Review Article
BibTex RIS Cite

RADIATION SHIELDING POTENTIALS OF Hf0.5Mo0.5NbTiZrCrX (x=0.1,0.3,0.5) REFRACTORY HIGH ENTROPY ALLOYS BY EPIXS

Year 2023, Volume: 3 Issue: 2, 83 - 95, 30.12.2023

Abstract

W, Zr, Nb, Ti, Mo, Ta, Hf gibi refrakter alaşım elementlerinin oluşturduğu refrakter yüksek entropili alaşımlar, savunma, havacılık ve nükleer enerji üretim endüstrileri gibi alanlarda yaygın olarak tercih edilmektedir. İyi mekanik özellikler, yüksek sıcaklıklarda korozyon ve oksidasyon direnci nedeniyle refrakter yüksek entropili alaşımlar süper alaşımlar yerine aday olarak kabul edilebilir. Bu çalışmanın amacı, EpiXS yazılımı kullanılarak refrakter yüksek entropi alaşımı Hf0.5Mo0.5NbTiZrCrx'in (x=0.1,0.3,0.5) kütle zayıflatma katsayıları, yarı kalınlık, ortalama serbest yol, etkin atom numarası ve yığılma faktörleri gibi radyasyon zayıflatma parametrelerini hesaplamaktır. Elde edilen değerlerin tutarlılığını görmek için, iyi bilinen bir kod olan XCom ile alaşımların kütle zayıflama katsayıları da hesaplandı. Cr miktarındaki artışın alaşımların zırhlama kabiliyetini azalttığı sonucuna varılmıştır.

