Research Article
BibTex RIS Cite

The Electrospinning of Different Hemostatic Agents and Their Effectiveness

Year 2024, Volume: 5 Issue: 1, 1 - 9, 16.04.2024

Abstract

The purpose of this study is to present effective solutions for severe bleeding and tissue damage occurring during situations such as conflicts, disasters, and crises. The aim is to produce nanofibers that can serve as a hemostatic wound dressing, capable of both accelerating wound healing and controlling bleeding. Nanofibers are produced through the electrospinning method by combining hemostatic agents such as adrenaline, Transamin® (TXA), and Ankaferd Blood Stopper® (ABS) with polyvinyl alcohol (PVA) polymer. The morphology, chemical bonding, and hemostatic activity of these nanofibers are extensively analyzed. The feasibility of these nanofibers for medical applications, particularly as wound dressings, was investigated. Results: Field emission scanning electron microscopy (FESEM) images reveal that increased concentrations of adrenaline, TXA, and ABS result in the formation of beaded fibers. While ABS/PVA and TXA/PVA nanofibers have similar average diameters, ABS/PVA exhibits a more beaded morphology. According to hemostatic activity tests, clotting times were similar for adrenaline/PVA and TXA/PVA nanofibers, whereas ABS/PVA nanofibers exhibited a shorter clotting time. Among the findings, adrenaline/PVA nanofibers had the longest clotting time at 4.088 seconds. On the other hand, ABS/PVA nanofibers had the shortest clotting time at 3.819 seconds. An effective hemostatic agent should be able to stop bleeding within 2 minutes after application to the wound site in in vitro settings, without requiring mixing or preparation, and should be easily applicable to wounded areas. The developed hemostatic nanofibers demonstrated the ability to form clots within seconds. The resulting nanofibers from this study will not only contribute to public health but also significantly enhance survival processes.

