Review
BibTex RIS Cite

BİYOAEROJELLER ve ARAŞTIRMA ALANLARI

Year 2022, Volume: 3 Issue: 1, 10 - 16, 13.09.2022

Abstract

Aerojeller sahip oldukları eşsiz fizikokimyasal özelliklerinden dolayı (düsük yoğunluğa, termal iletkenliğe, kırılma indisine, ses hızına, dielektrik sabitine ve geniş yüzey alanına sahip nano gözenekli üç boyutlu ağ yapılar) son yıllarda en çok ilgi çeken malzemelerdir. Çıkış monomerlerine göre üç farklı sınıfa ayrılır; organik, inorganik ve hibrid aerojeller. Bu derlemede biyoaerojeller anlatım için seçilmiştir. Biyoaerojeller monomerlerine göre (protein, karbohidrat, müsilaj) organik aerojellerdir; Bu derlemenin amacı biyoaerojeller (protein, karbohidrat, müsilaj) ve farklı alanlardaki uygulamaları ve son yıllarda yapılan çalışmalarla ilgili bilgi vermektir.

References

  • [1] Smirnova, I., & Gurikov, P. (2018). Aerogel production: Current status, research directions, and future opportunities. The Journal of Supercritical Fluids, 134, 228-233.
  • [2] Salimian, S., Zadhoush, A., Naeimirad, M., Kotek, R., & Ramakrishna, S. (2018). A review on aerogel: 3D nanoporous structured fillers in polymer‐based nanocomposites. Polymer Composites, 39(10), 3383-3408.
  • [3] Zheng, Q., Tian, Y., Ye, F., Zhou, Y., & Zhao, G. (2020). Fabrication and application of starch-based aerogel: technical strategies. Trends in Food Science & Technology, 99, 608-620.
  • [4] Yang, J., Li, Y., Zheng, Y., Xu, Y., Zheng, Z., Chen, X., & Liu, W. (2019). Versatile aerogels for sensors. Small, 15(41), 1902826.
  • [5] Abdullah, Zou, C., Farooq, S., Walayat, N., Zhang, H., Faieta, M., Pittia, P., Huang, Q. (2022). Bio-aerogels: Fabrication, properties and food applications. Critical Reviews in Food Science and Nutrition, 1-23.
  • [6] Ganesan, K., Budtova, T., Ratke, L., Gurikov, P., Baudron, V., Preibisch, I., Niemyer, P., Smirnova, I., Milow, B. (2018). Review on the production of polysaccharide aerogel particles. Materials, 11(11), 2144.
  • [7] Guastaferro, M., Reverchon, E., Baldino, L. (2021). Agarose, alginate and chitosan nanostructured aerogels for pharmaceutical applications: A short review. Frontiers in Bioengineering and Biotechnology, 9.
  • [8] Selvasekaran, P., Chidambaram, R. (2021). Food-grade aerogels obtained from polysaccharides, proteins, and seed mucilages: Role as a carrier matrix of functional food ingredients. Trends in Food Science & Technology, 112, 455-470.
  • [9] El-Naggar, M. E., Othman, S. I., Allam, A. A., & Morsy, O. M. (2020). Synthesis, drying process and medical application of polysaccharide-based aerogels. International Journal of Biological Macromolecules, 145, 1115-1128.
  • [10] Okutucu, B. (2021). The medical applications of biobased aerogels: ‘Natural aerogels for medical usage’. Medical Devices & Sensors, 4(1), e10168.
  • [11] Kleemann, C., Selmer, I., Smirnova, I., & Kulozik, U. (2018). Tailor made protein based aerogel particles from egg white protein, whey protein isolate and sodium caseinate: Influence of the preceding hydrogel characteristics. Food Hydrocolloids, 83, 365-374.
  • [12] Cortez-Trejo, M. C., Gaytán-Martínez, M., Reyes-Vega, M. L., & Mendozaa, S. (2021). Protein-gum-based gels: Effect of gum addition on microstructure, rheological properties, and water retention capacity. Trends in Food Science & Technology, 116, 303-317.
  • [13] Andlinger, D. J., Bornkeßel, A. C., Jung, I., Schroeter, B., Smirnova, I., & Kulozik, U. (2021). Microstructures of potato protein hydrogels and aerogels produced by thermal crosslinking and supercritical drying. Food Hydrocolloids, 112, 106305.
  • [14] Betz, M., García-González, C. A., Subrahmanyam, R. P., Smirnova, I., & Kulozik, U. (2012). Preparation of novel whey protein-based aerogels as drug carriers for life science applications. Journal of Supercritical Fluids, 72, 111–119.
  • [15] Ahmadi, M., Madadlou, A., & Saboury, A. A. (2016). Whey protein aerogel as blended with cellulose crystalline particles or loaded with fish oil. Food Chemistry, 196, 1016–1022.
