Effects of Acute and Chronic Swimming Exercise on Executive Functions in Male Preadolescents
Year 2025,
Volume: 16 Issue: Online First, 1 - 17
Emre Özdemir
,
Asuman Şahan
,
Neşe Toktaş
,
Özcan Esen
Abstract
This study investigated the effects of acute and chronic swimming exercise on executive functions in preadolescent males. Forty-eight participants (swimming exercise group [SEG], n = 24; control group [CG], n = 24), aged 10.15 ± 0.71 years and proficient in swimming, took part in the study. The SEG followed a structured swimming program consisting of three 45-minute sessions per week for eight weeks. The CG did not engage in regular physical activity during the same period. Both groups showed significant improvements in working memory and inhibition after a single bout of acute swimming exercise (p < 0.001, p < 0.05). Regarding chronic exercise, post-test results revealed a statistically significant advantage for the SEG (p < 0.05). In intragroup comparisons, both groups demonstrated improvements in working memory (p < 0.001), while only the SEG exhibited significant gains in inhibition (p < 0.05, p < 0.001); no such improvements were observed in the CG (p > 0.05). These findings suggest that acute aerobic swimming can enhance working memory and inhibitory control in preadolescent males. Chronic swimming training may also result in significant improvements in these executive functions, with greater gains observed in the exercise group.
Ethical Statement
The studies involving humans were approved by the present study received ethical approval from the T.C. Akdeniz University Sports Sciences Ethics Committee, as per their decision dated 16 February 2022,
Project Number
2012-KAEK-20
Thanks
The authors thank all participants for their voluntary participation.
References
-
Aadland, K. N., Moe, V. F., Aadland, E., Anderssen, S. A., Resaland, G. K., & Ommundsen, Y. (2017). Relationships between physical activity, sedentary time, aerobic fitness, motor skills and executive function and academic performance in children. Mental Health and Physical Activity, 12, 10–18. https://doi.org/10.1016/j.mhpa.2017.01.001
-
Alloway, T. P., Gathercole, S. E., & Kirkwood, H. J. (2008). Working memory rating scale manual. Pearson.
-
Baddeley, A. D., & Hitch, G. (1974). Working memory. Psychology of Learning and Motivation, 8, 47–89.
-
Blomstrand, E., Hassmén, P., Ek, S., Ekblom, B., & Newsholme, E. A. (1997). Influence of ingesting a solution of branched‐chain amino acids on perceived exertion during exercise. Acta Physiologica Scandinavica, 159(1), 41-49. https://doi.org/10.1046/j.1365-201X.1997.547327000.x.
-
Borg, G. (1998). Borg’s perceived exertion and pain scales. Human Kinetics.
-
Buck, S. M., Hillman, C. H., & Castelli, D. M. (2008). The relation of aerobic fitness to Stroop task performance in preadolescent children. Medicine and Science in Sports and Exercise, 40(1), 166–172. https://doi.org/10.1249/mss.0b013e318159b035
-
Budde, H., Voelcker-Rehage, C., Pietraßyk-Kendziorra, S., Ribeiro, P., & Tidow, G. (2008). Acute coordinative exercise improves attentional performance in adolescents. Neuroscience Letters, 441(2), 219–223.
-
Burgess, P. W., & Simons, J. (2005). Theories of frontal lobe executive function: clinical applications. In P. W. Halligan, & D. Wade (Eds.), Effectiveness of Rehabilitation for Cognitive Deficits (pp. 211-213). Oxford, UK: Oxford University Press.
-
Chaddock, L., Pontifex, M. B., Hillman, C. H., & Kramer, A. F. (2011). A review of the relation of aerobic fitness and physical activity to brain structure and function in children. Journal of the International Neuropsychological Society, 17(6), 975–998. https://doi.org/10.1017/S1355617711000567
-
Chang, Y. K., & Etnier, J. L. (2009). Exploring the dose-response relationship between resistance exercise intensity and cognitive function. Journal of Sport and Exercise Psychology, 31(5), 640–656. https://doi.org/10.1123/jsep.31.5.640
-
Chang, Y. K., Pan, C. Y., Chen, F. T., Tsai, C. L., & Huang, C. C. (2012). Effect of resistance-exercise training on cognitive function in healthy older adults: A review. Journal of Aging & Physical Activity, 20(4), 497–517. https://doi.org/10.1123/japa.20.4.497
-
Coetsee, C., & Terblanche, E. (2017). The effect of three different exercise training modalities on cognitive and physical function in a healthy older population. European Review of Aging and Physical Activity, 14, 1–10. https://doi.org/10.1186/s11556-017-0183-5
-
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Erlbaum Associates.