References

  • [1] Çolak, S., Altan, A., Akbulut, N. (2018). Lokal Hemostatik Ajanlar. Uluslararası Diş Hekimliği Bilimleri Dergisi, (3), 147-152.
  • [2] Sierra, C., Moreno, M. U., & García‐Ruiz, J. C. (2022). The physiology of hemostasis. Blood Coagulation & Fibrinolysis, 33(S1), S1–S2. https://doi.org/10.1097/mbc.0000000000001099
  • [3] Sruthi, S.M., (2021, August 4). How do hemostatics work? - uses, side effects, drug names. RxList. https://www.rxlist.com/how_do_hemostatics_work/drug-class.htm
  • [4] Stannard, A., Morrison, J. J., Scott, D., Ivatury, R. A., Ross, J. D., & Rasmussen, T. E. (2013). The epidemiology of noncompressible torso hemorrhage in the wars in Iraq and Afghanistan. The Journal of Trauma and Acute Care Surgery, 74(3), 830–834. https://doi.org/10.1097/ta.0b013e31827a3704
  • [5] Eastridge, B. J., Hardin, M. O., Cantrell, J. A., Oetjen-Gerdes, L., Zubko, T., Mallak, C. T., Wade, C. E., Simmons, J. W., Mace, J. E., Mabry, R., Bolenbaucher, R., & Blackbourne, L. H. (2011). Died of Wounds on the Battlefield: Causation and implications for Improving Combat Casualty care. Journal of Trauma-injury Infection and Critical Care, 71(1), S4–S8. https://doi.org/10.1097/ta.0b013e318221147b
  • [6] Eastridge, B. J., Mabry, R., Seguin, P., Cantrell, J. A., Tops, T., Uribe, P., Mallett, O., Zubko, T., Oetjen-Gerdes, L., Rasmussen, T. E., Butler, F. K., Kotwal, R. S., Holcomb, J. B., Wade, C. E., Champion, H. R., Lawnick, M., Moores, L. E., & Blackbourne, L. H. (2012). Death on the battlefield (2001–2011). The Journal of Trauma and Acute Care Surgery, 73(6), S431–S437. https://doi.org/10.1097/ta.0b013e3182755dcc
  • [7] Martin, M. J., Oh, J. S., Currier, H., Tai, N., Beekley, A. C., Eckert, M. J., & Holcomb, J. B. (2009). An analysis of In-Hospital deaths at a modern combat support Hospital. Journal of Trauma-injury Infection and Critical Care, 66(4), S51–S61. https://doi.org/10.1097/ta.0b013e31819d86ad
  • [8] Bakhsheshi‐Rad, H. R., Ismail, A. F., Aziz, M., Hadisi, Z., Omidi, M., & Chen, D. (2019). Antibacterial activity and corrosion resistance of Ta2O5 thin film and electrospun PCL/MgO-Ag nanofiber coatings on biodegradable Mg alloy implants. Ceramics International, 45(9), 11883–11892. https://doi.org/10.1016/j.ceramint.2019.03.071
  • [9] Balusamy, B., Senthamizhan, A. & Uyar, T. (2020). Electrospun Nanofibers for Wound Dressing and Tissue Engineering Applications. Hacettepe Journal of Biology and Chemistry, The 100 Year of Polymers, 459-481. DOI: 10.15671/hjbc.789186
  • [10] Zhao, Y., Qiu, Y., Wang, H., Chen, Y., Jin, S., & Chen, S. (2016). Preparation of nanofibers with renewable polymers and their application in wound dressing. International Journal of Polymer Science, 2016.
  • [11] Archana, D., Singh, B. K., Dutta, J., & Dutta, P. K. (2015). Chitosan-PVP-nano silver oxide wound dressing: in vitro and in vivo evaluation. International journal of biological macromolecules, 73, 49-57.
  • [12] Lu, Z., Gao, J., He, Q., Wu, J., Liang, D., Yang, H., & Chen, R. (2017). Enhanced antibacterial and wound healing activities of microporous chitosan-Ag/ZnO composite dressing. Carbohydrate polymers, 156, 460-469.
  • [13] Fatahian, R., Mirjalili, M., Khajavi, R., Rahimi, M. K., & Nasirizadeh, N. (2020). Fabrication of antibacterial and hemostatic electrospun PVA nanofibers for wound healing. SN Applied Sciences, 2, 1-7.
  • [14] Goldstein, D. S. (2010). Catecholamines 101. Clinical Autonomic Research, 20, 331-352.
  • [15] von Känel, R. (2015). Acute mental stress and hemostasis: when physiology becomes vascular harm. Thrombosis research, 135, S52-S55.
  • [16] Mukherjee, A. (1981). Characterization of α2-adrenergic receptors in human platelets by binding of a radioactive ligand [3H] yohimbine. Biochimica et Biophysica Acta (BBA)-General Subjects, 676(2), 148-154.
  • [17] Yang, J., Wu, J., Kowalska, M. A., Dalvi, A., Prévost, N., O’Brien, P. J., Manning, D. R., Poncz, M., Lucki, I., Blendy, J. A., & Brass, L. F. (2000). Loss of signaling through the G protein, Gz, results in abnormal platelet activation and altered responses to psychoactive drugs. Proceedings of the National Academy of Sciences of the United States of America, 97(18), 9984–9989. https://doi.org/10.1073/pnas.180194597
  • [18] Woulfe, D. S., Jiang, H., Mortensen, R. M., Yang, J., & Brass, L. F. (2002). Activation of RAP1B by GI family members in platelets. Journal of Biological Chemistry, 277(26), 23382–23390. https://doi.org/10.1074/jbc.m202212200
  • [19] Sachs, U. J., & Nieswandt, B. (2007). In vivo thrombus formation in murine models. Circulation Research, 100(7), 979–991. https://doi.org/10.1161/01.res.0000261936.85776.5f
  • [20] Stalker, T. J., Newman, D. K., Ma, P., Wannemacher, K. M., & Brass, L. F. (2012). Platelet signaling. In Handbook of experimental pharmacology (pp. 59–85). https://doi.org/10.1007/978-3-642-29423-5_3
  • [21] Cai, J., Ribkoff, J., Olson, S. R., Raghunathan, V., Al‐Samkari, H., DeLoughery, T. G., & Shatzel, J. J. (2019). The many roles of tranexamic acid: An overview of the clinical indications for TXA in medical and surgical patients. European Journal of Haematology, 104(2), 79–87. https://doi.org/10.1111/ejh.13348
  • [22] Akkoç, N., Akçelik, M., Haznedaroğlu, İ. C., Göker, H., Turğut, M., Aksu, S., Kirazlı, Ş., & Firat, H. C. (2009). In vitro anti-bacterial activities of Ankaferd medicinal plant extract. Türkiye Klinikleri Tip Bilimleri Dergisi, 29(2), 410–415.
  • [23] Koluman, A., Akar, N., & Haznedaroğlu, İ. C. (2017). Antibacterial Activities of Ankaferd Hemostat (ABS) on Shiga Toxin-Producing Escherichia coli and Other Pathogens Significant in Foodborne Diseases. Turkish Journal of Hematology, 34(1), 93–98. https://doi.org/10.4274/tjh.2015.0073
  • [24] Sarıbaş, Z., Şener, B., Haznedaroğlu, İ. C., Hasçelik, G., Kirazlı, Ş., & Göker, H. (2010). Antimicrobial activity of Ankaferd Blood Stopper® against nosocomial bacterial pathogens. Open Medicine, 5(2), 198–202. https://doi.org/10.2478/s11536-009-0140-4
  • [25] Koski, A., Yim, K., & Shivkumar, S. (2004). Effect of molecular weight on fibrous PVA produced by electrospinning. Materials Letters, 58(3–4), 493–497. https://doi.org/10.1016/s0167-577x(03)00532-9
  • [26] McFarland, L. V. (2006). Meta-Analysis of Probiotics for the Prevention of Antibiotic Associated Diarrhea and the Treatment of Clostridium difficile Disease. The American Journal of Gastroenterology, 101(4), 812–822. https://doi.org/10.1111/j.1572-0241.2006.00465.x
  • [27] El Bahy, G. S., El-Sayed, E. S. M., Mahmoud, A. A., & Gweily, N. M. (2012). Preparation and characterization of poly vinyl alcohol/gelatin blends. J. Appl. Sci. Res, 8(7), 3544-3551.
  • [28] Kharazmi, A., Faraji, N., Hussin, R. M., Saion, E., Yunus, W. M. M., & Behzad, K. (2015). Structural, optical, opto-thermal and thermal properties of ZnS–PVA nanofluids synthesized through a radiolytic approach. Beilstein Journal of Nanotechnology, 6, 529–536. https://doi.org/10.3762/bjnano.6.55
  • [29] Abureesh, M. A., Oladipo, A. A., & Gazi, M. (2016). Facile synthesis of glucose-sensitive chitosan–poly(vinyl alcohol) hydrogel: Drug release optimization and swelling properties. International Journal of Biological Macromolecules, 90, 75–80. https://doi.org/10.1016/j.ijbiomac.2015.10.001