  • [16] Selmer, I., Kleemann, C., Kulozik, U., Heinrich, S., & Smirnova, I. (2015). Development of egg white protein aerogels as new matrix material for microencapsulation in food. Journal of Supercritical Fluids, 106, 42–49.
  • [17] Manzocco, L., Plazzotta, S., Powell, J., de Vries, A., Rousseau, D., & Calligaris, S. (2022). Structural characterisation and sorption capability of whey protein aerogels obtained by freeze-drying or supercritical drying. Food Hydrocolloids, 122, 107117.
  • [18] Kleemann, C., Schuster, R., Rosenecker, E., Selmer, I., Smirnova, I., & Kulozik, U. (2020). In-vitro-digestion and swelling kinetics of whey protein, egg white protein and sodium caseinate aerogels. Food Hydrocolloids, 101, 105534.
  • [19] Selmer, I., Karnetzke, J., Kleemann, C., Lehtonen, M., Mikkonen, K. S., Kulozik, U., & Smirnova, I. (2019). Encapsulation of fish oil in protein aerogel micro-particles. Journal of Food Engineering, 260, 1–11.
  • [20] Menshutina, N. V., Lovskaya, D. D., Bezchasnyuk, A. N., & Grigoryeva, N. V. (2019). The process of egg protein aerogels production. International Multidisciplinary Scientific GeoConference: Surveying Geology and Mining Ecology Management: SGEM, 19(6.1), 459–465.
  • [21] Jaberi, R., Pedram Nia, A., Naji-Tabasi, S., Elhamirad, A. H., & Shafafi Zenoozian, M. (2020). Rheological and structural properties of oleogel base on soluble complex of egg white protein and xanthan gum. Journal of Texture Studies, 51(6), 925–936.
  • [22] Comin, L. M., Temelli, F., & Saldaña, M. D. (2012). Barley β-glucan aerogels as a carrier for flax oil via supercritical CO2. Journal of Food Engineering, 111(4), 625–631.
  • [23] Dogenski, M., Navarro-Díaz, H. J., de Oliveira, J. V., & Ferreira, S. R. S. (2020). Properties of starch-based aerogels incorporated with agar or microcrystalline cellulose. Food Hydrocolloids, 108, 10633.
  • [24] De Marco, I., Baldino, L., Cardea, S., & Reverchon, E. (2015). Supercritical gel drying for the production of starch aerogels for delivery systems. Chemical Engineering Transactions, 43, 307–312.
  • [25] Druel, L., Bardl, R., Vorwerg, W., & Budtova, T. (2017). Starch Aerogels: A Member of the Family of Thermal Superinsulating Materials. Biomacromolecules, 18(12), 4232–4239.
  • [26] Arboleda, J. C., Hughes, M., Lucia, L. A., Laine, J., Ekman, K., & Rojas, O. J. (2013). Soy protein-nanocellulose composite aerogels. Cellulose, 20(5), 2417–2426.
  • [27] Chang, X., Chen, D., & Jiao, X. (2010). Starch-derived carbon aerogels with high-performance for sorption of cationic dyes. Polymer, 51(16), 3801–3807.
  • [28] Zha, F., Rao, J., & Chen, B. (2021). Plant-based food hydrogels: Constitutive characteristics, formation, and modulation. Current Opinion in Colloid and Interface Science, 56, 101505.
  • [29] Kumar, A., Sood, A., & Han, S. S. (2022). Poly (vinyl alcohol)-alginate as potential matrix for various applications: A focused review. Carbohydrate Polymers, 277, 118881.
  • [30] Groult, S., Buwalda, S., & Budtova, T. (2021). Pectin hydrogels, aerogels, cryogels and xerogels: Influence of drying on structural and release properties. European Polymer Journal, 149, 110386.
  • [31] Wu, W., Wu, Y., Lin, Y., & Shao, P. (2022). Facile fabrication of multifunctional citrus pectin aerogel fortified with cellulose nanofiber as controlled packaging of edible fungi. Food Chemistry, 374, 131763.
  • [32] Budtova, T. (2019). Cellulose II aerogels: a review. Cellulose, 26(1), 81–121.
  • [33] Ciftci, D., Ubeyitogullari, A., Huerta, R. R., Ciftci, O. N., Flores, R. A., & Saldaña, M. D. A. (2017). Lupin hull cellulose nanofiber aerogel preparation by supercritical CO2 and freeze drying. Journal of Supercritical Fluids, 127, 137–145.
  • [34] Fontes-Candia, C., Erboz, E., Martínez-Abad, A., López-Rubio, A., & Martínez-Sanz, M. (2019). Superabsorbent food packaging bioactive cellulose-based aerogels from Arundo donax waste biomass. Food Hydrocolloids, 96, 151–160.