-
Crova, C., Struzzolino, I., Marchetti, R., Masci, I., Vannozzi, G., Forte, R., & Pesce, C. (2014). Cognitively challenging physical activity benefits executive function in overweight children. Journal of Sports Sciences, 32(3), 201–211. https://doi.org/10.1080/02640414.2013.828849
-
Davidson, M. C., Amso, D., Anderson, L. C., & Diamond, A. (2006). Development of cognitive control and executive functions from 4 to 13 years: Evidence from manipulations of memory, inhibition, and task switching. Neuropsychologia, 44(11), 2037–2078. https://doi.org/10.1016/j.neuropsychologia.2006.02.006
-
De Bruijn, A. G. M., Hartman, E., Kostons, D. D. N. M., Visscher, C., & Bosker, R. J. (2018). Exploring the relations among physical fitness, executive functioning, and low academic achievement. Journal of Experimental Child Psychology, 167, 204–221. https://doi.org/10.1016/j.jecp.2017.10.010
-
Dempsey, J. A., Mitchell, G. S., & Smith, C. A. (1984). Exercise and chemoreception. American Review of Respiratory Disease, 129(2P2), S31–S34. https://doi.org/10.1164/arrd.1984.129.2P2.S31
-
Ding, Y. H., Li, J., Zhou, Y., Rafols, J. A., Clark, J. C., & Ding, Y. (2006). Cerebral angiogenesis and expression of angiogenic factors in aging rats after exercise. Current Neurovascular Research, 3(1), 15–23.
-
Dkaidek, T. S., Broadbent, D. P., & Bishop, D. T. (2023). The effects of an acute bout of ergometer cycling on young adults’ executive function: A systematic review and meta-analysis. Journal of Exercise Science & Fitness, 21, 326–344. https://doi.org/10.1016/j.jesf.2023.07.001
-
Drollette, E. S., Scudder, M. R., Raine, L. B., Moore, R. D., Saliba, B. J., Pontifex, M. B., & Hillman, C. H. (2014). Acute exercise facilitates brain function and cognition in children who need it most: An ERP study of individual differences in inhibitory control capacity. Developmental Cognitive Neuroscience, 7, 53–64. https://doi.org/10.1016/j.dcn.2013.11.001
-
Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a no search task. Perception & Psychophysics, 16(1), 143–149.
-
Etnier, J. L., Nowell, P. M., Landers, D. M., & Sibley, B. A. (2006). A meta-regression to examine the relationship between aerobic fitness and cognitive performance. Brain Research Reviews, 52(1), 119–130. https://doi.org/10.1016/j.brainresrev.2006.01.002
-
Glass, S. C., Knowlton, R. G., & Becque, M. D. (1992). Accuracy of RPE from graded exercise to establish exercise training intensity. Medicine and Science in Sports and Exercise, 24(11), 1303-1307.
-
Hillman, C. H., Buck, S. M., Themanson, J. R., Pontifex, M. B., & Castelli, D. M. (2009). Aerobic fitness and cognitive development: Event-related brain potential and task performance indices of executive control in preadolescent children. Developmental Psychology, 45(1), 114–129. https://doi.org/10.1037/a0014437
-
Kane, M. J., & Engle, R. W. (2002). The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: An individual-differences perspective. Psychonomic Bulletin & Review, 9(4), 637–671.
-
Kao, S. C., Westfall, D. R., Parks, A. C., Pontifex, M. B., & Hillman, C. H. (2017). Muscular and aerobic fitness, working memory, and academic achievement in children. Medicine and Science in Sports and Exercise, 49(3), 500–508. https://doi.org/10.1249/MSS.0000000000001132
-
Léger, L. A., & Lambert, J. (1982). A maximal multistage 20-m shuttle run test to predict O₂ max. European Journal of Applied Physiology and Occupational Physiology, 49(1), 1–12.
