Research Article
BibTex RIS Cite

Fs−contractive mappings in controlled metric type spaces

Year 2021, , 149 - 158, 30.09.2021
https://doi.org/10.53006/rna.928319

Abstract

We investigate in this manuscript, we study a new type of mappings so called F_s −contractive, in addition
to we establish some fixed point results related to F_s −contractive type mappings in controlled type metric
spaces. Also, examples are provided to illustrate our results.

Supporting Institution

none

Project Number

none

Thanks

It is my pleasure to publish your journal

References

  • [1] S. Banach, Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales, Fund Math. 3, 133-181 (1922).
  • [2] J. Jachymski, I. Jówik, On Kirk's asymptotic contractions. J Math Anal Appl. 300, 147-159 (2004). doi:10.1016/j. jmaa.2004.06.037.
  • [3] T. Suzuki, Fixed-point theorem for asymptotic contractions of Meir-Keeler type in complete metric spaces, Non-linear Anal. 64, 971-978 (2006).
  • [4] N. Mlaiki, H. Aydi, N. Souayah and T. Abdeljawad, Controlled metric type spaces and the related contraction principle, Mathematics, 6, 194, 2018.
  • [5] A. Meir, E. Keeler, A theorem on contraction mappings. J Math Anal Appl. 28, 326-329 (1969). doi:10.1016/0022-247X (69)90031-6.
  • [6] T. Abdeljawad, Fixed points for generalized weakly contractive mappings in partial metric spaces. Math Comput Mod- elling. 54, 2923-2927 (2011). doi:10.1016/j.mcm.2011.07.013.
  • [7] Choudhury, Binayak, S, Konar, P, Rhoades, BE, Metiya, N: Fixed point theorems for generalized weakly contractive mappings. Nonlinear Anal. 74, 2116-2126 (2011). doi:10.1016/j.na.2010.11.017.
  • [8] D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012, 94 (2012) https://doi.org/10.1186/1687-1812-2012-94.
  • [9] A. Lukács, S. Kajántó, Fixed point theorems for various types of F-contractions in complete b-metric spaces. Fixed Point Theory 19(1), 321-334 (2018). https://doi.org/10.24193/fpt-ro.2018.1.25. [10] S. Cobzas, Fixed points and completeness in metric and in generalized metric spaces (2016). arXiv:1508.05173v4 [math.FA] [11] T.K. Hu, On a fixed-point theorem for metric spaces. Am. Math. Mon. 74, 436-437 (1967).
  • [12] H. Garai, T. Senapati, L.K. Dey, A study on Kannan type contractive mappings (2017). arXiv:1707.06383v1 [math.FA].
  • [13] F.E. Browder, W.V. Petryshyn, The solution by iteration of non-linear functional equations in Banach spaces. Bull. Am. Math. Soc. 72, 571-575 (1966).
  • [14] J.B. Baillon, R.E. Bruck, S. Reich, On the asymptotic behaviour of non-expansive mappings and semi-groups in Banach spaces. Houst. J. Math. 4, 1-9 (1978).
  • [15] R.E. Bruck, S. Reich, Non-expansive projections and resolvents of accretive operators in Banach spaces. Houst. J. Math. 3, 459-470 (1977).
  • [16] J. Górnicki, Fixed point theorems for F-expanding mappings. Fixed Point Theory Appl. 2017, 9 (2017). https://doi.org/10.1186/s13663-017-0602-3.
  • [17] T. Abdeljawad, N. Mlaiki, H. Aydi, and N. Souayah, Double Controlled Metric Type Spaces and Some Fixed Point Results, Mathematics 2018, 6, 320; doi:10.3390/math6120320
  • [18] E. Karapinar, S. Czerwik, H. Aydi, (α,ψ)-Meir-Keeler contraction mappings in generalized b-metric spaces, Journal of Function spaces, Volume 2018 (2018), Article ID 3264620, 4 pages.
  • [19] H. Afshari, H. Aydi, E. Karapinar, On generalized α − ψ-Geraghty contractions on b-metric spaces, Georgian Math. J. 27 (2020), 9-21
  • [20] E. Karapinar, A. Petrusel, and G.Petrusel, On admissible hybrid Geraghty contractions, Carpathian J. Math. 36 (2020), No. 3, 433 - 442.
  • [21] H. Aydi, M. F. Bota, E. Karapinar, S. Mitrovic, A fixed point theorem for set-valued quasi-contractions in b-metric spaces, Fixed Point Theory Appl. 2012, 2012 :88.
  • [22] H. Aydi, M.F. Bota, E. Karapinar, S. Moradi, A common fixed point for weak phi-contractions on b-metric spaces, Fixed Point Theory, 13 (2) (2012), 337-346.
  • [23] M.A. Alghamdi, S. Gulyaz-Ozyurt and E. Karapinar, A Note on Extended Z−Contraction, Mathematics, Volume 8 Issue 2 Article Number 195 (2020).
Year 2021, , 149 - 158, 30.09.2021
https://doi.org/10.53006/rna.928319

