Conference Paper
BibTex RIS Cite

Afet Müdahalesinde İHA'lar için Bir Önceliklendirme Analizi

Year 2025, Volume: 05 Issue: 01, 1 - 16, 31.07.2025

Abstract

Dünyada her yıl birçok doğal afet yaşanmaktadır. Afetler insanların temel ihtiyaçlarına ulaşmasını zorlaştırmakta ve öngörülemeyen can kayıplarına neden olabilmektedir. Bu nedenle afet durumlarında acil müdahale ve kaynak yönetimi kritik öneme sahiptir. Afet sonrasında ulaşım altyapısında ciddi hasarlar oluştuğu için yollar, köprüler ve demir yolu hatları kullanılamaz hale gelmekte, ekiplerin ve yardım malzemelerinin geleneksel yöntemlerle afet bölgesine ulaşması zorlaşmakta, tehlike yaratmakta ve can kaybını artırmaktadır. Ulaşımın mümkün olmadığı durumlarda ise insansız hava araçlarının (İHA) afet bölgesine erişimi artırması afet zamanlarında ciddi bir avantaj sağlamaktadır. İHA'lar geleneksel yöntemlerle yapılan ulaşıma göre afet anında gecikmelere neden olabilecek olası çevresel etkileri azaltmakta, tehlikeli durumlarda görev alabilmektedir, ilaç ve gıda temini sağlayabilmekte ve afetzedelere ihtiyaçların hızlı ve güvenli bir şekilde ulaştırılmasını sağlayabilmektedir. Bu çalışmada, afet sonrası ihtiyaç duyulan ilaç ve gıdayı temin edebilecek İHA'lar, altı ana kriter ve yirmi bir alt kriter belirlenen çok kriterli karar verme (ÇKKV) yaklaşımı kullanılarak önceliklendirilmiştir. Afet zamanlarında öncelikli olarak kullanılmak üzere yedi İHA alternatifi analiz edilmiştir. Kriterlerin ağırlıklandırılması için Analitik Hiyerarşi Süreci (AHP) yöntemi benimsenmiş ve alternatiflerin değerlendirilmesi ve önceliklendirilmesi için Çözüme Ortalama Uzaklık (EDAS) yöntemi kullanılmıştır. Bu çalışma, afet durumlarında ilaç ve gıda temini için EDAS yöntemini kullanan ilk çalışmadır. Çalışmanın sonuçlarını karşılaştırmak için Karmaşık Orantılı Değerlendirme (COPRAS) ve İdeal Çözümlere Benzerlik ile Sıra Tercihi Tekniği (TOPSIS) çok kriterli karar verme yöntemlerinden de yararlanılmıştır. Kriter ağırlıklarının alternatiflerin sıralaması üzerindeki etkisini belirlemek için duyarlılık analizleri yapılmıştır. Karşılaştırma ve duyarlılık analizleri yoluyla sonuçların güvenilirliği ve sağlamlığı araştırılmıştır.