-
Léger, L. A., Mercier, D., Gadoury, C., & Lambert, J. (1988). The multistage 20 metre shuttle run test for aerobic fitness. Journal of Sports Sciences, 6(2), 93–101. https://doi.org/10.1080/02640418808729800
-
Li, L., Men, W. W., Chang, Y. K., Fan, M. X., Ji, L., & Wei, G. X. (2014). Acute aerobic exercise increases cortical activity during working memory: A functional MRI study in female college students. PLOS ONE, 9(6), e99222. https://doi.org/10.1371/journal.pone.0099222
-
Ludyga, S., Gerber, M., & Kamijo, K. (2022). Exercise types and working memory components during development. Trends in Cognitive Sciences, 26(3), 191–203. https://doi.org/10.1016/j.tics.2021.12.004
-
Marvel, C. L., Morgan, O. P., & Kronemer, S. I. (2019). How the motor system integrates with working memory. Neuroscience & Biobehavioral Reviews, 102, 184–194. https://doi.org/10.1016/j.neubiorev.2019.04.017
-
McMorris, T. (2016). History of research into the acute exercise–cognition interaction: A cognitive psychology approach. In T. McMorris (Ed.), Exercise-cognition interaction: Neuroscience perspectives (pp. 1–28). Academic Press. https://doi.org/10.1016/B978-0-12-800778-5.00001-3
-
Nanda, B., Balde, J., & Manjunatha, S. (2013). The acute effects of a single bout of moderate-intensity aerobic exercise on cognitive functions in healthy adult males. Journal of Clinical and Diagnostic Research, 7(9), 1883–1885. https://doi.org/10.7860/JCDR/2013/5855.3341
-
Piccardi, L., Iaria, G., Ricci, M., Bianchini, F., Zompanti, L., & Guariglia, C. (2008). Walking in the Corsi test: Which type of memory do you need? Neuroscience Letters, 432(2), 127–131. https://doi.org/10.1016/j.neulet.2007.12.044
-
Pontifex, M. B., Hillman, C. H., Fernhall, B., Thompson, K. M., & Valentini, T. A. (2009). The effect of acute aerobic and resistance exercise on working memory. Medicine & Science in Sports & Exercise, 41(4), 927–934. https://doi.org/10.1249/MSS.0b013e3181907d69
-
Roig, M., Nordbrandt, S., Geertsen, S. S., & Nielsen, J. B. (2013). The effects of cardiovascular exercise on human memory: A review with meta-analysis. Neuroscience & Biobehavioral Reviews, 37(8), 1645–1666. https://doi.org/10.1016/j.neubiorev.2013.06.012
-
Ruiz, A., & Sherman, N. W. (2005). Associations between Hispanic children’s attitudes toward physical activity, fitness variables, and aerobic capacity. TAHPERD Journal, 1, 8–11.
-
Silva, L. A. D., Doyenart, R., Salvan, P. H., Rodrigues, W., Lopes, J. F., Gomes, K., Thirupathi, A., Pinho, R. A. D., & Silveira, P. C. (2020). Swimming training improves mental health parameters, cognition and motor coordination in children with attention deficit hyperactivity disorder. International Journal of Environmental Health Research, 30(5), 584–592. https://doi.org/10.1080/09603123.2019.1612041
-
Suwabe, K., Hyodo, K., Byun, K., Ochi, G., Fukuie, T., Shimizu, T., Kato, M., Yassa, M. A., & Soya, H. (2017). Aerobic fitness associates with mnemonic discrimination as a mediator of physical activity effects: Evidence for memory flexibility in young adults. Scientific Reports, 7, 1–10. https://doi.org/10.1038/s41598-017-04850-y
-
Tanner, J. M. (1962). Growth at adolescence (2nd ed.). Blackwell.