References

  • Abdullah, K.K., Nair, K.K., Ramachandran, N., Varier, K.M., Babu, B.R.S., Joseph, A., Thomas, R., Magudapathy, P., Nair, K.G.M. (2010). X-ray attenuation around K-edge of Zr, Nb, Mo and Pd: A comparative study using proton-induced X-ray emission and 241Am gamma rays. PRAMANA Journal of Physics, 75(3), 459–469.
  • ANSI/ANS 6.4.3. (1991). Gamma-ray Attenuation Coefficients and Buildup Factors for Engineering Materials. American Nuclear Society, La Grange Park, Illinois.
  • Aygun, Z., Yarbasi, N., Aygun, M., (2021). Spectroscopic and radiation shielding features of Nemrut, Pasinler, Sarıkamıs and Ikizdere obsidians in Turkey: Experimental and theoretical study, Ceramics International, 47, 34207-34217
  • Aygun, Z., Aygun, M., (2022a). Radiation Shielding Potentials of Rene Alloys by Phy-X/PSD Code. Acta Physica Polonica A, 141, 507-515.
  • Aygun, Z., Aygun, M., (2022b). Evaluation of radiation shielding potentials of Ni-based alloys, Inconel-617 and Incoloy-800HT, candidates for high temperature applications especially for nuclear reactors, by EpiXS and Phy-X/PSD codes, Journal of Polytechnic, 26(2), 795-801.
  • Aygun, Z., Aygun, M., (2022c). A study on usability of Ahlat ignimbrites and pumice as radiation shielding materials, by using EpiXS code, International Journal of Environmental Science and Technology, 19, 5675–5688.
  • Ayrenk, A., (2020). Synthesis and development of refractory high entropy alloys, Master thesis. Cankaya Unv. Berger, M.J., Hubbell, J.H., (1987). XCOM: Photon Cross Sections Database, Web Version 1.2. National Institute of Standards and Technology Gaithersburg, MD 20899, USA. available at. http://physics.nist.gov/xcom.
  • Chang, C.H., Titus, M.S., Yeh, J.W., (2018). Oxidation Behavior between 700 and 1300 ºC of Refractory TiZrNbHfTa High-Entropy Alloys Containing Aluminum, Advance in Engineering Materials, 20(6), 1700948. Dam, T., Shaba, S., (2016). Ductilizing Refractory High Entropy Alloys” (Bachelor’s thesis. Chalmers University of Technology). Chalmers Publication Library. http://publications.lib.chalmers.se/records/fulltext/237688/237688.pdf
  • Eid, M.S., Bondouk, I.I., Saleh, H.M., Omar, K.M., Sayyed, M.I., El-Khatib, A.M., Elsafi, M., (2022). Implementation of waste silicate glass into composition of ordinary cement for radiation shielding applications, Nuclear Engineering and Technology, 54(4), 1456-1463.
  • Gao, X.J., Wang, L., Guo, N.N., Luo, L.S., Zhu, G.M., Shi, C.C., Su, Y.Q., Guo, J.J., (2021). Microstructure characteristics and mechanical properties of Hf0.5Mo0.5NbTiZr refractory high entropy alloy with Cr addition, International Journal of Refractory Metals Hard Material, 95, 105405.
  • Gorr, B., Müller, F., Azim, M., Christ, H.J., Müller, T., Chen, H., Kauffmann, A., Heilmaier, M., (2017). High-Temperature Oxidation Behavior of Refractory High-Entropy Alloys: Effect of Alloy Composition, Oxidation of Metals, 88(3–4), 339–349.
  • Miracle, D., Senkov, O., (2017). A critical review of high entropy alloys and related concepts” Acta Materialia, 122, 448-511.
  • Han, Z.D., Luan, H.W., Liu, X., Chen, N., Li, X.Y., Shao, Y., Yao, K.F., (2018). Microstructures and mechanical properties of TixNbMoTaW refractory high-entropy alloys, Material Science and Engineering A, 712, 380-385. Harima, Y., Sakamoto, Y., Tanaka, S., Kawai, M., (1986). Validity of the geometric-progression formula in approximating gamma-ray buildup factor, Nuclear Science Engineering, 94(1), 24–35.