  • [35] Wei, G., Zhang, J., Usuelli, M., Zhang, X., Liu, B., & Mezzenga, R. (2022). Biomass vs inorganic and plastic-based aerogels: Structural design, functional tailoring, resource-efficient applications and sustainability analysis. Progress in Materials Science, 125, 100915.
  • [36] Yue, X., Wu, H., Zhang, T., Yang, D., & Qiu, F. (2022). Superhydrophobic waste paper-based aerogel as a thermal insulating cooler for building. Energy, 245, 123287.
  • [37] Freitas, L. C., Barbosa, J. R., da Costa, A. L. C., Bezerra, F. W. F., Pinto, R. H. H., & Carvalho Junior, R. N. D. (2021). From waste to sustainable industry: How can agro-industrial wastes help in the development of new products? Resources, Conservation and Recycling, 169, 105466.
  • [38] Kringel, D. H., Dias, A. R. G., Zavareze, E. D. R., & Gandra, E. A. (2020). Fruit Wastes as Promising Sources of Starch: Extraction, Properties, and Applications. Starch/Staerke, 72(3–4), 190-200.
  • [39] Musacchi, S., & Serra, S. (2018). Apple fruit quality: Overview on pre-harvest factors. Scientia Horticulturae, 234, 409–430.
  • [40] Wang, J.-S., Wang, A.-B., Ma, W.-H., Xu, B.-Y., Zang, X.-P., Tan, L., Jin, Z.-Q., & Li, J.-Y. (2019). Comparison of physicochemical properties and in vitro digestibility of starches from seven banana cultivars in China. International Journal of Biological Macromolecules, 121, 279–284.
  • [41] Ratnayake, W. S., Hoover, R., & Warkentin, T. (2002). Pea starch: Composition, structure and properties - A review. Starch/Staerke, 54(6), 217–234.
  • [42] Menshutina, N. V., Kolnoochenko, A. V., & Katalevich, A. M. (2014). Structure analysis and modeling of inorganic aerogels. Theoretical Foundations of Chemical Engineering, 48(3), 320–324.
  • [43] Lopes, J. M., Mustapa, A. N., Pantić, M., Bermejo, M. D., Martín, Á., Novak, Z., Knez, Ž., & Cocero, M. J. (2017). Preparation of cellulose aerogels from ionic liquid solutions for supercritical impregnation of phytol. Journal of Supercritical Fluids, 130, 17–22.
  • [44] Santos, P. D., Viganó, J., Furtado, G. D. F., Cunha, R. L., Hubinger, M. D., Rezende, C. A., & Martínez, J. (2020). Production of resveratrol loaded alginate aerogel: Characterization, mathematical modeling, and study of impregnation. Journal of Supercritical Fluids, 163, 104882.
  • [45] Zhou, W., Fang, J., Tang, S., Wu, Z., & Wang, X. (2021). 3d-printed nanocellulose-based cushioning–antibacterial dual-function food packaging aerogel. Molecules, 26(12), 3543.
  • [46] Fonseca, L. M., Silva, F. T. D., Bruni, G. P., Borges, C. D., Zavareze, E. D. R., & Dias, A. R. G. (2021). Aerogels based on corn starch as carriers for pinhão coat extract (Araucaria angustifolia) rich in phenolic compounds for active packaging. International Journal of Biological Macromolecules, 169, 362–370.
  • [47] De Marco, I., & Reverchon, E. (2017). Starch aerogel loaded with poorly water-soluble vitamins through supercritical CO2 adsorption. Chemical Engineering Research and Design, 119, 221–230.
  • [48] Pantić, M., Knez, Ž., & Novak, Z. (2016). Supercritical impregnation as a feasible technique for entrapment of fat-soluble vitamins into alginate aerogels. Journal of Non-Crystalline Solids, 432, 519–526.
  • [49] Yahya, E. B., Jummaat, F., Amirul, A. A., Adnan, A. S., Olaiya, N. G., Abdullah, C. K., Rizal, S., Mohamad Haafiz, M. K., & Abdul Khalil, H. P. S. (2020). A review on revolutionary natural biopolymer-based aerogels for antibacterial delivery. Antibiotics, 9(10), 1–25.
  • [50] García-González, C. A., Sosnik, A., Kalmár, J., De Marco, I., Erkey, C., Concheiro, A., & Alvarez-Lorenzo, C. (2021). Aerogels in drug delivery: From design to application. Journal of Controlled Release, 332, 40–63.
  • [51] Nita, L. E., Ghilan, A., Rusu, A. G., Neamtu, I., & Chiriac, A. P. (2020). New trends in bio-based aerogels. Pharmaceutics, 12(5), 449.
  • [52] Fricke, J., & Tillotson, T. (1997). Aerogels: Production, characterization, and applications. Thin Solid Films, 297(1–2), 212–223.
Year 2022, Volume: 3 Issue: 1, 10 - 16, 13.09.2022

