Research Article
BibTex RIS Cite
Year 2020, Volume: 3 Issue: 3, 128 - 136, 30.09.2020

Abstract

References

  • [1] Z.I. Al-Muhiameed, Z. Mostefaqui and M. Bousselsal, Coincidence and common fixed point thorems for (psi,phi)-weakly contractive mapping in rectangular b-metric spaces, Elec. J. Math. Anal. Appl., 6(2) (2018), 211–220.
  • [2] I.A. Bakhtin, The contraction mapping Principle in almost metrics spaces, Functional Analysis, 30, (1989), 26–37.
  • [3] A. Branciari, A fixed point theorem of Banach–Caccioppoly type on a class of generalized metric space, Publ. Math. Debrecen, 57, (2000), 31–37.
  • [4] H-S. Ding, M. Imdad, S. Radenovic and J. Vujakovic, On some fixed point results in b-metric, rectangular and b-rectangular metric spaces, Arab J. Math. Sci., 22, (2016), 151–164
  • [5] H.S. Ding, V. Ozturk and S. Radenović, On some new fixed point results in b-rectangular metric spaces, J. Nonlinear Sci. Appl., 8, (2015), 378–386.
  • [6] R. George, S. Radenovic, S. Reshma and S. Shukla, Rectangular b-metric spaces and contraction principles, J. Nonlinear Sci. Appl. 8, (2015), 1005-1013.
  • [7] M.A. Geraghty, On contractive mappings, Proc. Amer. Math. Soc., 40, (1973), 604–608.
  • [8] G. Jungck, Commuting mappings and fixed points, Amer. Math. Monthly, 83(4) (1976), 261–263.
  • [9] G. Jungck and B.E. Rhoades, Fixed point theorems for occasionally weakly compatible mappings, Fixed Point Theory, 7(2) (2006) 287–296.
  • [10] M.S. Khan, M. Swaleh and S. Sessa, Fixed point theorems by altering distances between the points, Bull. Aust. Math. Soc., vol. 30, (1984), 1–9.
  • [11] J.R. Morales and E.M. Rojas, Contractive mappings of rational type controlled by minimal requirements functions, Afr. Mat., vol. 27, no. 1-2, (2016), 65–77.
  • [12] J.R. Morales, E.M. Rojas and R.K. Bisht, Common fixed points for pairs of mappings with variable contractive parameters, Abstract and Applied Analysis, Volume 2014, Article ID 209234, 7 pages.
  • [13] J.R. Roshan, V. Parvaneh, Z. Kadelburg and N. Hussain, New fixed point results in b-rectangular metric spaces, Nonlinear Anal. Model. Control, 21(5) (2016), 614–634.
  • [14] T. Suzuki, Generalized metric spaces do not have the compatible topology, Abstract and Applied Analysis Volume 2014, Article ID 458098, 5 pages.

Common fixed points for $\psi$-Geraghty-Jungck contraction type mappings in Branciari b-metric spaces

Year 2020, Volume: 3 Issue: 3, 128 - 136, 30.09.2020

Abstract

The main purpose of this paper is to define a class of contraction-type pair of mappings, called psi-Geraghty-Jungck contraction pair, which consists of a Jungck pair of mappings satisfying the Geraghty condition and, furthermore, its contractive inequality is controlled by an altering distance function. For this class of mappings, we discuss the existence and uniqueness of its common fixed points under the weakly compatibility property. These mappings are defined in the setting of the so-called Branciari b-metric spaces.