References

  • [1] S. Değirmen, F. Çavdur, and A. Sebatlı, “AFET OPERASYONLARI YÖNETİMİNDE İNSANSIZ HAVA ARAÇLARININ KULLANIMI: GÖZETLEME OPERASYONLARI İÇİN ROTA PLANLAMA,” Uludağ Üniversitesi Mühendislik Fakültesi Derg., vol. 23, no. 4, pp. 11–26, Dec. 2018, doi: 10.17482/UUMFD.455146.
  • [2] S. Firat and R. Dabak, “AFETLERDE YARDIM MALZEMELERİ ULAŞTIRMASINDA YAŞANAN SORUNLAR; İNSANSIZ HAVA ARACI KULLANIMI,” Meriç uluslararası Sos. ve Strat. araştırmalar Derg., vol. 7, no. Özel Sayı, pp. 35–58, Oct. 2023, doi: 10.54707/MERIC.1325462.
  • [3] M. B. Gürbüz, Y. Erbaş, S. Ada, E. Karaşahin, E. Güven, and T. Eren, “TARIMDA DRONE SEÇİMİ VE ÇİZELGELEMESİ: KIRIKKALE İLİ ÖRNEĞİ,” Int. Conf. Appl. Eng. Nat. Sci., vol. 1, no. 1, pp. 838–869, Jul. 2023, doi: 10.59287/ICAENS.1103.
  • [4] M. Kara, R. Yumuşak, and T. Eren, “Anız Yangınlarına Müdahale için İtfaiye Drone Seçimi: Giresun Örneği,” J. Aviat. Res., vol. 5, no. 1, pp. 1–15, Feb. 2023, doi: 10.51785/JAR.1180613.
  • [5] F. Ecer, İ. Y. Ögel, R. Krishankumar, and E. B. Tirkolaee, “The q-rung fuzzy LOPCOW-VIKOR model to assess the role of unmanned aerial vehicles for precision agriculture realization in the Agri-Food 4.0 era,” Artif. Intell. Rev., vol. 56, no. 11, pp. 13373–13406, Nov. 2023, doi: 10.1007/S10462-023-10476-6/FIGURES/7.
  • [6] V. Garg, S. Niranjan, V. Prybutok, T. Pohlen, and D. Gligor, “Drones in last-mile delivery: A systematic review on Efficiency, Accessibility, and Sustainability,” Transp. Res. Part D Transp. Environ., vol. 123, p. 103831, Oct. 2023, doi: 10.1016/J.TRD.2023.103831.
  • [7] V. Silva, A. Amaral, and T. Fontes, “Towards sustainable last-mile logistics: A decision-making model for complex urban contexts,” Sustain. Cities Soc., vol. 96, p. 104665, Sep. 2023, doi: 10.1016/J.SCS.2023.104665.
  • [8] D. Banik, N. U. Ibne Hossain, K. Govindan, F. Nur, and K. Babski-Reeves, “A decision support model for selecting unmanned aerial vehicle for medical supplies: context of COVID-19 pandemic,” Int. J. Logist. Manag., vol. 34, no. 2, pp. 473–496, Mar. 2023, doi: 10.1108/IJLM-06-2021-0334/FULL/PDF.
  • [9] D. Z. Tešić, D. I. Božanić, and B. D. Miljković, “Application of MCDM DIBR-Rough Mabac Model for Selection of Drone for Use in Natural Disaster Caused by Flood,” Lect. Notes Networks Syst., vol. 659 LNNS, pp. 151–169, 2023, doi: 10.1007/978-3-031-29717-5_11.
  • [10] N. U. I. Hossain, N. Sakib, and K. Govindan, “Assessing the performance of unmanned aerial vehicle for logistics and transportation leveraging the Bayesian network approach,” Expert Syst. Appl., vol. 209, Dec. 2022, doi: 10.1016/J.ESWA.2022.118301.
  • [11] H. Zahir, M. S. Fathi, and A. F. Tharima, “Strategic framework of using drone in cities disaster response,” in The 9th AUN/SEED-Net Regional Conference on Natural Disaster (RCND 2021), 2021.
  • [12] A. Aktas and M. Kabak, “An Application of Interval Valued Pythagorean Fuzzy WASPAS Method for Drone Selection to Last Mile Delivery Operations,” pp. 179–191, 2022, doi: 10.1007/978-3-030-98872-2_12.
  • [13] M. Kara et al., “Acil Yardım Müdahalesi Yapan Birimler için Çok Ölçütlü Karar Verme Yöntemleri ile Kargo Drone Seçimi,” Türkiye İnsansız Hava Araçları Derg., vol. 4, no. 2, pp. 38–45, Dec. 2022, doi: 10.51534/TIHA.1148876.
  • [14] A. Rejeb, K. Rejeb, S. Simske, and H. Treiblmaier, “Humanitarian Drones: A Review and Research Agenda,” Internet of Things, vol. 16, p. 100434, Dec. 2021, doi: 10.1016/J.IOT.2021.100434.
  • [15] M. Sohaib Khan, S. I. Ali Shah, A. Javed, N. Mumtaz Qadri, and N. Hussain, “Drone selection using multi-criteria decision-making methods,” Proc. 18th Int. Bhurban Conf. Appl. Sci. Technol. IBCAST 2021, pp. 256–270, Jan. 2021, doi: 10.1109/IBCAST51254.2021.9393291.
  • [16] C. H. Fu, M. W. Tsao, L. P. Chi, and Z. Y. Zhuang, “On the Dominant Factors of Civilian-Use Drones: A Thorough Study and Analysis of Cross-Group Opinions Using a Triple Helix Model (THM) with the Analytic Hierarchy Process (AHP),” Drones 2021, Vol. 5, Page 46, vol. 5, no. 2, p. 46, May 2021, doi: 10.3390/DRONES5020046.