Abstract

References

  • [1] Smirnova, I., & Gurikov, P. (2018). Aerogel production: Current status, research directions, and future opportunities. The Journal of Supercritical Fluids, 134, 228-233.
  • [2] Salimian, S., Zadhoush, A., Naeimirad, M., Kotek, R., & Ramakrishna, S. (2018). A review on aerogel: 3D nanoporous structured fillers in polymer‐based nanocomposites. Polymer Composites, 39(10), 3383-3408.
  • [3] Zheng, Q., Tian, Y., Ye, F., Zhou, Y., & Zhao, G. (2020). Fabrication and application of starch-based aerogel: technical strategies. Trends in Food Science & Technology, 99, 608-620.
  • [4] Yang, J., Li, Y., Zheng, Y., Xu, Y., Zheng, Z., Chen, X., & Liu, W. (2019). Versatile aerogels for sensors. Small, 15(41), 1902826.
  • [5] Abdullah, Zou, C., Farooq, S., Walayat, N., Zhang, H., Faieta, M., Pittia, P., Huang, Q. (2022). Bio-aerogels: Fabrication, properties and food applications. Critical Reviews in Food Science and Nutrition, 1-23.
  • [6] Ganesan, K., Budtova, T., Ratke, L., Gurikov, P., Baudron, V., Preibisch, I., Niemyer, P., Smirnova, I., Milow, B. (2018). Review on the production of polysaccharide aerogel particles. Materials, 11(11), 2144.
  • [7] Guastaferro, M., Reverchon, E., Baldino, L. (2021). Agarose, alginate and chitosan nanostructured aerogels for pharmaceutical applications: A short review. Frontiers in Bioengineering and Biotechnology, 9.
  • [8] Selvasekaran, P., Chidambaram, R. (2021). Food-grade aerogels obtained from polysaccharides, proteins, and seed mucilages: Role as a carrier matrix of functional food ingredients. Trends in Food Science & Technology, 112, 455-470.
  • [9] El-Naggar, M. E., Othman, S. I., Allam, A. A., & Morsy, O. M. (2020). Synthesis, drying process and medical application of polysaccharide-based aerogels. International Journal of Biological Macromolecules, 145, 1115-1128.
  • [10] Okutucu, B. (2021). The medical applications of biobased aerogels: ‘Natural aerogels for medical usage’. Medical Devices & Sensors, 4(1), e10168.
  • [11] Kleemann, C., Selmer, I., Smirnova, I., & Kulozik, U. (2018). Tailor made protein based aerogel particles from egg white protein, whey protein isolate and sodium caseinate: Influence of the preceding hydrogel characteristics. Food Hydrocolloids, 83, 365-374.
  • [12] Cortez-Trejo, M. C., Gaytán-Martínez, M., Reyes-Vega, M. L., & Mendozaa, S. (2021). Protein-gum-based gels: Effect of gum addition on microstructure, rheological properties, and water retention capacity. Trends in Food Science & Technology, 116, 303-317.
  • [13] Andlinger, D. J., Bornkeßel, A. C., Jung, I., Schroeter, B., Smirnova, I., & Kulozik, U. (2021). Microstructures of potato protein hydrogels and aerogels produced by thermal crosslinking and supercritical drying. Food Hydrocolloids, 112, 106305.
  • [14] Betz, M., García-González, C. A., Subrahmanyam, R. P., Smirnova, I., & Kulozik, U. (2012). Preparation of novel whey protein-based aerogels as drug carriers for life science applications. Journal of Supercritical Fluids, 72, 111–119.
  • [15] Ahmadi, M., Madadlou, A., & Saboury, A. A. (2016). Whey protein aerogel as blended with cellulose crystalline particles or loaded with fish oil. Food Chemistry, 196, 1016–1022.
  • [16] Selmer, I., Kleemann, C., Kulozik, U., Heinrich, S., & Smirnova, I. (2015). Development of egg white protein aerogels as new matrix material for microencapsulation in food. Journal of Supercritical Fluids, 106, 42–49.
  • [17] Manzocco, L., Plazzotta, S., Powell, J., de Vries, A., Rousseau, D., & Calligaris, S. (2022). Structural characterisation and sorption capability of whey protein aerogels obtained by freeze-drying or supercritical drying. Food Hydrocolloids, 122, 107117.