  • [30] Li, T., Yan, M., Zhong, Y., Ren, H., Lou, C., Huang, S., & Lin, J. (2019). Processing and characterizations of rotary linear needleless electrospun polyvinyl alcohol(PVA)/Chitosan(CS)/Graphene(Gr) nanofibrous membranes. Journal of Materials Research and Technology, 8(6), 5124–5132. https://doi.org/10.1016/j.jmrt.2019.08.035
  • [31] Zhuang, J., Li, M., Pu, Y., Ragauskas, A. J., & Yoo, C. G. (2020). Observation of potential contaminants in processed biomass using Fourier Transform infrared spectroscopy. Applied Sciences, 10(12), 4345. https://doi.org/10.3390/app10124345
  • [32] Ge, J. C., Wu, G., Yoon, S. K., Kim, M. S., & Choi, N. J. (2021). Study on the preparation and lipophilic properties of polyvinyl alcohol (PVA) nanofiber membranes via green electrospinning. Nanomaterials, 11(10), 2514. https://doi.org/10.3390/nano11102514
  • [33] Web Anonymous 1., Chapter 4: Fourier Transform Infrared Spectroscopy (FTIR). [Online]. Available: http://studentsrepo.um.edu.my/6086/11/Chapter_4_-_Section_1.pdf.
  • [34] Wang, S. F., Du, D., & Zou, Q. C. (2002). Electrochemical behavior of epinephrine at L-cysteine self-assembled monolayers modified gold electrode. Talanta, 57(4), 687-692.
  • [35] Lee, F., Lee, D., Lee, T., Chen, J., Wu, R., Liu, K., & Liu, S. (2017). Fabrication of Multi-Layered Lidocaine and Epinephrine-Eluting PLGA/Collagen Nanofibers: In Vitro and In Vivo Study. Polymers, 9(12), 416. https://doi.org/10.3390/polym9090416
  • [36] Sezer, Ü. A., Koçer, Z., Aru, B., Demirel, G. Y., Gülmez, M., Aktekin, A., Özkara, S., & Sezer, S. (2016). Combination of gelatin and tranexamic acid offers improved haemostasis and safe use on internal hemorrhage control. RSC Advances, 6(97), 95189–95198. https://doi.org/10.1039/c6ra16790j
  • [37] Göker, H., Haznedaroğlu, İ. C., Ercetin, S., Kirazlı, Ş., Akman, Ü., Öztürk, Y., & Firat, H. C. (2008). Haemostatic actions of the folkloric medicinal plant extract Ankaferd blood Stopper®. Journal of International Medical Research, 36(1), 163–170. https://doi.org/10.1177/147323000803600121
  • [38] Yang, J., Wang, K., Yu, D., Yang, Y., Bligh, S. W. A., & Williams, G. R. (2020). Electrospun Janus nanofibers loaded with a drug and inorganic nanoparticles as an effective antibacterial wound dressing. Materials Science and Engineering: C, 111, 110805. https://doi.org/10.1016/j.msec.2020.110805
  • [39] Al-Tameme, H. J., Hameed, I. H., Idan, S. A., & Hadi, M. Y. (2015). Biochemical analysis of Origanum vulgare seeds by fourier-transform infrared (FT-IR) spectroscopy and gas chromatography-mass spectrometry (GC-MS). Journal of Pharmacognosy and Phytotherapy, 7(9), 221–237. https://doi.org/10.5897/jpp2015.0362
  • [40] Catauro, M., Bollino, F., Tranquillo, E., Sapio, L., Illiano, M., Caiafa, I., & Naviglio, S. (2017). Chemical analysis and anti-proliferative activity of Campania Thymus Vulgaris essential oil. Journal of Essential Oil Research, 29(6), 461–470. https://doi.org/10.1080/10412905.2017.1351405
  • [41] Demiralp, D. Ö. (2013). The Fourier Transform Infrared (FTIR) spectroscopic and mass spectrometric metabolomics studies of Ankaferd hemostat. International Journal of Hematology and Oncology, 23(3), 171–177. https://doi.org/10.4999/uhod.12059
  • [42] Al-Tameme, H. J., Hadi, M. Y., & Hameed, I. H. (2015). Phytochemical analysis of Urtica dioica leaves by fourier-transform infrared spectroscopy and gas chromatography-mass spectrometry. Journal of Pharmacognosy and Phytotherapy, 7(10), 238–252. https://doi.org/10.5897/jpp2015.0361
  • [43] Suma, A., Ashika, B. D., Roy, C. L., Naresh, S., Sunil, K. S., & Sathyamurthy, B. (2018). GCMS and FTIR analysis on the methanolic extract of red Vitis Vinifera seed. World Journal of Pharmaceutical Sciences, 106–113. https://wjpsonline.com/index.php/wjps/article/download/gcms-ftir-analysis-red-vitis-vinifera-seed/352
  • [44] Kumar, B., Shah, M. A., Kumari, R., Kumar, A., Kumar, J., & Tahir, A. (2019). Depression, anxiety, and stress among final-year medical students. Cureus. https://doi.org/10.7759/cureus.4257
  • [45] Yang, F., Chu, T., Zhang, Y., Liu, X., Sun, G., & Chen, Z. (2020). Quality assessment of licorice (Glycyrrhiza glabra L.) from different sources by multiple fingerprint profiles combined with quantitative analysis, antioxidant activity and chemometric methods. Food Chemistry, 324, 126854. https://doi.org/10.1016/j.foodchem.2020.126854
  • [46] Yilmaz, F. (2020). Application of Glycyrrhiza glabra L. Root as a Natural Antibacterial Agent in Finishing of Textile. Industrial Crops and Products, 157, 112899. https://doi.org/10.1016/j.indcrop.2020.112899
  • [47] Bocșan, I. C., Pop, R. M., Sabin, O., Sarkandy, E., Boarescu, P., Roşian, Ş. H., Leru, P., Chedea, V. S., Socaci, S., & Buzoianu, A. D. (2021). Comparative Protective Effect of Nigella sativa Oil and Vitis vinifera Seed Oil in an Experimental Model of Isoproterenol-Induced Acute Myocardial Ischemia in Rats. Molecules, 26(11), 3221. https://doi.org/10.3390/molecules26113221
  • [48] Koçak, Ö. F., & Yılmaz, F. (2021). Use of Alpinia officinarum rhizome in textile dyeing and gaining simultaneous antibacterial properties. Journal of Natural Fibers, 19(5), 1925–1936. https://doi.org/10.1080/15440478.2021.1889441
  • [49] Boender, J., Kruip, M. J., & Leebeek, F. W. (2016). A diagnostic approach to mild bleeding disorders. Journal of Thrombosis and Haemostasis, 14(8), 1507–1516. https://doi.org/10.1111/jth.13368
  • [50] Arnout, J., Hoylaerts, M. F., & Lijnen, H. R. (2006). Haemostasis. Handbook of experimental pharmacology, (176 Pt 2), 1–41. https://doi.org/10.1007/3-540-36028-x_1
  • [51] O'Donnell, J. S., O'Sullivan, J. M., & Preston, R. J. S. (2019). Advances in understanding the molecular mechanisms that maintain normal haemostasis. British journal of haematology, 186(1), 24–36. https://doi.org/10.1111/bjh.15872
  • [52] Guerrero, C. G., & Ronsano, J. B. M. (2015). Physiopathology and treatment of critical bleeding: a literature review. PubMed, 39(6), 382–390. https://doi.org/10.7399/fh.2015.39.6.8907
  • [53] Adi̇loğlu, S., Aktaş, A., Öz, A. Z., & El, H. (2018). Hemostatic effects of adrenaline and Ankaferd (blood stopper) during orthodontic attachment bonding. Turkish Journal of Medical Sciences, 48(6), 1234-1238. https://dergipark.org.tr/tr/pub/tbtkmedical/issue/41101/497095
  • [54] Badovinac, S., Glodić, G., Sabol, I., Džubur, F., Makek, M. J., Baričević, D., Koršić, M., Popović, F., Srdić, D., & Samaržija, M. (2023). Tranexamic Acid vs Adrenaline for Controlling Iatrogenic Bleeding During Flexible Bronchoscopy. Chest, 163(4), 985–993. https://doi.org/10.1016/j.chest.2022.10.013
  • [55] Kelleş, M., Kalcıoğlu, M. T., Şamdancı, E., Selimoğlu, E., Iraz, M., Miman, M. C., & Haznedaroğlu, İ. C. (2011). Ankaferd blood stopper is more effective than adrenaline plus lidocaine and gelatin foam in the treatment of epistaxis in rabbits. Current Therapeutic Research, 72(5), 185–194. https://doi.org/10.1016/j.curtheres.2011.08.002
  • [56] Biranje, S., Sun, J., Shi, Y., Yu, S., Jiao, H., Zhang, M., Wang, Q., Jin, W., & Liu, J. (2021). Polysaccharide-based hemostats: recent developments, challenges, and future perspectives. Cellulose, 28(14), 8899–8937. https://doi.org/10.1007/s10570-021-04132-x