  • [17] S. Ergün, P. Usta, S. Z. Alparslan Gök, and G. W. Weber, “A game theoretical approach to emergency logistics planning in natural disasters,” Ann. Oper. Res., pp. 1–14, May 2021, doi: 10.1007/S10479-021-04099-9/FIGURES/4.
  • [18] F. Nur, A. Alrahahleh, R. Burch, K. Babski-Reeves, and M. Marufuzzaman, “Last mile delivery drone selection and evaluation using the interval-valued inferential fuzzy TOPSIS,” J. Comput. Des. Eng., vol. 7, no. 4, pp. 397–411, Aug. 2020, doi: 10.1093/JCDE/QWAA033.
  • [19] E. J. Glantz, “UAV Use in Disaster Management.,” pp. 914–921, 2020.
  • [20] S. Dožić, “Multi-criteria decision making methods: Application in the aviation industry,” J. Air Transp. Manag., vol. 79, p. 101683, Aug. 2019, doi: 10.1016/J.JAIRTRAMAN.2019.101683.
  • [21] Y. Ozdemir and H. Basligil, “Aircraft selection using fuzzy ANP and the generalized choquet integral method: The Turkish airlines case,” J. Intell. Fuzzy Syst., vol. 31, no. 1, pp. 589–600, Jun. 2016, doi: 10.3233/IFS-162172.
  • [22] E. Atmaca, E. Aktaş, and H. N. Öztürk, “Evaluated Post-Disaster and Emergency Assembly Areas Using Multi-Criteria Decision-Making Techniques: A Case Study of Turkey,” Sustain. 2023, Vol. 15, Page 8350, vol. 15, no. 10, p. 8350, May 2023, doi: 10.3390/SU15108350.
  • [23] T. L. Saaty, “Decision-making with the AHP: Why is the principal eigenvector necessary,” Eur. J. Oper. Res., vol. 145, no. 1, pp. 85–91, Feb. 2003, doi: 10.1016/S0377-2217(02)00227-8.
  • [24] T. L. Saaty, “Decision making with the Analytic Hierarchy Process,” Int. J. Serv. Sci., vol. 1, no. 1, 2008, doi: 10.1504/IJSSCI.2008.017590.
  • [25] T. L. Saaty, Fundamentals of decision making and priority theory with the analytic hierarchy process, vol. 6. RWS publications, 2000.
  • [26] T. L. Saaty, “A scaling method for priorities in hierarchical structures,” J. Math. Psychol., vol. 15, no. 3, pp. 234–281, Jun. 1977, doi: 10.1016/0022-2496(77)90033-5.
  • [27] A. Ulutaş and D. Çelik, “TRANSPALET SEÇİMİ PROBLEMİNİN AHP VE EDAS YÖNTEMLERİ İLE DEĞERLENDİRİLMESİ,” Bus. Manag. Stud. AN Int. J., vol. 7, no. 2, 2019.
  • [28] M. K. Ghorabaee, E. K. Zavadskas, L. Olfat, and Z. Turskis, “Multi-Criteria Inventory Classification Using a New Method of Evaluation Based on Distance from Average Solution (EDAS),” Informatica, vol. 26, no. 3, pp. 435–451, Jan. 2015, doi: 10.15388/INFORMATICA.2015.57.
  • [29] A. Özbek and M. Engür, “ÇOK KRİTERLİ KARAR VERME YÖNTEMLERİYLE ÖĞRENCİ İŞLERİ OTOMASYON SEÇİMİ,” Afyon Kocatepe Üniversitesi İktisadi ve İdari Bilim. Fakültesi Derg., vol. 21, no. 1, pp. 1–18, Jun. 2019, doi: 10.33707/AKUIIBFD.515581.
  • [30] C.-L. Hwang and K. Yoon, Multiple Attributes Decision Making Methods And Applications. Berlin: Springer, 1981.
  • [31] A. Karaşan, İ. Kaya, and M. Erdoğan, “Location selection of electric vehicles charging stations by using a fuzzy MCDM method: a case study in Turkey,” Neural Comput. Appl., 2018, doi: 10.1007/s00521-018-3752-2.
  • [32] E. Kazimieras Zavadskas, A. Kaklauskas, T. Vilutiene, E. Kazimieras ZAVADSKAS, and T. Vilutienė, “Multicriteria evaluation of apartment blocks maintenance contractors: Lithuanian case study,” Int. J. Strateg. Prop. Manag., vol. 13, no. 4, pp. 319–338, 2009, doi: 10.3846/1648-715X.2009.13.319-338.
  • [33] S. B. Patil, T. A. Patole, R. S. Jadhav, S. S. Suryawanshi, and S. J. Raykar, “Complex Proportional Assessment (COPRAS) based Multiple-Criteria Decision Making (MCDM) paradigm for hard turning process parameters,” Mater. Today Proc., vol. 59, pp. 835–840, Jan. 2022, doi: 10.1016/J.MATPR.2022.01.142.
  • [34] Y. Tedarik et al., “Yeşil Tedarik Zinciri Yönetiminde Çok Kriterli Karar Verme: Otomotiv Ana Sanayi Örneği,” Eskişehir Osmangazi Üniversitesi İktisadi ve İdari Bilim. Derg., vol. 14, no. 3, pp. 675–698, Dec. 2019, doi: 10.17153/OGUIIBF.491356.

