improve Post-Exercise Recovery. Nutrients, 14(23), 5069. https://doi.org/10.3390/nu14235069
-
Ottestad, W., Rognes, I. N., Skaga, E., Frisvoll, C., Haraldsen, G., Eken, T., & Lundbäck, P. (2019). HMGB1 concentration measurements in trauma patients: Assessment of pre-analytical conditions and sample material. Molecular Medicine, 26(1). https://doi.org/10.1186/s10020-019-0131-0
-
Patel, V., Dial, K., Wu, J., Gauthier, A. G., Wu, W., Lin, M., Espey, M. G., Thomas, D. D., Ashby, C. R., & Mantell, L. L. (2020). Dietary Antioxidants Significantly Attenuate Hyperoxia-Induced Acute Inflammatory Lung Injury by Enhancing Macrophage Function via Reducing the Accumulation of Airway HMGB1. International Journal of Molecular Sciences, 21(3), 977. https://doi.org/10.3390/ijms21030977
-
Powers, S. K., Duarte, J., Kavazis, A. N., & Talbert, E. E. (2010). Reactive oxygen species are signalling molecules for skeletal muscle adaptation. Experimental Physiology, 95(1), 1–9. https://doi.org/10.1113/expphysiol.2009.050526
-
Pyne, D. B. (n.d.). Exercise-induced muscle damage and inflammation: a review. Australian Journal of Science and Medicine in Sport, 26(3–4), 49–58.
-
Ratheesh, M., Svenia, J. P., Sangeeth, S., Sheethal, S., Sony, R., Sandya, S., & Krishnakumar, I. M. (2021). Antioxidant, Anti-inflammatory, and Anti-arthritic Effect of Thymoquinone-rich Black Cumin (Nigella sativa) oil (BlaQmax®) on Adjuvant-induced Arthritis. Journal of Food Research, 10(1), 52. https://doi.org/10.5539/jfr.v10n1p52
-
Righi, N. C., Schuch, F. B., De Nardi, A. T., Pippi, C. M., de Almeida Righi, G., Puntel, G. O., da Silva, A. M. V., & Signori, L. U. (2020). Effects of vitamin C on oxidative stress, inflammation, muscle soreness, and strength following acute exercise: meta-analyses of randomized clinical trials. European Journal of Nutrition, 59(7), 2827–2839. https://doi.org/10.1007/s00394-020-02215-2
-
Sawada, Y., Ichikawa, H., Ebine, N., Minamiyama, Y., Alharbi, A. A. D., Iwamoto, N., & Fukuoka, Y. (2023). Effects of High-Intensity Anaerobic Exercise on the Scavenging Activity of Various Reactive Oxygen Species and Free Radicals in Athletes. Nutrients, 15(1), 222. https://doi.org/10.3390/nu15010222
-
Slavin, M. B., Khemraj, P., & Hood, D. A. (2024). Exercise, mitochondrial dysfunction and inflammasomes in skeletal muscle. Biomedical Journal, 47(1), 100636. https://doi.org/10.1016/j.bj.2023.100636
-
Supruniuk, E., Górski, J., & Chabowski, A. (2023). Endogenous and Exogenous Antioxidants in Skeletal Muscle Fatigue Development during Exercise. Antioxidants, 12(2), 501. https://doi.org/10.3390/antiox12020501
-
Suzuki, K. (2021). Recent Progress in Applicability of Exercise Immunology and Inflammation Research to Sports Nutrition. Nutrients, 13(12), 4299. https://doi.org/10.3390/nu13124299
-
Syukri, A., Budu, Hatta, M., Amir, M., Rohman, M. S., Mappangara, I., Kaelan, C., Wahyuni, S., Bukhari, A., Junita, A. R., Primaguna, M. R., Dwiyanti, R., & Febrianti, A. (2022). Doxorubicin induced immune abnormalities and inflammatory responses via HMGB1, HIF1-α and VEGF pathway in progressive of cardiovascular damage. Annals of Medicine & Surgery, 76. https://doi.org/10.1016/j.amsu.2022.103501
-
Ta Na, H. Sen, An, M., Zhang, T., Deni, W., Hou, L., & Jin, K. (2022). Dexmedetomidine inhibits microglial activation through SNHG14/HMGB1 pathway in spinal cord ischemia-reperfusion injury mice. International Journal of Neuroscience, 132(1), 77–88. https://doi.org/10.1080/00207454.2020.1835901
-
Thirupathi, A., Wang, M., Lin, J. K., Fekete, G., István, B., Baker, J. S., & Gu, Y. (2021). Effect of Different Exercise Modalities on Oxidative Stress: A Systematic Review. BioMed Research International, 2021, 1–10. https://doi.org/10.1155/2021/1947928
-
Torre, M. F., Martinez-Ferran, M., Vallecillo, N., Jiménez, S. L., Romero-Morales, C., & Pareja-Galeano, H. (2021). Supplementation with Vitamins C and E and Exercise-Induced Delayed-Onset Muscle Soreness: A Systematic Review. Antioxidants, 10(2), 279. https://doi.org/10.3390/antiox10020279
-
Tu, H., & Li, Y.-L. (2023). Inflammation balance in skeletal muscle damage and repair. Frontiers in Immunology, 14. https://doi.org/10.3389/fimmu.2023.1133355
-
Volpe-Fix, A. R., de França, E., Silvestre, J. C., & Thomatieli-Santos, R. V. (2023). The Use of Some Polyphenols in the Modulation of Muscle Damage and Inflammation Induced by Physical Exercise: A Review. Foods, 12(5), 916. https://doi.org/10.3390/foods12050916
-
Wadley, A. J., Keane, G., Cullen, T., James, L., Vautrinot, J., Davies, M., Hussey, B., Hunter, D. J., Mastana, S., Holliday, A., Petersen, S. V., Bishop, N. C., Lindley, M. R., & Coles, S. J. (2019). Characterization of extracellular redox enzyme concentrations in response to exercise in humans. Journal of Applied Physiology, 127(3), 858–866. https://doi.org/10.1152/japplphysiol.00340.2019
-
Wang, H. (2022). Regulation of HMGB1 Release in Health and Diseases. Cells, 12(1), 46. https://doi.org/10.3390/cells12010046
-
Wu, N., Bredin, S., Guan, Y., Dickinson, K., Kim, D., Chua, Z., Kaufman, K., & Warburton, D. (2019). Cardiovascular Health Benefits of Exercise Training in Persons Living with Type 1 Diabetes: A Systematic Review and Meta-Analysis. Journal of Clinical Medicine, 8(2), 253. https://doi.org/10.3390/jcm8020253
-
Xie, J., Xiong, S., Li, Y., Xia, B., Li, M., Zhang, Z., Shi, Z., Peng, Q., Li, C., Lin, L., & Liao, D. (2024). Phenolic acids from medicinal and edible homologous plants: a potential anti-inflammatory agent for inflammatory diseases. Frontiers in Immunology, 15. https://doi.org/10.3389/fimmu.2024.1345002
-
Yoshida, R., Nakamura, M., & Ikegami, R. (2022). The Effect of Single Bout Treatment of Heat or Cold Intervention on Delayed Onset Muscle Soreness Induced by Eccentric Contraction. Healthcare, 10(12), 2556. https://doi.org/10.3390/healthcare10122556