Farklı Hemostatik Ajanların Elektroeğirme Yöntemiyle Üretimi ve Etkinliği

Year 2024, Volume: 5 Issue: 1, 1 - 9, 16.04.2024

Abstract

Bu çalışmanın amacı, çatışmalar, felaketler ve krizler gibi durumlar sırasında meydana gelen ciddi kanama ve doku hasarına yönelik etkili çözümler sunmak amacıyla hem yara iyileşmesini hızlandırabilen hem de kanamayı kontrol edebilen bir hemostatik yara örtüsü olarak kullanılabilecek nanolifler üretmektir. Nanolifler, elektroeğirme yöntemiyle adrenalin, Transamin® (TXA) ve Ankaferd Kan Durdurucu® (ABS) gibi hemostatik maddeler ile polivinil alkol (PVA) polimerinin birleşimiyle elde edilmektedir. Çalışmada nanoliflerin morfolojisi, kimyasal bağ yapısı ve hemostatik aktivitesi ayrıntılı şekilde analiz edilmektedir. Bu nanoliflerin tıbbi uygulamalarda, özellikle yara örtüsü olarak kullanılabilirliği araştırılmıştır. Alan emisyonlu taramalı elektron mikroskobu (FESEM) görüntülerine göre, adrenalin, TXA ve ABS konsantrasyonunun artmasıyla boncuklu lifler oluşmaya başlamıştır. ABS/PVA ve TXA/PVA nanoliflerinin ortalama çapları aynı olmasına rağmen, ABS/PVA daha fazla boncuklu morfolojiye sahiptir. Hemostatik aktivite testlerine göre, adrenalin/PVA ve TXA/PVA nanoliflerinin pıhtılaşma süreleri benzerdi; ancak ABS/PVA nanoliflerinin pıhtılaşma süresi daha kısaydı. Bulgulara göre, adrenalin/PVA nanolifleri en uzun pıhtılaşma süresine sahipti ve bu süre 4.088 saniyeydi. Öte yandan, ABS/PVA nanolifleri en kısa pıhtılaşma süresine sahipti ve bu süre 3.819 saniyeydi. İyi bir hemostat, in vitro uygulamalarda yara bölgesine uygulandıktan sonra 2 dakika içinde kanamayı durdurabilmeli, karıştırma veya hazırlama gerektirmemeli ve yaralı bölgelere basitçe uygulanabilmelidir. Bu çalışmada elde edilen hemostatik nanoliflerin saniyeler içinde pıhtı oluşturabilme yeteneği gösterilmiştir. Geliştirilen nanolifler, sadece halk sağlığı açısından değil, aynı zamanda hayatta kalma süreçlerine güçlü bir katkı sağlayacaktır.