A Prioritization Analysis for UAVs in Disaster Response

Year 2025, Volume: 05 Issue: 01, 1 - 16, 31.07.2025

Abstract

Many natural disasters happen in the world every year. Disasters make it difficult for people to reach their basic needs and can cause unpredictable loss of life. For this reason, emergency response and resource management are of critical importance in case of disaster. Since there is serious damage to the transportation infrastructure after the disaster, the roads, bridges and railway lines become unusable, making it difficult for the teams and relief materials to reach the disaster area by traditional methods, creating danger and increasing the loss of life. In cases where transportation is not possible, the fact that unmanned aerial vehicles (UAVs) increase accessibility to the disaster area creates a serious advantage in disaster times. UAVs reduce the possible environmental effects causing delays in the event of a disaster compared to transportation by traditional methods, can take part in dangerous conditions, can provide medicines and food supply, and can provide fast and safe transportation of needs to disaster victims. In this study, UAVs that can provide the medicine and food needed after a disaster are prioritized by using a multi-criteria decision-making (MCDM) approach with six main criteria and twenty-one sub-criteria determined. Seven UAV alternatives have been analyzed to use in disaster times primarily. Analytical Hierarchy Process (AHP) method has been adopted to weigh the criteria and Average Distance to Solution (EDAS) method has been used for the evaluation and prioritization of alternatives. This study is the first to use the EDAS method for the supply of medicine and food in disaster situations. In order to compare the results of the study, Complex Proportional Assessment (COPRAS) and Technique for Order Preference by Similarity to Ideal Solutions (TOPSIS) multi-criteria decision-making methods have been also utilized. Sensitivity analyses have been performed to determine the effect of criteria weights on the ranking of alternatives. The reliability and robustness of the results have been investigated through comparison and sensitivity analyses.