References

  • [1] Z.I. Al-Muhiameed, Z. Mostefaqui and M. Bousselsal, Coincidence and common fixed point thorems for (psi,phi)-weakly contractive mapping in rectangular b-metric spaces, Elec. J. Math. Anal. Appl., 6(2) (2018), 211–220.
  • [2] I.A. Bakhtin, The contraction mapping Principle in almost metrics spaces, Functional Analysis, 30, (1989), 26–37.
  • [3] A. Branciari, A fixed point theorem of Banach–Caccioppoly type on a class of generalized metric space, Publ. Math. Debrecen, 57, (2000), 31–37.
  • [4] H-S. Ding, M. Imdad, S. Radenovic and J. Vujakovic, On some fixed point results in b-metric, rectangular and b-rectangular metric spaces, Arab J. Math. Sci., 22, (2016), 151–164
  • [5] H.S. Ding, V. Ozturk and S. Radenović, On some new fixed point results in b-rectangular metric spaces, J. Nonlinear Sci. Appl., 8, (2015), 378–386.
  • [6] R. George, S. Radenovic, S. Reshma and S. Shukla, Rectangular b-metric spaces and contraction principles, J. Nonlinear Sci. Appl. 8, (2015), 1005-1013.
  • [7] M.A. Geraghty, On contractive mappings, Proc. Amer. Math. Soc., 40, (1973), 604–608.
  • [8] G. Jungck, Commuting mappings and fixed points, Amer. Math. Monthly, 83(4) (1976), 261–263.
  • [9] G. Jungck and B.E. Rhoades, Fixed point theorems for occasionally weakly compatible mappings, Fixed Point Theory, 7(2) (2006) 287–296.
  • [10] M.S. Khan, M. Swaleh and S. Sessa, Fixed point theorems by altering distances between the points, Bull. Aust. Math. Soc., vol. 30, (1984), 1–9.
  • [11] J.R. Morales and E.M. Rojas, Contractive mappings of rational type controlled by minimal requirements functions, Afr. Mat., vol. 27, no. 1-2, (2016), 65–77.
  • [12] J.R. Morales, E.M. Rojas and R.K. Bisht, Common fixed points for pairs of mappings with variable contractive parameters, Abstract and Applied Analysis, Volume 2014, Article ID 209234, 7 pages.
  • [13] J.R. Roshan, V. Parvaneh, Z. Kadelburg and N. Hussain, New fixed point results in b-rectangular metric spaces, Nonlinear Anal. Model. Control, 21(5) (2016), 614–634.
  • [14] T. Suzuki, Generalized metric spaces do not have the compatible topology, Abstract and Applied Analysis Volume 2014, Article ID 458098, 5 pages.
There are 14 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Jose Morales This is me

Antonio Vizcaya This is me

Publication Date September 30, 2020
Published in Issue Year 2020 Volume: 3 Issue: 3

Cite

APA Morales, J., & Vizcaya, A. (2020). Common fixed points for $\psi$-Geraghty-Jungck contraction type mappings in Branciari b-metric spaces. Results in Nonlinear Analysis, 3(3), 128-136.
AMA Morales J, Vizcaya A. Common fixed points for $\psi$-Geraghty-Jungck contraction type mappings in Branciari b-metric spaces. RNA. September 2020;3(3):128-136.
Chicago Morales, Jose, and Antonio Vizcaya. “Common Fixed Points for $\psi$-Geraghty-Jungck Contraction Type Mappings in Branciari B-Metric Spaces”. Results in Nonlinear Analysis 3, no. 3 (September 2020): 128-36.
EndNote Morales J, Vizcaya A (September 1, 2020) Common fixed points for $\psi$-Geraghty-Jungck contraction type mappings in Branciari b-metric spaces. Results in Nonlinear Analysis 3 3 128–136.
IEEE J. Morales and A. Vizcaya, “Common fixed points for $\psi$-Geraghty-Jungck contraction type mappings in Branciari b-metric spaces”, RNA, vol. 3, no. 3, pp. 128–136, 2020.
ISNAD Morales, Jose - Vizcaya, Antonio. “Common Fixed Points for $\psi$-Geraghty-Jungck Contraction Type Mappings in Branciari B-Metric Spaces”. Results in Nonlinear Analysis 3/3 (September 2020), 128-136.
JAMA Morales J, Vizcaya A. Common fixed points for $\psi$-Geraghty-Jungck contraction type mappings in Branciari b-metric spaces. RNA. 2020;3:128–136.
MLA Morales, Jose and Antonio Vizcaya. “Common Fixed Points for $\psi$-Geraghty-Jungck Contraction Type Mappings in Branciari B-Metric Spaces”. Results in Nonlinear Analysis, vol. 3, no. 3, 2020, pp. 128-36.
Vancouver Morales J, Vizcaya A. Common fixed points for $\psi$-Geraghty-Jungck contraction type mappings in Branciari b-metric spaces. RNA. 2020;3(3):128-36.