References

  • [1] Çolak, S., Altan, A., Akbulut, N. (2018). Lokal Hemostatik Ajanlar. Uluslararası Diş Hekimliği Bilimleri Dergisi, (3), 147-152.
  • [2] Sierra, C., Moreno, M. U., & García‐Ruiz, J. C. (2022). The physiology of hemostasis. Blood Coagulation & Fibrinolysis, 33(S1), S1–S2. https://doi.org/10.1097/mbc.0000000000001099
  • [3] Sruthi, S.M., (2021, August 4). How do hemostatics work? - uses, side effects, drug names. RxList. https://www.rxlist.com/how_do_hemostatics_work/drug-class.htm
  • [4] Stannard, A., Morrison, J. J., Scott, D., Ivatury, R. A., Ross, J. D., & Rasmussen, T. E. (2013). The epidemiology of noncompressible torso hemorrhage in the wars in Iraq and Afghanistan. The Journal of Trauma and Acute Care Surgery, 74(3), 830–834. https://doi.org/10.1097/ta.0b013e31827a3704
  • [5] Eastridge, B. J., Hardin, M. O., Cantrell, J. A., Oetjen-Gerdes, L., Zubko, T., Mallak, C. T., Wade, C. E., Simmons, J. W., Mace, J. E., Mabry, R., Bolenbaucher, R., & Blackbourne, L. H. (2011). Died of Wounds on the Battlefield: Causation and implications for Improving Combat Casualty care. Journal of Trauma-injury Infection and Critical Care, 71(1), S4–S8. https://doi.org/10.1097/ta.0b013e318221147b
  • [6] Eastridge, B. J., Mabry, R., Seguin, P., Cantrell, J. A., Tops, T., Uribe, P., Mallett, O., Zubko, T., Oetjen-Gerdes, L., Rasmussen, T. E., Butler, F. K., Kotwal, R. S., Holcomb, J. B., Wade, C. E., Champion, H. R., Lawnick, M., Moores, L. E., & Blackbourne, L. H. (2012). Death on the battlefield (2001–2011). The Journal of Trauma and Acute Care Surgery, 73(6), S431–S437. https://doi.org/10.1097/ta.0b013e3182755dcc
  • [7] Martin, M. J., Oh, J. S., Currier, H., Tai, N., Beekley, A. C., Eckert, M. J., & Holcomb, J. B. (2009). An analysis of In-Hospital deaths at a modern combat support Hospital. Journal of Trauma-injury Infection and Critical Care, 66(4), S51–S61. https://doi.org/10.1097/ta.0b013e31819d86ad
  • [8] Bakhsheshi‐Rad, H. R., Ismail, A. F., Aziz, M., Hadisi, Z., Omidi, M., & Chen, D. (2019). Antibacterial activity and corrosion resistance of Ta2O5 thin film and electrospun PCL/MgO-Ag nanofiber coatings on biodegradable Mg alloy implants. Ceramics International, 45(9), 11883–11892. https://doi.org/10.1016/j.ceramint.2019.03.071
  • [9] Balusamy, B., Senthamizhan, A. & Uyar, T. (2020). Electrospun Nanofibers for Wound Dressing and Tissue Engineering Applications. Hacettepe Journal of Biology and Chemistry, The 100 Year of Polymers, 459-481. DOI: 10.15671/hjbc.789186
  • [10] Zhao, Y., Qiu, Y., Wang, H., Chen, Y., Jin, S., & Chen, S. (2016). Preparation of nanofibers with renewable polymers and their application in wound dressing. International Journal of Polymer Science, 2016.
  • [11] Archana, D., Singh, B. K., Dutta, J., & Dutta, P. K. (2015). Chitosan-PVP-nano silver oxide wound dressing: in vitro and in vivo evaluation. International journal of biological macromolecules, 73, 49-57.
  • [12] Lu, Z., Gao, J., He, Q., Wu, J., Liang, D., Yang, H., & Chen, R. (2017). Enhanced antibacterial and wound healing activities of microporous chitosan-Ag/ZnO composite dressing. Carbohydrate polymers, 156, 460-469.
  • [13] Fatahian, R., Mirjalili, M., Khajavi, R., Rahimi, M. K., & Nasirizadeh, N. (2020). Fabrication of antibacterial and hemostatic electrospun PVA nanofibers for wound healing. SN Applied Sciences, 2, 1-7.
  • [14] Goldstein, D. S. (2010). Catecholamines 101. Clinical Autonomic Research, 20, 331-352.
  • [15] von Känel, R. (2015). Acute mental stress and hemostasis: when physiology becomes vascular harm. Thrombosis research, 135, S52-S55.
  • [16] Mukherjee, A. (1981). Characterization of α2-adrenergic receptors in human platelets by binding of a radioactive ligand [3H] yohimbine. Biochimica et Biophysica Acta (BBA)-General Subjects, 676(2), 148-154.
  • [17] Yang, J., Wu, J., Kowalska, M. A., Dalvi, A., Prévost, N., O’Brien, P. J., Manning, D. R., Poncz, M., Lucki, I., Blendy, J. A., & Brass, L. F. (2000). Loss of signaling through the G protein, Gz, results in abnormal platelet activation and altered responses to psychoactive drugs. Proceedings of the National Academy of Sciences of the United States of America, 97(18), 9984–9989. https://doi.org/10.1073/pnas.180194597
  • [18] Woulfe, D. S., Jiang, H., Mortensen, R. M., Yang, J., & Brass, L. F. (2002). Activation of RAP1B by GI family members in platelets. Journal of Biological Chemistry, 277(26), 23382–23390. https://doi.org/10.1074/jbc.m202212200
  • [19] Sachs, U. J., & Nieswandt, B. (2007). In vivo thrombus formation in murine models. Circulation Research, 100(7), 979–991. https://doi.org/10.1161/01.res.0000261936.85776.5f
  • [20] Stalker, T. J., Newman, D. K., Ma, P., Wannemacher, K. M., & Brass, L. F. (2012). Platelet signaling. In Handbook of experimental pharmacology (pp. 59–85). https://doi.org/10.1007/978-3-642-29423-5_3
