Research Article
BibTex RIS Cite
Year 2020, Volume: 3 Issue: 1, 24 - 34, 31.03.2020

Abstract

Supporting Institution

TÜBİTAK

Project Number

104T133

References

  • [1] J. A. Adam, N. Bellomo. A Survey of Models for Tumor-Immune System Dynamics. Birkhauser, Boston, MA, 1996.
  • [2] E. J. Allen, L. J. S. Allen and A. Arciniega, P. Greenwood, Construction of equivalent stochastic diferential equation models. Stoch. Anal. Appl., 26, pages: 274-297, 2008.
  • [3] L. J. S. Allen. An introduction to stochastic processes with applications to biology. Second edition. CRC Press, Boca Raton, FL, 2011.
  • [4] N. Azevedo, D. Pinheiro and G.-W. Weber. Dynamic programming for a Markov-switching jump-diffusion. Journal of Computational and Applied Mathematics, 267, pages 1-19, 2014.
  • [5] C. G. Cassandras and John Lygeros. Stochastic Hybrid Systems, CRC Press, FL, 2006.
  • [6] T. Dvorkin, X. Song, S. Argov, R. M. White, M. Zoller, S. Segal, C. A. Dinarello, E. Voronov and R. N. Apte. Immune phenomena involved in the in vivo regression of fibrosarcoma cells expressing cell-associated IL-1alpha. J Leukoc Biol.; 80(1):96-106, 2006.
  • [7] N. Gökgöz. Development of Tools For Modeling Hybrid Systems With Memory, Msc. Thesis, Scientific Computing, Institute of Applied Mathematics, Middle East Technical University, Ankara, Turkey, 2008.
  • [8] N. Gökgöz. Modeling Stochastic Hybrid Systems With Memory With an Application to Immune Response of Cancer Dynamics, PhD Thesis, Scientific Computing, Institute of Applied Mathematics, Middle East Technical University, Ankara, Turkey, 2014.
  • [9] N. Gökgöz. Stochastic Dynamics of tumor-immune system: a numerical approach.Results in Nonlinear Analysis, pages 1-6, 2019.
  • [10] D. J. Higham and P. E. Kloeden. Numerical methods for nonlinear stochastic di erential equations with jumps. Numerische Mathematik, Vol 101, No. 1, pp. 101-119, 2005.
  • [11] I. Karatzas and S. E. Shreve.Brownian Motion and Stochastic Calculus. Springer, 1991.
  • [12] V. A. Kuznetsov, I. A. Makalkin, M. A. Taylor and A. S. Perelson. Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcations analysis. Bull Math Biol., 56(2):295-321, 1994.
  • [13] X. Li, O. Omotere, L. Qian and E. R. Dougherty. Review of stochastic hybrid systems with applications in biological systems modeling and analysis. EURASIP Journal on Bioinformatics and Systems Biology, 2017. DOI 10.1186/s13637-017-0061-5
  • [14] B. Oksendal. Stochastic Differential Equations: An Introduction with Applications. Springer-Verlag Berlin Heidelberg, 2003.
  • [15] H. Oktem. A survey on piecewise-linear models of regulatory dynamical systems. Nonlinear Analysis, 63, 336-349,2005.
  • [16] H. Oktem, A. Hayfavi, N. Calışkan and N. Gökgöz. An Introduction of Hybrid Systems with Memory, International Workshop on Hybrid Systems Modeling, Simulation and Optimization, Koç University, Istanbul, May 14-16 2008.
  • [17] G. Pola, M. L. Bujorianu, J. Lygeros and M.D. Di Benedetto. Stochastic Hybrid Models: An Overview. IFAC Proceedings Vol. 36, (pp. 4550), 2003.
  • [18] L. Preziosi. Cancer Modelling and Simulation. CRC Press, 2003.
  • [19] E. Savku, N. Azevedo and G.-W. Weber. Optimal Control of Stochastic Hybrid Models in the Framework of Regime Switches. Modeling, Dynamics, Optimization and Bioeconomics II, DGS III, Porto, Portugal, February 2014, and Bioeconomy VII, Berkeley, USA, March 2014 - Selected Contributions, pages 371-387, 2014.
  • [20] E. Savku and G. W. Weber. A Stochastic Maximum Principle for a Markov Regime-Switching Jump-Diffusion Model with Delay and an Application to Finance. J Optim Theory Appl, pages 696-721, 2017.
  • [21] A. M. Selçuk and H. Oktem. An improved method for inference of piecewise linear systems by detecting jumps using derivative estimation. in: Nonlinear Analysis: Hybrid Systems, 3:3 (277-287), 2009.
  • [22] B. Z. Temoçin and G. W. Weber. Optimal control of stochastic hybrid system with jumps: A numerical approximation, Journal of Computational and Applied Mathematics (JCAM) 259 (2014) 443-451, in special issue at the occasion of ICACM - International Conference on Applied and Computational Mathematics Ankara, Turkey, October 3-6, 2012.
  • [23] F. Yerlikaya- Ozkurt, C. Vardar-Acar, Y. Yolcu-Okur and G.-W. Weber. Estimation of Hurst parameter of fractional Brownian motion using CMARS method. Journal of Computational and Applied Mathematics (JCAM) 259 (2014) 843-850, in special issue at the occasion of ICACM - International Conference on Applied and Computational Mathematics Ankara, Turkey, October 3-6, 2012