  • Harima, Y., 1993. An historical review and current status of buildup factor calculations and applications, Radiation Physics and Chemistry, 41(4–5), 631–672.
  • Hila, F.C., Astronomo, A.A., CAM, D., Jecong J.F.M., Javier-Hila A.M.V. et al., (2021). EpiXS: A Windows-based program for photon attenuation, dosimetry and shielding based on EPICS2017 (ENDF/B-VIII) and EPDL97 (ENDF/B-VI.8), Radiation Physics and Chemistry, 182, 109331.
  • Jackson, D.F., Hawkes, D.J., (1981). X-ray attenuation coefficients of elements and mixtures, Physics Reports, 70, 169–233.
  • Kareer, A., Waite, J.C., Li, B., Couet, A., Armstrong, D.E.J., Wilkinson, A.J., (2019). Short communication: Low activation, refractory, high entropy alloys for nuclear applications, Journal of Nuclear Material, 526, 151744.
  • Kurudirek, M., Kurucu, Y. (2020). Investigation of some nuclear engineering materials in terms of gamma ray buildup factors at experimental energies used in nuclear physics experiments. Radiation Effects and Defects in Solids, 175, 7-8, 640-656.
  • Li, T., Miao, J., Lu, Y., Wang, T., Li, T., (2022). Effect of Zr on the as-cast microstructure and mechanical properties of lightweight Ti2VNbMoZrx refractory high-entropy alloys, International Journal of Refractory Metals Hard Material, 103, 105762.
  • Manohara, S.R., Hanagodimath, S.M., (2007). Studies on effective atomic numbers and electron densities of essential amino acids in the energy range 1keV–100GeV, Nuclear Institution Methods Physics Research Section B, 258, 321-328.
  • Ostadhossein, F., Moitra, P., Gunaseelan, N., Nelappana, M., Lowe, C., Moghiseh, M., Butler, A., Ruiter, N., Mandalika, H., Tripathi, I., Misra, S.K., Pan, D. (2022). Hitchhiking probiotic vectors to deliver ultra-small hafnia nanoparticles for ‘Color’ gastrointestinal tract photon counting X-ray imaging, Nanoscale Horizon, 7, 533–542.
  • Sayyed, M.I., Mohammed, F.Q., Mahmoud, K.A., Lacomme, E., Kaky, K.M., et al., (2020). Evaluation of Radiation Shielding Features of Co and Ni-Based Superalloys Using MCNP-5 Code: Potential Use in Nuclear Safety, Applied Science, 10, 7680.
  • Senkov, O.N., Wilks, G.B., Miracle, D.B., Chuang, C.P., Liaw, P.K., (2010). Refractory high-entropy alloys, Intermetallics, 18(9), 1758–1765.
  • Senkov, O.N., Wilks, G.B., Scott, J.M., Miracle, D.B., (2011). Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys, Intermetallics, 19(5), 698-706.
  • Senkov, O.N., Miracle, D.B., Chaput, K.J., Couzinie, J.P., (2018). Development and exploration of refractory high entropy alloys—A review, Journal of Material Research, 33(19), 3092–3128.
  • Xiang, C., Han, E.H., Zhang, Z.M., Fu, H.M., Wang, J.Q., Zhang, H.F., et al., (2019). Design of single-phase high-entropy alloys composed of low thermal neutron absorption cross-section elements for nuclear power plant application, Intermetallics, 104, 143-53.
  • Yao, H.W., Qiao, J.W., Hawk, J.A., Zhou, H.F., Chen, M.W., Gao, M.C., (2017). Mechanical properties of refractory high-entropy alloys: Experiments and modeling, Journal of Alloy and Compounds, 696, 1139-1150. Ye, Y., Wang, Q., Lu, J., Liu, C., Yang, Y., (2016). High-entropy alloy: challenges and prospects, Material Today, 19(6), 349-362.
  • Yurchenko, N., Panina, E., Zherebtsov, S., Salishchev, G., Stepanov, N., (2018). Oxidation Behavior of Refractory AlNbTiVZr0.25 High-Entropy Alloy, Material, 11(12), 2526.
  • Zeyad, A.M., Hakeem, I.Y., Amin, M., Tayeh, B.A., Agwa, I.S., (2022). Effect of aggregate and fibre types on ultra-high-performance concrete designed for radiation shielding, Journal of Building Engineering, 58, 104960.