  • [21] Cai, J., Ribkoff, J., Olson, S. R., Raghunathan, V., Al‐Samkari, H., DeLoughery, T. G., & Shatzel, J. J. (2019). The many roles of tranexamic acid: An overview of the clinical indications for TXA in medical and surgical patients. European Journal of Haematology, 104(2), 79–87. https://doi.org/10.1111/ejh.13348
  • [22] Akkoç, N., Akçelik, M., Haznedaroğlu, İ. C., Göker, H., Turğut, M., Aksu, S., Kirazlı, Ş., & Firat, H. C. (2009). In vitro anti-bacterial activities of Ankaferd medicinal plant extract. Türkiye Klinikleri Tip Bilimleri Dergisi, 29(2), 410–415.
  • [23] Koluman, A., Akar, N., & Haznedaroğlu, İ. C. (2017). Antibacterial Activities of Ankaferd Hemostat (ABS) on Shiga Toxin-Producing Escherichia coli and Other Pathogens Significant in Foodborne Diseases. Turkish Journal of Hematology, 34(1), 93–98. https://doi.org/10.4274/tjh.2015.0073
  • [24] Sarıbaş, Z., Şener, B., Haznedaroğlu, İ. C., Hasçelik, G., Kirazlı, Ş., & Göker, H. (2010). Antimicrobial activity of Ankaferd Blood Stopper® against nosocomial bacterial pathogens. Open Medicine, 5(2), 198–202. https://doi.org/10.2478/s11536-009-0140-4
  • [25] Koski, A., Yim, K., & Shivkumar, S. (2004). Effect of molecular weight on fibrous PVA produced by electrospinning. Materials Letters, 58(3–4), 493–497. https://doi.org/10.1016/s0167-577x(03)00532-9
  • [26] McFarland, L. V. (2006). Meta-Analysis of Probiotics for the Prevention of Antibiotic Associated Diarrhea and the Treatment of Clostridium difficile Disease. The American Journal of Gastroenterology, 101(4), 812–822. https://doi.org/10.1111/j.1572-0241.2006.00465.x
  • [27] El Bahy, G. S., El-Sayed, E. S. M., Mahmoud, A. A., & Gweily, N. M. (2012). Preparation and characterization of poly vinyl alcohol/gelatin blends. J. Appl. Sci. Res, 8(7), 3544-3551.
  • [28] Kharazmi, A., Faraji, N., Hussin, R. M., Saion, E., Yunus, W. M. M., & Behzad, K. (2015). Structural, optical, opto-thermal and thermal properties of ZnS–PVA nanofluids synthesized through a radiolytic approach. Beilstein Journal of Nanotechnology, 6, 529–536. https://doi.org/10.3762/bjnano.6.55
  • [29] Abureesh, M. A., Oladipo, A. A., & Gazi, M. (2016). Facile synthesis of glucose-sensitive chitosan–poly(vinyl alcohol) hydrogel: Drug release optimization and swelling properties. International Journal of Biological Macromolecules, 90, 75–80. https://doi.org/10.1016/j.ijbiomac.2015.10.001
  • [30] Li, T., Yan, M., Zhong, Y., Ren, H., Lou, C., Huang, S., & Lin, J. (2019). Processing and characterizations of rotary linear needleless electrospun polyvinyl alcohol(PVA)/Chitosan(CS)/Graphene(Gr) nanofibrous membranes. Journal of Materials Research and Technology, 8(6), 5124–5132. https://doi.org/10.1016/j.jmrt.2019.08.035
  • [31] Zhuang, J., Li, M., Pu, Y., Ragauskas, A. J., & Yoo, C. G. (2020). Observation of potential contaminants in processed biomass using Fourier Transform infrared spectroscopy. Applied Sciences, 10(12), 4345. https://doi.org/10.3390/app10124345
  • [32] Ge, J. C., Wu, G., Yoon, S. K., Kim, M. S., & Choi, N. J. (2021). Study on the preparation and lipophilic properties of polyvinyl alcohol (PVA) nanofiber membranes via green electrospinning. Nanomaterials, 11(10), 2514. https://doi.org/10.3390/nano11102514
  • [33] Web Anonymous 1., Chapter 4: Fourier Transform Infrared Spectroscopy (FTIR). [Online]. Available: http://studentsrepo.um.edu.my/6086/11/Chapter_4_-_Section_1.pdf.
  • [34] Wang, S. F., Du, D., & Zou, Q. C. (2002). Electrochemical behavior of epinephrine at L-cysteine self-assembled monolayers modified gold electrode. Talanta, 57(4), 687-692.
  • [35] Lee, F., Lee, D., Lee, T., Chen, J., Wu, R., Liu, K., & Liu, S. (2017). Fabrication of Multi-Layered Lidocaine and Epinephrine-Eluting PLGA/Collagen Nanofibers: In Vitro and In Vivo Study. Polymers, 9(12), 416. https://doi.org/10.3390/polym9090416
  • [36] Sezer, Ü. A., Koçer, Z., Aru, B., Demirel, G. Y., Gülmez, M., Aktekin, A., Özkara, S., & Sezer, S. (2016). Combination of gelatin and tranexamic acid offers improved haemostasis and safe use on internal hemorrhage control. RSC Advances, 6(97), 95189–95198. https://doi.org/10.1039/c6ra16790j
  • [37] Göker, H., Haznedaroğlu, İ. C., Ercetin, S., Kirazlı, Ş., Akman, Ü., Öztürk, Y., & Firat, H. C. (2008). Haemostatic actions of the folkloric medicinal plant extract Ankaferd blood Stopper®. Journal of International Medical Research, 36(1), 163–170. https://doi.org/10.1177/147323000803600121
  • [38] Yang, J., Wang, K., Yu, D., Yang, Y., Bligh, S. W. A., & Williams, G. R. (2020). Electrospun Janus nanofibers loaded with a drug and inorganic nanoparticles as an effective antibacterial wound dressing. Materials Science and Engineering: C, 111, 110805. https://doi.org/10.1016/j.msec.2020.110805