  • [18] Kleemann, C., Schuster, R., Rosenecker, E., Selmer, I., Smirnova, I., & Kulozik, U. (2020). In-vitro-digestion and swelling kinetics of whey protein, egg white protein and sodium caseinate aerogels. Food Hydrocolloids, 101, 105534.
  • [19] Selmer, I., Karnetzke, J., Kleemann, C., Lehtonen, M., Mikkonen, K. S., Kulozik, U., & Smirnova, I. (2019). Encapsulation of fish oil in protein aerogel micro-particles. Journal of Food Engineering, 260, 1–11.
  • [20] Menshutina, N. V., Lovskaya, D. D., Bezchasnyuk, A. N., & Grigoryeva, N. V. (2019). The process of egg protein aerogels production. International Multidisciplinary Scientific GeoConference: Surveying Geology and Mining Ecology Management: SGEM, 19(6.1), 459–465.
  • [21] Jaberi, R., Pedram Nia, A., Naji-Tabasi, S., Elhamirad, A. H., & Shafafi Zenoozian, M. (2020). Rheological and structural properties of oleogel base on soluble complex of egg white protein and xanthan gum. Journal of Texture Studies, 51(6), 925–936.
  • [22] Comin, L. M., Temelli, F., & Saldaña, M. D. (2012). Barley β-glucan aerogels as a carrier for flax oil via supercritical CO2. Journal of Food Engineering, 111(4), 625–631.
  • [23] Dogenski, M., Navarro-Díaz, H. J., de Oliveira, J. V., & Ferreira, S. R. S. (2020). Properties of starch-based aerogels incorporated with agar or microcrystalline cellulose. Food Hydrocolloids, 108, 10633.
  • [24] De Marco, I., Baldino, L., Cardea, S., & Reverchon, E. (2015). Supercritical gel drying for the production of starch aerogels for delivery systems. Chemical Engineering Transactions, 43, 307–312.
  • [25] Druel, L., Bardl, R., Vorwerg, W., & Budtova, T. (2017). Starch Aerogels: A Member of the Family of Thermal Superinsulating Materials. Biomacromolecules, 18(12), 4232–4239.
  • [26] Arboleda, J. C., Hughes, M., Lucia, L. A., Laine, J., Ekman, K., & Rojas, O. J. (2013). Soy protein-nanocellulose composite aerogels. Cellulose, 20(5), 2417–2426.
  • [27] Chang, X., Chen, D., & Jiao, X. (2010). Starch-derived carbon aerogels with high-performance for sorption of cationic dyes. Polymer, 51(16), 3801–3807.
  • [28] Zha, F., Rao, J., & Chen, B. (2021). Plant-based food hydrogels: Constitutive characteristics, formation, and modulation. Current Opinion in Colloid and Interface Science, 56, 101505.
  • [29] Kumar, A., Sood, A., & Han, S. S. (2022). Poly (vinyl alcohol)-alginate as potential matrix for various applications: A focused review. Carbohydrate Polymers, 277, 118881.
  • [30] Groult, S., Buwalda, S., & Budtova, T. (2021). Pectin hydrogels, aerogels, cryogels and xerogels: Influence of drying on structural and release properties. European Polymer Journal, 149, 110386.
  • [31] Wu, W., Wu, Y., Lin, Y., & Shao, P. (2022). Facile fabrication of multifunctional citrus pectin aerogel fortified with cellulose nanofiber as controlled packaging of edible fungi. Food Chemistry, 374, 131763.
  • [32] Budtova, T. (2019). Cellulose II aerogels: a review. Cellulose, 26(1), 81–121.
  • [33] Ciftci, D., Ubeyitogullari, A., Huerta, R. R., Ciftci, O. N., Flores, R. A., & Saldaña, M. D. A. (2017). Lupin hull cellulose nanofiber aerogel preparation by supercritical CO2 and freeze drying. Journal of Supercritical Fluids, 127, 137–145.
  • [34] Fontes-Candia, C., Erboz, E., Martínez-Abad, A., López-Rubio, A., & Martínez-Sanz, M. (2019). Superabsorbent food packaging bioactive cellulose-based aerogels from Arundo donax waste biomass. Food Hydrocolloids, 96, 151–160.
  • [35] Wei, G., Zhang, J., Usuelli, M., Zhang, X., Liu, B., & Mezzenga, R. (2022). Biomass vs inorganic and plastic-based aerogels: Structural design, functional tailoring, resource-efficient applications and sustainability analysis. Progress in Materials Science, 125, 100915.