-
Tsujii, T., Komatsu, K., & Sakatani, K. (2013). Acute effects of physical exercise on prefrontal cortex activity in older adults: A functional near-infrared spectroscopy study. In I. R. Hamilton (Ed.), Oxygen transport to tissue XXXIV (Vol. 765, pp. 293–298). Springer. https://doi.org/10.1007/978-1-4614-4989-8_41
-
Wallace, J. D., Cuneo, R. C., Lundberg, P. A., Rosén, T., Jørgensen, J. O. L., Longobardi, S., Keay, N., Sacca, L., Christiansen, J. S., Bengtsson, B. A., & Sönksen, P. H. (2000). Responses of markers of bone and collagen turnover to exercise, growth hormone (GH) administration, and GH withdrawal in trained adult males. Journal of Clinical Endocrinology & Metabolism, 85(1), 124–133. https://doi.org/10.1210/jcem.85.1.6262
-
Welk, G. J., Morrow, J. R., & Falls, H. B. (Eds.). (2002). Fitnessgram reference guide. The Cooper Institute.
Year 2025,
Volume: 16 Issue: Online First, 1 - 17
Emre Özdemir
,
Asuman Şahan
,
Neşe Toktaş
,
Özcan Esen
Project Number
2012-KAEK-20
References
-
Aadland, K. N., Moe, V. F., Aadland, E., Anderssen, S. A., Resaland, G. K., & Ommundsen, Y. (2017). Relationships between physical activity, sedentary time, aerobic fitness, motor skills and executive function and academic performance in children. Mental Health and Physical Activity, 12, 10–18. https://doi.org/10.1016/j.mhpa.2017.01.001
-
Alloway, T. P., Gathercole, S. E., & Kirkwood, H. J. (2008). Working memory rating scale manual. Pearson.
-
Baddeley, A. D., & Hitch, G. (1974). Working memory. Psychology of Learning and Motivation, 8, 47–89.
-
Blomstrand, E., Hassmén, P., Ek, S., Ekblom, B., & Newsholme, E. A. (1997). Influence of ingesting a solution of branched‐chain amino acids on perceived exertion during exercise. Acta Physiologica Scandinavica, 159(1), 41-49. https://doi.org/10.1046/j.1365-201X.1997.547327000.x.
-
Borg, G. (1998). Borg’s perceived exertion and pain scales. Human Kinetics.
-
Buck, S. M., Hillman, C. H., & Castelli, D. M. (2008). The relation of aerobic fitness to Stroop task performance in preadolescent children. Medicine and Science in Sports and Exercise, 40(1), 166–172. https://doi.org/10.1249/mss.0b013e318159b035
-
Budde, H., Voelcker-Rehage, C., Pietraßyk-Kendziorra, S., Ribeiro, P., & Tidow, G. (2008). Acute coordinative exercise improves attentional performance in adolescents. Neuroscience Letters, 441(2), 219–223.
-
Burgess, P. W., & Simons, J. (2005). Theories of frontal lobe executive function: clinical applications. In P. W. Halligan, & D. Wade (Eds.), Effectiveness of Rehabilitation for Cognitive Deficits (pp. 211-213). Oxford, UK: Oxford University Press.
-
Chaddock, L., Pontifex, M. B., Hillman, C. H., & Kramer, A. F. (2011). A review of the relation of aerobic fitness and physical activity to brain structure and function in children. Journal of the International Neuropsychological Society, 17(6), 975–998. https://doi.org/10.1017/S1355617711000567
-
Chang, Y. K., & Etnier, J. L. (2009). Exploring the dose-response relationship between resistance exercise intensity and cognitive function. Journal of Sport and Exercise Psychology, 31(5), 640–656. https://doi.org/10.1123/jsep.31.5.640
-
Chang, Y. K., Pan, C. Y., Chen, F. T., Tsai, C. L., & Huang, C. C. (2012). Effect of resistance-exercise training on cognitive function in healthy older adults: A review. Journal of Aging & Physical Activity, 20(4), 497–517. https://doi.org/10.1123/japa.20.4.497
-
Coetsee, C., & Terblanche, E. (2017). The effect of three different exercise training modalities on cognitive and physical function in a healthy older population. European Review of Aging and Physical Activity, 14, 1–10. https://doi.org/10.1186/s11556-017-0183-5
-
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Erlbaum Associates.