References

  • [1] S. Değirmen, F. Çavdur, and A. Sebatlı, “AFET OPERASYONLARI YÖNETİMİNDE İNSANSIZ HAVA ARAÇLARININ KULLANIMI: GÖZETLEME OPERASYONLARI İÇİN ROTA PLANLAMA,” Uludağ Üniversitesi Mühendislik Fakültesi Derg., vol. 23, no. 4, pp. 11–26, Dec. 2018, doi: 10.17482/UUMFD.455146.
  • [2] S. Firat and R. Dabak, “AFETLERDE YARDIM MALZEMELERİ ULAŞTIRMASINDA YAŞANAN SORUNLAR; İNSANSIZ HAVA ARACI KULLANIMI,” Meriç uluslararası Sos. ve Strat. araştırmalar Derg., vol. 7, no. Özel Sayı, pp. 35–58, Oct. 2023, doi: 10.54707/MERIC.1325462.
  • [3] M. B. Gürbüz, Y. Erbaş, S. Ada, E. Karaşahin, E. Güven, and T. Eren, “TARIMDA DRONE SEÇİMİ VE ÇİZELGELEMESİ: KIRIKKALE İLİ ÖRNEĞİ,” Int. Conf. Appl. Eng. Nat. Sci., vol. 1, no. 1, pp. 838–869, Jul. 2023, doi: 10.59287/ICAENS.1103.
  • [4] M. Kara, R. Yumuşak, and T. Eren, “Anız Yangınlarına Müdahale için İtfaiye Drone Seçimi: Giresun Örneği,” J. Aviat. Res., vol. 5, no. 1, pp. 1–15, Feb. 2023, doi: 10.51785/JAR.1180613.
  • [5] F. Ecer, İ. Y. Ögel, R. Krishankumar, and E. B. Tirkolaee, “The q-rung fuzzy LOPCOW-VIKOR model to assess the role of unmanned aerial vehicles for precision agriculture realization in the Agri-Food 4.0 era,” Artif. Intell. Rev., vol. 56, no. 11, pp. 13373–13406, Nov. 2023, doi: 10.1007/S10462-023-10476-6/FIGURES/7.
  • [6] V. Garg, S. Niranjan, V. Prybutok, T. Pohlen, and D. Gligor, “Drones in last-mile delivery: A systematic review on Efficiency, Accessibility, and Sustainability,” Transp. Res. Part D Transp. Environ., vol. 123, p. 103831, Oct. 2023, doi: 10.1016/J.TRD.2023.103831.
  • [7] V. Silva, A. Amaral, and T. Fontes, “Towards sustainable last-mile logistics: A decision-making model for complex urban contexts,” Sustain. Cities Soc., vol. 96, p. 104665, Sep. 2023, doi: 10.1016/J.SCS.2023.104665.
  • [8] D. Banik, N. U. Ibne Hossain, K. Govindan, F. Nur, and K. Babski-Reeves, “A decision support model for selecting unmanned aerial vehicle for medical supplies: context of COVID-19 pandemic,” Int. J. Logist. Manag., vol. 34, no. 2, pp. 473–496, Mar. 2023, doi: 10.1108/IJLM-06-2021-0334/FULL/PDF.
  • [9] D. Z. Tešić, D. I. Božanić, and B. D. Miljković, “Application of MCDM DIBR-Rough Mabac Model for Selection of Drone for Use in Natural Disaster Caused by Flood,” Lect. Notes Networks Syst., vol. 659 LNNS, pp. 151–169, 2023, doi: 10.1007/978-3-031-29717-5_11.
  • [10] N. U. I. Hossain, N. Sakib, and K. Govindan, “Assessing the performance of unmanned aerial vehicle for logistics and transportation leveraging the Bayesian network approach,” Expert Syst. Appl., vol. 209, Dec. 2022, doi: 10.1016/J.ESWA.2022.118301.
  • [11] H. Zahir, M. S. Fathi, and A. F. Tharima, “Strategic framework of using drone in cities disaster response,” in The 9th AUN/SEED-Net Regional Conference on Natural Disaster (RCND 2021), 2021.
  • [12] A. Aktas and M. Kabak, “An Application of Interval Valued Pythagorean Fuzzy WASPAS Method for Drone Selection to Last Mile Delivery Operations,” pp. 179–191, 2022, doi: 10.1007/978-3-030-98872-2_12.