Abstract

Project Number

none

References

  • [1] S. Banach, Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales, Fund Math. 3, 133-181 (1922).
  • [2] J. Jachymski, I. Jówik, On Kirk's asymptotic contractions. J Math Anal Appl. 300, 147-159 (2004). doi:10.1016/j. jmaa.2004.06.037.
  • [3] T. Suzuki, Fixed-point theorem for asymptotic contractions of Meir-Keeler type in complete metric spaces, Non-linear Anal. 64, 971-978 (2006).
  • [4] N. Mlaiki, H. Aydi, N. Souayah and T. Abdeljawad, Controlled metric type spaces and the related contraction principle, Mathematics, 6, 194, 2018.
  • [5] A. Meir, E. Keeler, A theorem on contraction mappings. J Math Anal Appl. 28, 326-329 (1969). doi:10.1016/0022-247X (69)90031-6.
  • [6] T. Abdeljawad, Fixed points for generalized weakly contractive mappings in partial metric spaces. Math Comput Mod- elling. 54, 2923-2927 (2011). doi:10.1016/j.mcm.2011.07.013.
  • [7] Choudhury, Binayak, S, Konar, P, Rhoades, BE, Metiya, N: Fixed point theorems for generalized weakly contractive mappings. Nonlinear Anal. 74, 2116-2126 (2011). doi:10.1016/j.na.2010.11.017.
  • [8] D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012, 94 (2012) https://doi.org/10.1186/1687-1812-2012-94.
  • [9] A. Lukács, S. Kajántó, Fixed point theorems for various types of F-contractions in complete b-metric spaces. Fixed Point Theory 19(1), 321-334 (2018). https://doi.org/10.24193/fpt-ro.2018.1.25. [10] S. Cobzas, Fixed points and completeness in metric and in generalized metric spaces (2016). arXiv:1508.05173v4 [math.FA] [11] T.K. Hu, On a fixed-point theorem for metric spaces. Am. Math. Mon. 74, 436-437 (1967).
  • [12] H. Garai, T. Senapati, L.K. Dey, A study on Kannan type contractive mappings (2017). arXiv:1707.06383v1 [math.FA].
  • [13] F.E. Browder, W.V. Petryshyn, The solution by iteration of non-linear functional equations in Banach spaces. Bull. Am. Math. Soc. 72, 571-575 (1966).
  • [14] J.B. Baillon, R.E. Bruck, S. Reich, On the asymptotic behaviour of non-expansive mappings and semi-groups in Banach spaces. Houst. J. Math. 4, 1-9 (1978).
  • [15] R.E. Bruck, S. Reich, Non-expansive projections and resolvents of accretive operators in Banach spaces. Houst. J. Math. 3, 459-470 (1977).
  • [16] J. Górnicki, Fixed point theorems for F-expanding mappings. Fixed Point Theory Appl. 2017, 9 (2017). https://doi.org/10.1186/s13663-017-0602-3.
  • [17] T. Abdeljawad, N. Mlaiki, H. Aydi, and N. Souayah, Double Controlled Metric Type Spaces and Some Fixed Point Results, Mathematics 2018, 6, 320; doi:10.3390/math6120320
  • [18] E. Karapinar, S. Czerwik, H. Aydi, (α,ψ)-Meir-Keeler contraction mappings in generalized b-metric spaces, Journal of Function spaces, Volume 2018 (2018), Article ID 3264620, 4 pages.
  • [19] H. Afshari, H. Aydi, E. Karapinar, On generalized α − ψ-Geraghty contractions on b-metric spaces, Georgian Math. J. 27 (2020), 9-21
  • [20] E. Karapinar, A. Petrusel, and G.Petrusel, On admissible hybrid Geraghty contractions, Carpathian J. Math. 36 (2020), No. 3, 433 - 442.
  • [21] H. Aydi, M. F. Bota, E. Karapinar, S. Mitrovic, A fixed point theorem for set-valued quasi-contractions in b-metric spaces, Fixed Point Theory Appl. 2012, 2012 :88.
  • [22] H. Aydi, M.F. Bota, E. Karapinar, S. Moradi, A common fixed point for weak phi-contractions on b-metric spaces, Fixed Point Theory, 13 (2) (2012), 337-346.
  • [23] M.A. Alghamdi, S. Gulyaz-Ozyurt and E. Karapinar, A Note on Extended Z−Contraction, Mathematics, Volume 8 Issue 2 Article Number 195 (2020).
There are 21 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Muhib Abuloha This is me