Radiation Shielding Potentials of Hf0.5Mo0.5NbTiZrCrx (X=0.1,0.3,0.5) Refractory High Entropy Alloys By Epixs

Year 2023, Volume: 3 Issue: 2, 83 - 95, 30.12.2023

Abstract

Refractory high entropy alloys formed by refractory alloying elements, such as W, Zr, Nb, Ti, Mo, Ta, Hf are widely preferred in areas such as the defense, aerospace, and nuclear power generation industries. Due to the good mechanical properties, corrosion and oxidation resistance at high temperatures refractory high entropy alloys can be considered as candidates instead of super alloys. The objective of this study was to calculate the radiation attenuation parameters such as mass attenuation coefficients, half value layer, mean free path, effective atomic number and buildup factors of the refractory high entropy alloy, Hf0.5Mo0.5NbTiZrCrx (x=0.1,0.3,0.5) by using EpiXS software. The mass attenuation coefficients of the alloys were also calculated by XCom, a well-known code, to see the consistency of the obtained values. It was concluded that the increase in the amount of Cr decreases the shielding ability of the alloys.

References

  • Abdullah, K.K., Nair, K.K., Ramachandran, N., Varier, K.M., Babu, B.R.S., Joseph, A., Thomas, R., Magudapathy, P., Nair, K.G.M. (2010). X-ray attenuation around K-edge of Zr, Nb, Mo and Pd: A comparative study using proton-induced X-ray emission and 241Am gamma rays. PRAMANA Journal of Physics, 75(3), 459–469.
  • ANSI/ANS 6.4.3. (1991). Gamma-ray Attenuation Coefficients and Buildup Factors for Engineering Materials. American Nuclear Society, La Grange Park, Illinois.
  • Aygun, Z., Yarbasi, N., Aygun, M., (2021). Spectroscopic and radiation shielding features of Nemrut, Pasinler, Sarıkamıs and Ikizdere obsidians in Turkey: Experimental and theoretical study, Ceramics International, 47, 34207-34217
  • Aygun, Z., Aygun, M., (2022a). Radiation Shielding Potentials of Rene Alloys by Phy-X/PSD Code. Acta Physica Polonica A, 141, 507-515.
  • Aygun, Z., Aygun, M., (2022b). Evaluation of radiation shielding potentials of Ni-based alloys, Inconel-617 and Incoloy-800HT, candidates for high temperature applications especially for nuclear reactors, by EpiXS and Phy-X/PSD codes, Journal of Polytechnic, 26(2), 795-801.
  • Aygun, Z., Aygun, M., (2022c). A study on usability of Ahlat ignimbrites and pumice as radiation shielding materials, by using EpiXS code, International Journal of Environmental Science and Technology, 19, 5675–5688.
  • Ayrenk, A., (2020). Synthesis and development of refractory high entropy alloys, Master thesis. Cankaya Unv. Berger, M.J., Hubbell, J.H., (1987). XCOM: Photon Cross Sections Database, Web Version 1.2. National Institute of Standards and Technology Gaithersburg, MD 20899, USA. available at. http://physics.nist.gov/xcom.
  • Chang, C.H., Titus, M.S., Yeh, J.W., (2018). Oxidation Behavior between 700 and 1300 ºC of Refractory TiZrNbHfTa High-Entropy Alloys Containing Aluminum, Advance in Engineering Materials, 20(6), 1700948. Dam, T., Shaba, S., (2016). Ductilizing Refractory High Entropy Alloys” (Bachelor’s thesis. Chalmers University of Technology). Chalmers Publication Library. http://publications.lib.chalmers.se/records/fulltext/237688/237688.pdf
  • Eid, M.S., Bondouk, I.I., Saleh, H.M., Omar, K.M., Sayyed, M.I., El-Khatib, A.M., Elsafi, M., (2022). Implementation of waste silicate glass into composition of ordinary cement for radiation shielding applications, Nuclear Engineering and Technology, 54(4), 1456-1463.
  • Gao, X.J., Wang, L., Guo, N.N., Luo, L.S., Zhu, G.M., Shi, C.C., Su, Y.Q., Guo, J.J., (2021). Microstructure characteristics and mechanical properties of Hf0.5Mo0.5NbTiZr refractory high entropy alloy with Cr addition, International Journal of Refractory Metals Hard Material, 95, 105405.
  • Gorr, B., Müller, F., Azim, M., Christ, H.J., Müller, T., Chen, H., Kauffmann, A., Heilmaier, M., (2017). High-Temperature Oxidation Behavior of Refractory High-Entropy Alloys: Effect of Alloy Composition, Oxidation of Metals, 88(3–4), 339–349.
  • Miracle, D., Senkov, O., (2017). A critical review of high entropy alloys and related concepts” Acta Materialia, 122, 448-511.