-
Crova, C., Struzzolino, I., Marchetti, R., Masci, I., Vannozzi, G., Forte, R., & Pesce, C. (2014). Cognitively challenging physical activity benefits executive function in overweight children. Journal of Sports Sciences, 32(3), 201–211. https://doi.org/10.1080/02640414.2013.828849
-
Davidson, M. C., Amso, D., Anderson, L. C., & Diamond, A. (2006). Development of cognitive control and executive functions from 4 to 13 years: Evidence from manipulations of memory, inhibition, and task switching. Neuropsychologia, 44(11), 2037–2078. https://doi.org/10.1016/j.neuropsychologia.2006.02.006
-
De Bruijn, A. G. M., Hartman, E., Kostons, D. D. N. M., Visscher, C., & Bosker, R. J. (2018). Exploring the relations among physical fitness, executive functioning, and low academic achievement. Journal of Experimental Child Psychology, 167, 204–221. https://doi.org/10.1016/j.jecp.2017.10.010
-
Dempsey, J. A., Mitchell, G. S., & Smith, C. A. (1984). Exercise and chemoreception. American Review of Respiratory Disease, 129(2P2), S31–S34. https://doi.org/10.1164/arrd.1984.129.2P2.S31
-
Ding, Y. H., Li, J., Zhou, Y., Rafols, J. A., Clark, J. C., & Ding, Y. (2006). Cerebral angiogenesis and expression of angiogenic factors in aging rats after exercise. Current Neurovascular Research, 3(1), 15–23.
-
Dkaidek, T. S., Broadbent, D. P., & Bishop, D. T. (2023). The effects of an acute bout of ergometer cycling on young adults’ executive function: A systematic review and meta-analysis. Journal of Exercise Science & Fitness, 21, 326–344. https://doi.org/10.1016/j.jesf.2023.07.001
-
Drollette, E. S., Scudder, M. R., Raine, L. B., Moore, R. D., Saliba, B. J., Pontifex, M. B., & Hillman, C. H. (2014). Acute exercise facilitates brain function and cognition in children who need it most: An ERP study of individual differences in inhibitory control capacity. Developmental Cognitive Neuroscience, 7, 53–64. https://doi.org/10.1016/j.dcn.2013.11.001
-
Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a no search task. Perception & Psychophysics, 16(1), 143–149.
-
Etnier, J. L., Nowell, P. M., Landers, D. M., & Sibley, B. A. (2006). A meta-regression to examine the relationship between aerobic fitness and cognitive performance. Brain Research Reviews, 52(1), 119–130. https://doi.org/10.1016/j.brainresrev.2006.01.002
-
Glass, S. C., Knowlton, R. G., & Becque, M. D. (1992). Accuracy of RPE from graded exercise to establish exercise training intensity. Medicine and Science in Sports and Exercise, 24(11), 1303-1307.
-
Hillman, C. H., Buck, S. M., Themanson, J. R., Pontifex, M. B., & Castelli, D. M. (2009). Aerobic fitness and cognitive development: Event-related brain potential and task performance indices of executive control in preadolescent children. Developmental Psychology, 45(1), 114–129. https://doi.org/10.1037/a0014437
-
Kane, M. J., & Engle, R. W. (2002). The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: An individual-differences perspective. Psychonomic Bulletin & Review, 9(4), 637–671.
-
Kao, S. C., Westfall, D. R., Parks, A. C., Pontifex, M. B., & Hillman, C. H. (2017). Muscular and aerobic fitness, working memory, and academic achievement in children. Medicine and Science in Sports and Exercise, 49(3), 500–508. https://doi.org/10.1249/MSS.0000000000001132
-
Léger, L. A., & Lambert, J. (1982). A maximal multistage 20-m shuttle run test to predict O₂ max. European Journal of Applied Physiology and Occupational Physiology, 49(1), 1–12.