  • [13] M. Kara et al., “Acil Yardım Müdahalesi Yapan Birimler için Çok Ölçütlü Karar Verme Yöntemleri ile Kargo Drone Seçimi,” Türkiye İnsansız Hava Araçları Derg., vol. 4, no. 2, pp. 38–45, Dec. 2022, doi: 10.51534/TIHA.1148876.
  • [14] A. Rejeb, K. Rejeb, S. Simske, and H. Treiblmaier, “Humanitarian Drones: A Review and Research Agenda,” Internet of Things, vol. 16, p. 100434, Dec. 2021, doi: 10.1016/J.IOT.2021.100434.
  • [15] M. Sohaib Khan, S. I. Ali Shah, A. Javed, N. Mumtaz Qadri, and N. Hussain, “Drone selection using multi-criteria decision-making methods,” Proc. 18th Int. Bhurban Conf. Appl. Sci. Technol. IBCAST 2021, pp. 256–270, Jan. 2021, doi: 10.1109/IBCAST51254.2021.9393291.
  • [16] C. H. Fu, M. W. Tsao, L. P. Chi, and Z. Y. Zhuang, “On the Dominant Factors of Civilian-Use Drones: A Thorough Study and Analysis of Cross-Group Opinions Using a Triple Helix Model (THM) with the Analytic Hierarchy Process (AHP),” Drones 2021, Vol. 5, Page 46, vol. 5, no. 2, p. 46, May 2021, doi: 10.3390/DRONES5020046.
  • [17] S. Ergün, P. Usta, S. Z. Alparslan Gök, and G. W. Weber, “A game theoretical approach to emergency logistics planning in natural disasters,” Ann. Oper. Res., pp. 1–14, May 2021, doi: 10.1007/S10479-021-04099-9/FIGURES/4.
  • [18] F. Nur, A. Alrahahleh, R. Burch, K. Babski-Reeves, and M. Marufuzzaman, “Last mile delivery drone selection and evaluation using the interval-valued inferential fuzzy TOPSIS,” J. Comput. Des. Eng., vol. 7, no. 4, pp. 397–411, Aug. 2020, doi: 10.1093/JCDE/QWAA033.
  • [19] E. J. Glantz, “UAV Use in Disaster Management.,” pp. 914–921, 2020.
  • [20] S. Dožić, “Multi-criteria decision making methods: Application in the aviation industry,” J. Air Transp. Manag., vol. 79, p. 101683, Aug. 2019, doi: 10.1016/J.JAIRTRAMAN.2019.101683.
  • [21] Y. Ozdemir and H. Basligil, “Aircraft selection using fuzzy ANP and the generalized choquet integral method: The Turkish airlines case,” J. Intell. Fuzzy Syst., vol. 31, no. 1, pp. 589–600, Jun. 2016, doi: 10.3233/IFS-162172.
  • [22] E. Atmaca, E. Aktaş, and H. N. Öztürk, “Evaluated Post-Disaster and Emergency Assembly Areas Using Multi-Criteria Decision-Making Techniques: A Case Study of Turkey,” Sustain. 2023, Vol. 15, Page 8350, vol. 15, no. 10, p. 8350, May 2023, doi: 10.3390/SU15108350.
  • [23] T. L. Saaty, “Decision-making with the AHP: Why is the principal eigenvector necessary,” Eur. J. Oper. Res., vol. 145, no. 1, pp. 85–91, Feb. 2003, doi: 10.1016/S0377-2217(02)00227-8.
  • [24] T. L. Saaty, “Decision making with the Analytic Hierarchy Process,” Int. J. Serv. Sci., vol. 1, no. 1, 2008, doi: 10.1504/IJSSCI.2008.017590.
  • [25] T. L. Saaty, Fundamentals of decision making and priority theory with the analytic hierarchy process, vol. 6. RWS publications, 2000.
  • [26] T. L. Saaty, “A scaling method for priorities in hierarchical structures,” J. Math. Psychol., vol. 15, no. 3, pp. 234–281, Jun. 1977, doi: 10.1016/0022-2496(77)90033-5.
  • [27] A. Ulutaş and D. Çelik, “TRANSPALET SEÇİMİ PROBLEMİNİN AHP VE EDAS YÖNTEMLERİ İLE DEĞERLENDİRİLMESİ,” Bus. Manag. Stud. AN Int. J., vol. 7, no. 2, 2019.