  • [39] Al-Tameme, H. J., Hameed, I. H., Idan, S. A., & Hadi, M. Y. (2015). Biochemical analysis of Origanum vulgare seeds by fourier-transform infrared (FT-IR) spectroscopy and gas chromatography-mass spectrometry (GC-MS). Journal of Pharmacognosy and Phytotherapy, 7(9), 221–237. https://doi.org/10.5897/jpp2015.0362
  • [40] Catauro, M., Bollino, F., Tranquillo, E., Sapio, L., Illiano, M., Caiafa, I., & Naviglio, S. (2017). Chemical analysis and anti-proliferative activity of Campania Thymus Vulgaris essential oil. Journal of Essential Oil Research, 29(6), 461–470. https://doi.org/10.1080/10412905.2017.1351405
  • [41] Demiralp, D. Ö. (2013). The Fourier Transform Infrared (FTIR) spectroscopic and mass spectrometric metabolomics studies of Ankaferd hemostat. International Journal of Hematology and Oncology, 23(3), 171–177. https://doi.org/10.4999/uhod.12059
  • [42] Al-Tameme, H. J., Hadi, M. Y., & Hameed, I. H. (2015). Phytochemical analysis of Urtica dioica leaves by fourier-transform infrared spectroscopy and gas chromatography-mass spectrometry. Journal of Pharmacognosy and Phytotherapy, 7(10), 238–252. https://doi.org/10.5897/jpp2015.0361
  • [43] Suma, A., Ashika, B. D., Roy, C. L., Naresh, S., Sunil, K. S., & Sathyamurthy, B. (2018). GCMS and FTIR analysis on the methanolic extract of red Vitis Vinifera seed. World Journal of Pharmaceutical Sciences, 106–113. https://wjpsonline.com/index.php/wjps/article/download/gcms-ftir-analysis-red-vitis-vinifera-seed/352
  • [44] Kumar, B., Shah, M. A., Kumari, R., Kumar, A., Kumar, J., & Tahir, A. (2019). Depression, anxiety, and stress among final-year medical students. Cureus. https://doi.org/10.7759/cureus.4257
  • [45] Yang, F., Chu, T., Zhang, Y., Liu, X., Sun, G., & Chen, Z. (2020). Quality assessment of licorice (Glycyrrhiza glabra L.) from different sources by multiple fingerprint profiles combined with quantitative analysis, antioxidant activity and chemometric methods. Food Chemistry, 324, 126854. https://doi.org/10.1016/j.foodchem.2020.126854
  • [46] Yilmaz, F. (2020). Application of Glycyrrhiza glabra L. Root as a Natural Antibacterial Agent in Finishing of Textile. Industrial Crops and Products, 157, 112899. https://doi.org/10.1016/j.indcrop.2020.112899
  • [47] Bocșan, I. C., Pop, R. M., Sabin, O., Sarkandy, E., Boarescu, P., Roşian, Ş. H., Leru, P., Chedea, V. S., Socaci, S., & Buzoianu, A. D. (2021). Comparative Protective Effect of Nigella sativa Oil and Vitis vinifera Seed Oil in an Experimental Model of Isoproterenol-Induced Acute Myocardial Ischemia in Rats. Molecules, 26(11), 3221. https://doi.org/10.3390/molecules26113221
  • [48] Koçak, Ö. F., & Yılmaz, F. (2021). Use of Alpinia officinarum rhizome in textile dyeing and gaining simultaneous antibacterial properties. Journal of Natural Fibers, 19(5), 1925–1936. https://doi.org/10.1080/15440478.2021.1889441
  • [49] Boender, J., Kruip, M. J., & Leebeek, F. W. (2016). A diagnostic approach to mild bleeding disorders. Journal of Thrombosis and Haemostasis, 14(8), 1507–1516. https://doi.org/10.1111/jth.13368
  • [50] Arnout, J., Hoylaerts, M. F., & Lijnen, H. R. (2006). Haemostasis. Handbook of experimental pharmacology, (176 Pt 2), 1–41. https://doi.org/10.1007/3-540-36028-x_1
  • [51] O'Donnell, J. S., O'Sullivan, J. M., & Preston, R. J. S. (2019). Advances in understanding the molecular mechanisms that maintain normal haemostasis. British journal of haematology, 186(1), 24–36. https://doi.org/10.1111/bjh.15872
  • [52] Guerrero, C. G., & Ronsano, J. B. M. (2015). Physiopathology and treatment of critical bleeding: a literature review. PubMed, 39(6), 382–390. https://doi.org/10.7399/fh.2015.39.6.8907
  • [53] Adi̇loğlu, S., Aktaş, A., Öz, A. Z., & El, H. (2018). Hemostatic effects of adrenaline and Ankaferd (blood stopper) during orthodontic attachment bonding. Turkish Journal of Medical Sciences, 48(6), 1234-1238. https://dergipark.org.tr/tr/pub/tbtkmedical/issue/41101/497095
  • [54] Badovinac, S., Glodić, G., Sabol, I., Džubur, F., Makek, M. J., Baričević, D., Koršić, M., Popović, F., Srdić, D., & Samaržija, M. (2023). Tranexamic Acid vs Adrenaline for Controlling Iatrogenic Bleeding During Flexible Bronchoscopy. Chest, 163(4), 985–993. https://doi.org/10.1016/j.chest.2022.10.013
  • [55] Kelleş, M., Kalcıoğlu, M. T., Şamdancı, E., Selimoğlu, E., Iraz, M., Miman, M. C., & Haznedaroğlu, İ. C. (2011). Ankaferd blood stopper is more effective than adrenaline plus lidocaine and gelatin foam in the treatment of epistaxis in rabbits. Current Therapeutic Research, 72(5), 185–194. https://doi.org/10.1016/j.curtheres.2011.08.002
  • [56] Biranje, S., Sun, J., Shi, Y., Yu, S., Jiao, H., Zhang, M., Wang, Q., Jin, W., & Liu, J. (2021). Polysaccharide-based hemostats: recent developments, challenges, and future perspectives. Cellulose, 28(14), 8899–8937. https://doi.org/10.1007/s10570-021-04132-x
There are 56 citations in total.