Doaa Rizk 0000-0002-4547-3165

Kamaleldin Abodayeh

Aiman Mukheimer This is me

Nizar Souayah

Project Number none
Publication Date September 30, 2021
Published in Issue Year 2021

Cite

APA Abuloha, M., Rizk, D., Abodayeh, K., Mukheimer, A., et al. (2021). Fs−contractive mappings in controlled metric type spaces. Results in Nonlinear Analysis, 4(3), 149-158. https://doi.org/10.53006/rna.928319
AMA Abuloha M, Rizk D, Abodayeh K, Mukheimer A, Souayah N. Fs−contractive mappings in controlled metric type spaces. RNA. September 2021;4(3):149-158. doi:10.53006/rna.928319
Chicago Abuloha, Muhib, Doaa Rizk, Kamaleldin Abodayeh, Aiman Mukheimer, and Nizar Souayah. “Fs−contractive Mappings in Controlled Metric Type Spaces”. Results in Nonlinear Analysis 4, no. 3 (September 2021): 149-58. https://doi.org/10.53006/rna.928319.
EndNote Abuloha M, Rizk D, Abodayeh K, Mukheimer A, Souayah N (September 1, 2021) Fs−contractive mappings in controlled metric type spaces. Results in Nonlinear Analysis 4 3 149–158.
IEEE M. Abuloha, D. Rizk, K. Abodayeh, A. Mukheimer, and N. Souayah, “Fs−contractive mappings in controlled metric type spaces”, RNA, vol. 4, no. 3, pp. 149–158, 2021, doi: 10.53006/rna.928319.
ISNAD Abuloha, Muhib et al. “Fs−contractive Mappings in Controlled Metric Type Spaces”. Results in Nonlinear Analysis 4/3 (September 2021), 149-158. https://doi.org/10.53006/rna.928319.
JAMA Abuloha M, Rizk D, Abodayeh K, Mukheimer A, Souayah N. Fs−contractive mappings in controlled metric type spaces. RNA. 2021;4:149–158.
MLA Abuloha, Muhib et al. “Fs−contractive Mappings in Controlled Metric Type Spaces”. Results in Nonlinear Analysis, vol. 4, no. 3, 2021, pp. 149-58, doi:10.53006/rna.928319.
Vancouver Abuloha M, Rizk D, Abodayeh K, Mukheimer A, Souayah N. Fs−contractive mappings in controlled metric type spaces. RNA. 2021;4(3):149-58.