  • [28] M. K. Ghorabaee, E. K. Zavadskas, L. Olfat, and Z. Turskis, “Multi-Criteria Inventory Classification Using a New Method of Evaluation Based on Distance from Average Solution (EDAS),” Informatica, vol. 26, no. 3, pp. 435–451, Jan. 2015, doi: 10.15388/INFORMATICA.2015.57.
  • [29] A. Özbek and M. Engür, “ÇOK KRİTERLİ KARAR VERME YÖNTEMLERİYLE ÖĞRENCİ İŞLERİ OTOMASYON SEÇİMİ,” Afyon Kocatepe Üniversitesi İktisadi ve İdari Bilim. Fakültesi Derg., vol. 21, no. 1, pp. 1–18, Jun. 2019, doi: 10.33707/AKUIIBFD.515581.
  • [30] C.-L. Hwang and K. Yoon, Multiple Attributes Decision Making Methods And Applications. Berlin: Springer, 1981.
  • [31] A. Karaşan, İ. Kaya, and M. Erdoğan, “Location selection of electric vehicles charging stations by using a fuzzy MCDM method: a case study in Turkey,” Neural Comput. Appl., 2018, doi: 10.1007/s00521-018-3752-2.
  • [32] E. Kazimieras Zavadskas, A. Kaklauskas, T. Vilutiene, E. Kazimieras ZAVADSKAS, and T. Vilutienė, “Multicriteria evaluation of apartment blocks maintenance contractors: Lithuanian case study,” Int. J. Strateg. Prop. Manag., vol. 13, no. 4, pp. 319–338, 2009, doi: 10.3846/1648-715X.2009.13.319-338.
  • [33] S. B. Patil, T. A. Patole, R. S. Jadhav, S. S. Suryawanshi, and S. J. Raykar, “Complex Proportional Assessment (COPRAS) based Multiple-Criteria Decision Making (MCDM) paradigm for hard turning process parameters,” Mater. Today Proc., vol. 59, pp. 835–840, Jan. 2022, doi: 10.1016/J.MATPR.2022.01.142.
  • [34] Y. Tedarik et al., “Yeşil Tedarik Zinciri Yönetiminde Çok Kriterli Karar Verme: Otomotiv Ana Sanayi Örneği,” Eskişehir Osmangazi Üniversitesi İktisadi ve İdari Bilim. Derg., vol. 14, no. 3, pp. 675–698, Dec. 2019, doi: 10.17153/OGUIIBF.491356.
There are 34 citations in total.

Details

Primary Language English
Subjects Multiple Criteria Decision Making
Journal Section Research Article
Authors

Melike Erdoğan 0000-0003-0329-8562

Ayşegül Koşak 0009-0001-7725-1217

Publication Date July 31, 2025
Submission Date October 15, 2024
Acceptance Date July 10, 2025
Published in Issue Year 2025 Volume: 05 Issue: 01

Cite

IEEE M. Erdoğan and A. Koşak, “A Prioritization Analysis for UAVs in Disaster Response”, Researcher, vol. 05, no. 01, pp. 1–16, 2025.

The journal "Researcher: Social Sciences Studies" (RSSS), which started its publication life in 2013, continues its activities under the name of "Researcher" as of August 2020, under Ankara Bilim University.
It is an internationally indexed, nationally refereed, scientific and electronic journal that publishes original research articles aiming to contribute to the fields of Engineering and Science in 2021 and beyond.
The journal is published twice a year, except for special issues.
Candidate articles submitted for publication in the journal can be written in Turkish and English. Articles submitted to the journal must not have been previously published in another journal or sent to another journal for publication.