Modeling of Tumor-Immune Nonlinear Stochastic Dynamics with Hybrid Systems with Memory Approach

Year 2020, Volume: 3 Issue: 1, 24 - 34, 31.03.2020

Abstract

In this paper, we address the well-known Tumor-Immune Model of Kuznetsov
et al., converting it into a stochastic form, and for simulation purposes we employ
Euler-Maruyama discretization process. Such a modeling, for being realistic in
biology and medicine, requires the implication of memory components. We also explain
how to calculate the state transition time and we elaborate on how to reduce
the system dynamics after the state transition. In fact, we establish and evaluate
Stochastic Kuznetsov et al. model, and we describe how to demonstrate the stability
of the numerical method, addressing tumor growth in spleen of mice. This work
ends with a conclusion and a prospective view at future research and application,
with special focus on medicine and neuroscience of tumor analysis and treatment.

Project Number

104T133

References

  • [1] J. A. Adam, N. Bellomo. A Survey of Models for Tumor-Immune System Dynamics. Birkhauser, Boston, MA, 1996.
  • [2] E. J. Allen, L. J. S. Allen and A. Arciniega, P. Greenwood, Construction of equivalent stochastic diferential equation models. Stoch. Anal. Appl., 26, pages: 274-297, 2008.
  • [3] L. J. S. Allen. An introduction to stochastic processes with applications to biology. Second edition. CRC Press, Boca Raton, FL, 2011.
  • [4] N. Azevedo, D. Pinheiro and G.-W. Weber. Dynamic programming for a Markov-switching jump-diffusion. Journal of Computational and Applied Mathematics, 267, pages 1-19, 2014.
  • [5] C. G. Cassandras and John Lygeros. Stochastic Hybrid Systems, CRC Press, FL, 2006.
  • [6] T. Dvorkin, X. Song, S. Argov, R. M. White, M. Zoller, S. Segal, C. A. Dinarello, E. Voronov and R. N. Apte. Immune phenomena involved in the in vivo regression of fibrosarcoma cells expressing cell-associated IL-1alpha. J Leukoc Biol.; 80(1):96-106, 2006.
  • [7] N. Gökgöz. Development of Tools For Modeling Hybrid Systems With Memory, Msc. Thesis, Scientific Computing, Institute of Applied Mathematics, Middle East Technical University, Ankara, Turkey, 2008.
  • [8] N. Gökgöz. Modeling Stochastic Hybrid Systems With Memory With an Application to Immune Response of Cancer Dynamics, PhD Thesis, Scientific Computing, Institute of Applied Mathematics, Middle East Technical University, Ankara, Turkey, 2014.
  • [9] N. Gökgöz. Stochastic Dynamics of tumor-immune system: a numerical approach.Results in Nonlinear Analysis, pages 1-6, 2019.
  • [10] D. J. Higham and P. E. Kloeden. Numerical methods for nonlinear stochastic di erential equations with jumps. Numerische Mathematik, Vol 101, No. 1, pp. 101-119, 2005.
  • [11] I. Karatzas and S. E. Shreve.Brownian Motion and Stochastic Calculus. Springer, 1991.
  • [12] V. A. Kuznetsov, I. A. Makalkin, M. A. Taylor and A. S. Perelson. Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcations analysis. Bull Math Biol., 56(2):295-321, 1994.
  • [13] X. Li, O. Omotere, L. Qian and E. R. Dougherty. Review of stochastic hybrid systems with applications in biological systems modeling and analysis. EURASIP Journal on Bioinformatics and Systems Biology, 2017. DOI 10.1186/s13637-017-0061-5
  • [14] B. Oksendal. Stochastic Differential Equations: An Introduction with Applications. Springer-Verlag Berlin Heidelberg, 2003.
  • [15] H. Oktem. A survey on piecewise-linear models of regulatory dynamical systems. Nonlinear Analysis, 63, 336-349,2005.
  • [16] H. Oktem, A. Hayfavi, N. Calışkan and N. Gökgöz. An Introduction of Hybrid Systems with Memory, International Workshop on Hybrid Systems Modeling, Simulation and Optimization, Koç University, Istanbul, May 14-16 2008.
  • [17] G. Pola, M. L. Bujorianu, J. Lygeros and M.D. Di Benedetto. Stochastic Hybrid Models: An Overview. IFAC Proceedings Vol. 36, (pp. 4550), 2003.
  • [18] L. Preziosi. Cancer Modelling and Simulation. CRC Press, 2003.
  • [19] E. Savku, N. Azevedo and G.-W. Weber. Optimal Control of Stochastic Hybrid Models in the Framework of Regime Switches. Modeling, Dynamics, Optimization and Bioeconomics II, DGS III, Porto, Portugal, February 2014, and Bioeconomy VII, Berkeley, USA, March 2014 - Selected Contributions, pages 371-387, 2014.
  • [20] E. Savku and G. W. Weber. A Stochastic Maximum Principle for a Markov Regime-Switching Jump-Diffusion Model with Delay and an Application to Finance. J Optim Theory Appl, pages 696-721, 2017.
  • [21] A. M. Selçuk and H. Oktem. An improved method for inference of piecewise linear systems by detecting jumps using derivative estimation. in: Nonlinear Analysis: Hybrid Systems, 3:3 (277-287), 2009.
  • [22] B. Z. Temoçin and G. W. Weber. Optimal control of stochastic hybrid system with jumps: A numerical approximation, Journal of Computational and Applied Mathematics (JCAM) 259 (2014) 443-451, in special issue at the occasion of ICACM - International Conference on Applied and Computational Mathematics Ankara, Turkey, October 3-6, 2012.
  • [23] F. Yerlikaya- Ozkurt, C. Vardar-Acar, Y. Yolcu-Okur and G.-W. Weber. Estimation of Hurst parameter of fractional Brownian motion using CMARS method. Journal of Computational and Applied Mathematics (JCAM) 259 (2014) 843-850, in special issue at the occasion of ICACM - International Conference on Applied and Computational Mathematics Ankara, Turkey, October 3-6, 2012
There are 23 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Nurgül Gökgöz