  • Han, Z.D., Luan, H.W., Liu, X., Chen, N., Li, X.Y., Shao, Y., Yao, K.F., (2018). Microstructures and mechanical properties of TixNbMoTaW refractory high-entropy alloys, Material Science and Engineering A, 712, 380-385. Harima, Y., Sakamoto, Y., Tanaka, S., Kawai, M., (1986). Validity of the geometric-progression formula in approximating gamma-ray buildup factor, Nuclear Science Engineering, 94(1), 24–35.
  • Harima, Y., 1993. An historical review and current status of buildup factor calculations and applications, Radiation Physics and Chemistry, 41(4–5), 631–672.
  • Hila, F.C., Astronomo, A.A., CAM, D., Jecong J.F.M., Javier-Hila A.M.V. et al., (2021). EpiXS: A Windows-based program for photon attenuation, dosimetry and shielding based on EPICS2017 (ENDF/B-VIII) and EPDL97 (ENDF/B-VI.8), Radiation Physics and Chemistry, 182, 109331.
  • Jackson, D.F., Hawkes, D.J., (1981). X-ray attenuation coefficients of elements and mixtures, Physics Reports, 70, 169–233.
  • Kareer, A., Waite, J.C., Li, B., Couet, A., Armstrong, D.E.J., Wilkinson, A.J., (2019). Short communication: Low activation, refractory, high entropy alloys for nuclear applications, Journal of Nuclear Material, 526, 151744.
  • Kurudirek, M., Kurucu, Y. (2020). Investigation of some nuclear engineering materials in terms of gamma ray buildup factors at experimental energies used in nuclear physics experiments. Radiation Effects and Defects in Solids, 175, 7-8, 640-656.
  • Li, T., Miao, J., Lu, Y., Wang, T., Li, T., (2022). Effect of Zr on the as-cast microstructure and mechanical properties of lightweight Ti2VNbMoZrx refractory high-entropy alloys, International Journal of Refractory Metals Hard Material, 103, 105762.
  • Manohara, S.R., Hanagodimath, S.M., (2007). Studies on effective atomic numbers and electron densities of essential amino acids in the energy range 1keV–100GeV, Nuclear Institution Methods Physics Research Section B, 258, 321-328.
  • Ostadhossein, F., Moitra, P., Gunaseelan, N., Nelappana, M., Lowe, C., Moghiseh, M., Butler, A., Ruiter, N., Mandalika, H., Tripathi, I., Misra, S.K., Pan, D. (2022). Hitchhiking probiotic vectors to deliver ultra-small hafnia nanoparticles for ‘Color’ gastrointestinal tract photon counting X-ray imaging, Nanoscale Horizon, 7, 533–542.
  • Sayyed, M.I., Mohammed, F.Q., Mahmoud, K.A., Lacomme, E., Kaky, K.M., et al., (2020). Evaluation of Radiation Shielding Features of Co and Ni-Based Superalloys Using MCNP-5 Code: Potential Use in Nuclear Safety, Applied Science, 10, 7680.
  • Senkov, O.N., Wilks, G.B., Miracle, D.B., Chuang, C.P., Liaw, P.K., (2010). Refractory high-entropy alloys, Intermetallics, 18(9), 1758–1765.
  • Senkov, O.N., Wilks, G.B., Scott, J.M., Miracle, D.B., (2011). Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys, Intermetallics, 19(5), 698-706.
  • Senkov, O.N., Miracle, D.B., Chaput, K.J., Couzinie, J.P., (2018). Development and exploration of refractory high entropy alloys—A review, Journal of Material Research, 33(19), 3092–3128.
  • Xiang, C., Han, E.H., Zhang, Z.M., Fu, H.M., Wang, J.Q., Zhang, H.F., et al., (2019). Design of single-phase high-entropy alloys composed of low thermal neutron absorption cross-section elements for nuclear power plant application, Intermetallics, 104, 143-53.
  • Yao, H.W., Qiao, J.W., Hawk, J.A., Zhou, H.F., Chen, M.W., Gao, M.C., (2017). Mechanical properties of refractory high-entropy alloys: Experiments and modeling, Journal of Alloy and Compounds, 696, 1139-1150. Ye, Y., Wang, Q., Lu, J., Liu, C., Yang, Y., (2016). High-entropy alloy: challenges and prospects, Material Today, 19(6), 349-362.
  • Yurchenko, N., Panina, E., Zherebtsov, S., Salishchev, G., Stepanov, N., (2018). Oxidation Behavior of Refractory AlNbTiVZr0.25 High-Entropy Alloy, Material, 11(12), 2526.
  • Zeyad, A.M., Hakeem, I.Y., Amin, M., Tayeh, B.A., Agwa, I.S., (2022). Effect of aggregate and fibre types on ultra-high-performance concrete designed for radiation shielding, Journal of Building Engineering, 58, 104960.
There are 29 citations in total.

Details

Primary Language Turkish
Journal Section Research Articles
Authors

Zeynep Aygun 0000-0002-2979-0283

Murat Aygün 0000-0002-4276-3511

Publication Date December 30, 2023
Submission Date January 11, 2023
Published in Issue Year 2023 Volume: 3 Issue: 2

Cite

APA Aygun, Z., & Aygün, M. (2023). RADIATION SHIELDING POTENTIALS OF Hf0.5Mo0.5NbTiZrCrX (x=0.1,0.3,0.5) REFRACTORY HIGH ENTROPY ALLOYS BY EPIXS. Rahva Teknik Ve Sosyal Araştırmalar Dergisi, 3(2), 83-95.