-
Léger, L. A., Mercier, D., Gadoury, C., & Lambert, J. (1988). The multistage 20 metre shuttle run test for aerobic fitness. Journal of Sports Sciences, 6(2), 93–101. https://doi.org/10.1080/02640418808729800
-
Li, L., Men, W. W., Chang, Y. K., Fan, M. X., Ji, L., & Wei, G. X. (2014). Acute aerobic exercise increases cortical activity during working memory: A functional MRI study in female college students. PLOS ONE, 9(6), e99222. https://doi.org/10.1371/journal.pone.0099222
-
Ludyga, S., Gerber, M., & Kamijo, K. (2022). Exercise types and working memory components during development. Trends in Cognitive Sciences, 26(3), 191–203. https://doi.org/10.1016/j.tics.2021.12.004
-
Marvel, C. L., Morgan, O. P., & Kronemer, S. I. (2019). How the motor system integrates with working memory. Neuroscience & Biobehavioral Reviews, 102, 184–194. https://doi.org/10.1016/j.neubiorev.2019.04.017
-
McMorris, T. (2016). History of research into the acute exercise–cognition interaction: A cognitive psychology approach. In T. McMorris (Ed.), Exercise-cognition interaction: Neuroscience perspectives (pp. 1–28). Academic Press. https://doi.org/10.1016/B978-0-12-800778-5.00001-3
-
Nanda, B., Balde, J., & Manjunatha, S. (2013). The acute effects of a single bout of moderate-intensity aerobic exercise on cognitive functions in healthy adult males. Journal of Clinical and Diagnostic Research, 7(9), 1883–1885. https://doi.org/10.7860/JCDR/2013/5855.3341
-
Piccardi, L., Iaria, G., Ricci, M., Bianchini, F., Zompanti, L., & Guariglia, C. (2008). Walking in the Corsi test: Which type of memory do you need? Neuroscience Letters, 432(2), 127–131. https://doi.org/10.1016/j.neulet.2007.12.044
-
Pontifex, M. B., Hillman, C. H., Fernhall, B., Thompson, K. M., & Valentini, T. A. (2009). The effect of acute aerobic and resistance exercise on working memory. Medicine & Science in Sports & Exercise, 41(4), 927–934. https://doi.org/10.1249/MSS.0b013e3181907d69
-
Roig, M., Nordbrandt, S., Geertsen, S. S., & Nielsen, J. B. (2013). The effects of cardiovascular exercise on human memory: A review with meta-analysis. Neuroscience & Biobehavioral Reviews, 37(8), 1645–1666. https://doi.org/10.1016/j.neubiorev.2013.06.012
-
Ruiz, A., & Sherman, N. W. (2005). Associations between Hispanic children’s attitudes toward physical activity, fitness variables, and aerobic capacity. TAHPERD Journal, 1, 8–11.
-
Silva, L. A. D., Doyenart, R., Salvan, P. H., Rodrigues, W., Lopes, J. F., Gomes, K., Thirupathi, A., Pinho, R. A. D., & Silveira, P. C. (2020). Swimming training improves mental health parameters, cognition and motor coordination in children with attention deficit hyperactivity disorder. International Journal of Environmental Health Research, 30(5), 584–592. https://doi.org/10.1080/09603123.2019.1612041
-
Suwabe, K., Hyodo, K., Byun, K., Ochi, G., Fukuie, T., Shimizu, T., Kato, M., Yassa, M. A., & Soya, H. (2017). Aerobic fitness associates with mnemonic discrimination as a mediator of physical activity effects: Evidence for memory flexibility in young adults. Scientific Reports, 7, 1–10. https://doi.org/10.1038/s41598-017-04850-y
-
Tanner, J. M. (1962). Growth at adolescence (2nd ed.). Blackwell.
-
Tsujii, T., Komatsu, K., & Sakatani, K. (2013). Acute effects of physical exercise on prefrontal cortex activity in older adults: A functional near-infrared spectroscopy study. In I. R. Hamilton (Ed.), Oxygen transport to tissue XXXIV (Vol. 765, pp. 293–298). Springer. https://doi.org/10.1007/978-1-4614-4989-8_41
-
Wallace, J. D., Cuneo, R. C., Lundberg, P. A., Rosén, T., Jørgensen, J. O. L., Longobardi, S., Keay, N., Sacca, L., Christiansen, J. S., Bengtsson, B. A., & Sönksen, P. H. (2000). Responses of markers of bone and collagen turnover to exercise, growth hormone (GH) administration, and GH withdrawal in trained adult males. Journal of Clinical Endocrinology & Metabolism, 85(1), 124–133. https://doi.org/10.1210/jcem.85.1.6262
-
Welk, G. J., Morrow, J. R., & Falls, H. B. (Eds.). (2002). Fitnessgram reference guide. The Cooper Institute.