Hakan Öktem This is me

Gerhard-wilhelm Weber

Project Number 104T133
Publication Date March 31, 2020
Published in Issue Year 2020 Volume: 3 Issue: 1

Cite

APA Gökgöz, N., Öktem, H., & Weber, G.-w. (2020). Modeling of Tumor-Immune Nonlinear Stochastic Dynamics with Hybrid Systems with Memory Approach. Results in Nonlinear Analysis, 3(1), 24-34.
AMA Gökgöz N, Öktem H, Weber Gw. Modeling of Tumor-Immune Nonlinear Stochastic Dynamics with Hybrid Systems with Memory Approach. RNA. March 2020;3(1):24-34.
Chicago Gökgöz, Nurgül, Hakan Öktem, and Gerhard-wilhelm Weber. “Modeling of Tumor-Immune Nonlinear Stochastic Dynamics With Hybrid Systems With Memory Approach”. Results in Nonlinear Analysis 3, no. 1 (March 2020): 24-34.
EndNote Gökgöz N, Öktem H, Weber G-w (March 1, 2020) Modeling of Tumor-Immune Nonlinear Stochastic Dynamics with Hybrid Systems with Memory Approach. Results in Nonlinear Analysis 3 1 24–34.
IEEE N. Gökgöz, H. Öktem, and G.-w. Weber, “Modeling of Tumor-Immune Nonlinear Stochastic Dynamics with Hybrid Systems with Memory Approach”, RNA, vol. 3, no. 1, pp. 24–34, 2020.
ISNAD Gökgöz, Nurgül et al. “Modeling of Tumor-Immune Nonlinear Stochastic Dynamics With Hybrid Systems With Memory Approach”. Results in Nonlinear Analysis 3/1 (March 2020), 24-34.
JAMA Gökgöz N, Öktem H, Weber G-w. Modeling of Tumor-Immune Nonlinear Stochastic Dynamics with Hybrid Systems with Memory Approach. RNA. 2020;3:24–34.
MLA Gökgöz, Nurgül et al. “Modeling of Tumor-Immune Nonlinear Stochastic Dynamics With Hybrid Systems With Memory Approach”. Results in Nonlinear Analysis, vol. 3, no. 1, 2020, pp. 24-34.
Vancouver Gökgöz N, Öktem H, Weber G-w. Modeling of Tumor-Immune Nonlinear Stochastic Dynamics with Hybrid Systems with Memory Approach. RNA. 2020;3(1):24-3.