The issues of what Artificial Intelligence (AI) can and cannot do in the field of music are among the important topics that both music researchers and AI experts are curious about. This study offers a significant analysis within the context of the growing role of AI technologies in music composition and their impact on creative processes. It contributes to the literature by positioning AI as a complementary tool to the composer’s creativity and by enhancing the understanding of cultural adaptation processes. The study aims to identify the perceptual differences between AI and composer compositions, examine the musical and cultural foundations of these differences, and uncover the factors that influence the listener’s experience. In the research design, a mixed-method approach was adopted, combining qualitative and quantitative research methods. In the quantitative phase, a double-blind experimental design was employed to ensure that participants evaluated composer and AI works impartially. In the qualitative phase, participants’ opinions were gathered. The participants were 10 individuals aged between 19 and 25, with diverse cultural and educational backgrounds; 6 had received formal music education, while 4 were casual listeners. The data collection instruments included a structured interview form and the Assessment Scale for Perceptual Factors in Musical Works. During the research process, each participant evaluated two AI and two composer works in 20-minute standardized listening sessions. All listening sessions were conducted using professional audio equipment. The analysis revealed that composer works scored significantly higher than AI works across all categories (p<.05). Notable differences were observed, particularly in the categories of emotional depth (X composer = 4.6, X AI = 3.1) and memorability (Xcomposer = 4.4, XAI = 3.2). The study concluded that composer works were more effective than AI compositions in terms of emotional depth, structural coherence, and cultural resonance. Additionally, cultural background and music education emerged as significant factors shaping perceptual differences. Future research should broaden the participant pool and incorporate neurocognitive data to facilitate a deeper understanding of perceptual mechanisms. Furthermore, the development of AI systems for use in music should include the integration of Transformer and RNN-based advanced learning models, the implementation of traditional music theory principles, the enhancement of emotional expressiveness, the improvement of cultural adaptation capacities, and the refinement of real-time interaction mechanisms.
Ethics committee approval was obtained with Decision No. 2024/375 in accordance with the Social and Human Sciences Scientific Research and Publication Ethics Committee of R.T. Afyon Kocatepe University.
Thanks goes to the youth of the State Conservatory for their involvement. Many thanks to Özlem Folb for her valuable help in translating the article.
The issues of what Artificial Intelligence (AI) can and cannot do in the field of music are among the important topics that both music researchers and AI experts are curious about. This study offers a significant analysis within the context of the growing role of AI technologies in music composition and their impact on creative processes. It contributes to the literature by positioning AI as a complementary tool to the composer’s creativity and by enhancing the understanding of cultural adaptation processes. The study aims to identify the perceptual differences between AI and composer compositions, examine the musical and cultural foundations of these differences, and uncover the factors that influence the listener’s experience. In the research design, a mixed-method approach was adopted, combining qualitative and quantitative research methods. In the quantitative phase, a double-blind experimental design was employed to ensure that participants evaluated composer and AI works impartially. In the qualitative phase, participants’ opinions were gathered. The participants were 10 individuals aged between 19 and 25, with diverse cultural and educational backgrounds; 6 had received formal music education, while 4 were casual listeners. The data collection instruments included a structured interview form and the Assessment Scale for Perceptual Factors in Musical Works. During the research process, each participant evaluated two AI and two composer works in 20-minute standardized listening sessions. All listening sessions were conducted using professional audio equipment. The analysis revealed that composer works scored significantly higher than AI works across all categories (p<.05). Notable differences were observed, particularly in the categories of emotional depth (X composer = 4.6, X AI = 3.1) and memorability (Xcomposer = 4.4, XAI = 3.2). The study concluded that composer works were more effective than AI compositions in terms of emotional depth, structural coherence, and cultural resonance. Additionally, cultural background and music education emerged as significant factors shaping perceptual differences. Future research should broaden the participant pool and incorporate neurocognitive data to facilitate a deeper understanding of perceptual mechanisms. Furthermore, the development of AI systems for use in music should include the integration of Transformer and RNN-based advanced learning models, the implementation of traditional music theory principles, the enhancement of emotional expressiveness, the improvement of cultural adaptation capacities, and the refinement of real-time interaction mechanisms.
Ethics committee approval was obtained with Decision No. 2024/375 in accordance with the Social and Human Sciences Scientific Research and Publication Ethics Committee of R.T. Afyon Kocatepe University.
Thanks goes to the youth of the State Conservatory for their involvement. Many thanks to Özlem Folb for her valuable help in translating the article.
Primary Language | English |
---|---|
Subjects | Music Technology and Recording |
Journal Section | Original research |
Authors | |
Early Pub Date | December 30, 2024 |
Publication Date | December 30, 2024 |
Submission Date | October 2, 2024 |
Acceptance Date | December 30, 2024 |
Published in Issue | Year 2024 Volume: 12 Issue: 4 |
Yazarlarımızın editöryal süreçlerin aksamaması için editöryal emaillere 3 gün içinde yanıt vermeleri gerekmektedir.