  • [36] Yue, X., Wu, H., Zhang, T., Yang, D., & Qiu, F. (2022). Superhydrophobic waste paper-based aerogel as a thermal insulating cooler for building. Energy, 245, 123287.
  • [37] Freitas, L. C., Barbosa, J. R., da Costa, A. L. C., Bezerra, F. W. F., Pinto, R. H. H., & Carvalho Junior, R. N. D. (2021). From waste to sustainable industry: How can agro-industrial wastes help in the development of new products? Resources, Conservation and Recycling, 169, 105466.
  • [38] Kringel, D. H., Dias, A. R. G., Zavareze, E. D. R., & Gandra, E. A. (2020). Fruit Wastes as Promising Sources of Starch: Extraction, Properties, and Applications. Starch/Staerke, 72(3–4), 190-200.
  • [39] Musacchi, S., & Serra, S. (2018). Apple fruit quality: Overview on pre-harvest factors. Scientia Horticulturae, 234, 409–430.
  • [40] Wang, J.-S., Wang, A.-B., Ma, W.-H., Xu, B.-Y., Zang, X.-P., Tan, L., Jin, Z.-Q., & Li, J.-Y. (2019). Comparison of physicochemical properties and in vitro digestibility of starches from seven banana cultivars in China. International Journal of Biological Macromolecules, 121, 279–284.
  • [41] Ratnayake, W. S., Hoover, R., & Warkentin, T. (2002). Pea starch: Composition, structure and properties - A review. Starch/Staerke, 54(6), 217–234.
  • [42] Menshutina, N. V., Kolnoochenko, A. V., & Katalevich, A. M. (2014). Structure analysis and modeling of inorganic aerogels. Theoretical Foundations of Chemical Engineering, 48(3), 320–324.
  • [43] Lopes, J. M., Mustapa, A. N., Pantić, M., Bermejo, M. D., Martín, Á., Novak, Z., Knez, Ž., & Cocero, M. J. (2017). Preparation of cellulose aerogels from ionic liquid solutions for supercritical impregnation of phytol. Journal of Supercritical Fluids, 130, 17–22.
  • [44] Santos, P. D., Viganó, J., Furtado, G. D. F., Cunha, R. L., Hubinger, M. D., Rezende, C. A., & Martínez, J. (2020). Production of resveratrol loaded alginate aerogel: Characterization, mathematical modeling, and study of impregnation. Journal of Supercritical Fluids, 163, 104882.
  • [45] Zhou, W., Fang, J., Tang, S., Wu, Z., & Wang, X. (2021). 3d-printed nanocellulose-based cushioning–antibacterial dual-function food packaging aerogel. Molecules, 26(12), 3543.
  • [46] Fonseca, L. M., Silva, F. T. D., Bruni, G. P., Borges, C. D., Zavareze, E. D. R., & Dias, A. R. G. (2021). Aerogels based on corn starch as carriers for pinhão coat extract (Araucaria angustifolia) rich in phenolic compounds for active packaging. International Journal of Biological Macromolecules, 169, 362–370.
  • [47] De Marco, I., & Reverchon, E. (2017). Starch aerogel loaded with poorly water-soluble vitamins through supercritical CO2 adsorption. Chemical Engineering Research and Design, 119, 221–230.
  • [48] Pantić, M., Knez, Ž., & Novak, Z. (2016). Supercritical impregnation as a feasible technique for entrapment of fat-soluble vitamins into alginate aerogels. Journal of Non-Crystalline Solids, 432, 519–526.
  • [49] Yahya, E. B., Jummaat, F., Amirul, A. A., Adnan, A. S., Olaiya, N. G., Abdullah, C. K., Rizal, S., Mohamad Haafiz, M. K., & Abdul Khalil, H. P. S. (2020). A review on revolutionary natural biopolymer-based aerogels for antibacterial delivery. Antibiotics, 9(10), 1–25.
  • [50] García-González, C. A., Sosnik, A., Kalmár, J., De Marco, I., Erkey, C., Concheiro, A., & Alvarez-Lorenzo, C. (2021). Aerogels in drug delivery: From design to application. Journal of Controlled Release, 332, 40–63.
  • [51] Nita, L. E., Ghilan, A., Rusu, A. G., Neamtu, I., & Chiriac, A. P. (2020). New trends in bio-based aerogels. Pharmaceutics, 12(5), 449.
  • [52] Fricke, J., & Tillotson, T. (1997). Aerogels: Production, characterization, and applications. Thin Solid Films, 297(1–2), 212–223.
There are 52 citations in total.