Details

Primary Language English
Subjects Biomedical Engineering (Other), Polymer Science and Technologies
Journal Section Research Articles
Authors

Başak Ünver Koluman 0000-0003-1106-5021

Mahmed Sari Njjar 0000-0003-2494-1086

Ahmet Koluman 0000-0001-5308-8884

Publication Date April 16, 2024
Published in Issue Year 2024 Volume: 5 Issue: 1

Cite

APA Ünver Koluman, B., Njjar, M. S., & Koluman, A. (2024). The Electrospinning of Different Hemostatic Agents and Their Effectiveness. Research Journal of Biomedical and Biotechnology, 5(1), 1-9.
AMA Ünver Koluman B, Njjar MS, Koluman A. The Electrospinning of Different Hemostatic Agents and Their Effectiveness. RJBB. April 2024;5(1):1-9.
Chicago Ünver Koluman, Başak, Mahmed Sari Njjar, and Ahmet Koluman. “The Electrospinning of Different Hemostatic Agents and Their Effectiveness”. Research Journal of Biomedical and Biotechnology 5, no. 1 (April 2024): 1-9.
EndNote Ünver Koluman B, Njjar MS, Koluman A (April 1, 2024) The Electrospinning of Different Hemostatic Agents and Their Effectiveness. Research Journal of Biomedical and Biotechnology 5 1 1–9.
IEEE B. Ünver Koluman, M. S. Njjar, and A. Koluman, “The Electrospinning of Different Hemostatic Agents and Their Effectiveness”, RJBB, vol. 5, no. 1, pp. 1–9, 2024.
ISNAD Ünver Koluman, Başak et al. “The Electrospinning of Different Hemostatic Agents and Their Effectiveness”. Research Journal of Biomedical and Biotechnology 5/1 (April 2024), 1-9.
JAMA Ünver Koluman B, Njjar MS, Koluman A. The Electrospinning of Different Hemostatic Agents and Their Effectiveness. RJBB. 2024;5:1–9.
MLA Ünver Koluman, Başak et al. “The Electrospinning of Different Hemostatic Agents and Their Effectiveness”. Research Journal of Biomedical and Biotechnology, vol. 5, no. 1, 2024, pp. 1-9.
Vancouver Ünver Koluman B, Njjar MS, Koluman A. The Electrospinning of Different Hemostatic Agents and Their Effectiveness. RJBB. 2024;5(1):1-9.