Details

Primary Language Turkish
Subjects Biomaterial , Polymer Science and Technologies
Journal Section Review
Authors

Ozge Yılmaz 0000-0002-2302-7930

Hüseyin Ozay 0000-0002-7764-2461

Burcu Okutucu 0000-0002-0907-4175

Publication Date September 13, 2022
Published in Issue Year 2022 Volume: 3 Issue: 1

Cite

APA Yılmaz, O., Ozay, H., & Okutucu, B. (2022). BİYOAEROJELLER ve ARAŞTIRMA ALANLARI. Research Journal of Biomedical and Biotechnology, 3(1), 10-16.
AMA Yılmaz O, Ozay H, Okutucu B. BİYOAEROJELLER ve ARAŞTIRMA ALANLARI. RJBB. September 2022;3(1):10-16.
Chicago Yılmaz, Ozge, Hüseyin Ozay, and Burcu Okutucu. “BİYOAEROJELLER Ve ARAŞTIRMA ALANLARI”. Research Journal of Biomedical and Biotechnology 3, no. 1 (September 2022): 10-16.
EndNote Yılmaz O, Ozay H, Okutucu B (September 1, 2022) BİYOAEROJELLER ve ARAŞTIRMA ALANLARI. Research Journal of Biomedical and Biotechnology 3 1 10–16.
IEEE O. Yılmaz, H. Ozay, and B. Okutucu, “BİYOAEROJELLER ve ARAŞTIRMA ALANLARI”, RJBB, vol. 3, no. 1, pp. 10–16, 2022.
ISNAD Yılmaz, Ozge et al. “BİYOAEROJELLER Ve ARAŞTIRMA ALANLARI”. Research Journal of Biomedical and Biotechnology 3/1 (September 2022), 10-16.
JAMA Yılmaz O, Ozay H, Okutucu B. BİYOAEROJELLER ve ARAŞTIRMA ALANLARI. RJBB. 2022;3:10–16.
MLA Yılmaz, Ozge et al. “BİYOAEROJELLER Ve ARAŞTIRMA ALANLARI”. Research Journal of Biomedical and Biotechnology, vol. 3, no. 1, 2022, pp. 10-16.
Vancouver Yılmaz O, Ozay H, Okutucu B. BİYOAEROJELLER ve ARAŞTIRMA ALANLARI. RJBB. 2022;3(1):10-6.