Research Article
BibTex RIS Cite

Recent advances in the Lefschetz fixed point theory for multivalued mappings

Year 2021, Volume: 4 Issue: 2, 116 - 126, 30.06.2021
https://doi.org/10.53006/rna.941060

Abstract

In 1923 S. Lefschetz proved the famous fixed point theorem which is now known as the Lefschetz fixed point theorem (comp. [5], [9], [20], [21]. The multivalued case was considered for the first time in 1946 by S. Eilenberg and D. Montgomery ([10]). They proved the Lefschetz fixed point theorem for acyclic mappings of compact ANR-spaces (absolute neighborhood retracts (see [4] or [13]) using Vietoris mapping theorem (see [4], [13], [16]) as the main tool. In 1970 Eilenberg, Montgomery's result was generalized for acyclic mappings of complete ANR-s (see [17]). Next, a class of admissible multivalued mappings was introduced ([13] or [16]).
Note that the class of admissible mappings is quite large and contains as a special case not only acyclic mappings but also infinite compositions of acyclic mappings. For this class of multivalued mappings several versions of the Lefschetz fixed point theorem were proved (comp. [11], [13]-15], [18], [19], [27]). In 1982 G. Skordev and W. Siegberg ([26]) introduced the class of multivalued mappings so-called now (1 − n)-acyclic mappings. Note that the class (1−n)-acyclic mappings contain as a special case n-valued mappings considered in [6], [12], [28]. We recommend [8] for the most important results connected with (1 − n)-acyclic mappings. Finally, the Lefschetz fixed point theorem was considered for spheric mappings (comp. [3], [2], [7], [23]) and for random multivalued mappings (comp. [1], [2], [13]). Let us remark that the main classes of spaces for which the Lefschetz fixed point theorem was formulated are the class of ANR-spaces ([4]) and MANR-spaces (multi absolute neighborhood retracts (see [27]). The aim of this paper is to recall the most important results concerning the Lefschetz fixed point theorem for multivalued mappings and to prove new versions of this theorem mainly for AANR-spaces (approximative absolute neighborhood retracts (see [4] or [13]) and for MANR-s. We believe that this article will be useful for analysts applying topological fixed point theory for multivalued mappings in nonlinear analysis, especially in differential inclusions.

References

  • J. Andres, L. Gorniewicz, On the Lefschetz fixed point theorem for radom multivalued mappings, Lib. Math. (N.S.) (2013), 69--78.
  • J. Andres, L. Gorniewicz, Recent results on the topological fixed point theory of multivalued mappings: a survey, Fixed Point Theory Appl.184 (2015), 1--34.
  • J. Andres, L. Gorniewicz, Lefschetz-type fixed point theorem for spheric mappings, Fixed Point Theory { 19} (2018), no.\ 2, 453--461.
  • K. Borsuk, Theory of Retracts, PWN, Warszawa 1967.
  • R. Brown, The Lefschetz Fixed Point Theorem, London 1971.
  • R. Brown, The Lefschetz number of an $n$-valued multimap, Fixed Point Theory Appl. {2} (2007), 53--60.
  • A. Dawidowicz, Spherical maps, Fund. Math. { 127} (1987), 187--196.
  • Z. Dzedzej, Fixed Point Index for a class of nonacyclic multivalued maps, Dissertationes Math. {25} (1985).
  • O. Ege, I. Karaca, Lefschetz fixed point theorem for digital images, Fixed Point Theory Appl. {253} (2013), 1--13.
  • S. Eilenberg, D. Montgomerry, Fixed point theorems for multivalued transformations, Amer. J. Math. { 58} (1946), 214--222.
  • G. Fournier, L. Gorniewicz, The Lefschetz fixed point theorem for some noncompact multivalued mappings, Fund. Math. { 94} (1977), 245--254.
  • D.L. Goncalves, J. Guaschi, Fixed points of $n$-valued maps, the fixed point property and the case of surfraces - a braid approach, Indag. Math. {29} (2018), 91--124.
  • L. Gorniewicz, Topological Fixed Point Theory of Multivalued Mappings, second edition, Springer 2006.
  • L. Gorniewicz, A Lefschetz-type fixed point theorem, Fund. Math. { 88} (1975), 103--115.
  • L. Gorniewicz, The Lefschetz coincidence theorem, Lecture Notes in Math. { 886} (1981), 116--131.
  • L. Gorniewicz, Homological methods in fixed point theory of multivalued mappings, Dissertationes Math. { 129} (1976), 1--66.
  • L. Gorniewicz, A. Granas, Fixed point theorems for multivalued mappings of \rom{ANR}-s, J. Math. Pures Appl. { 49} (1970), 381--395.
  • L. Gorniewicz, A. Granas, Some general theorems in coincidence theory, J. Math. Pures Appl. {60} (1981), 361--373.
  • L. Gorniewicz, Danuta Rozploch-Nowakowska, The Lefschetz fixed point theory for morphisms in topological vector spaces, Topol. Methods Nonlinear Anal. {20} (2002), 215--233.
  • A. Granas, J. Dugundji, Fixed Point Theory, Springer 2003.
  • R. Brown, M. Furi, L. Gorniewicz and B. Jiang, Handbook of Topological Fixed Point Theory, eds, Springer 2005, 43--82; 217--264.
  • J. Jezierski, An example of finitely valued fixed point free map, University Gdansk { 6} (1987), 87--92.
  • D. Miklaszewski, A fixed point theorem for multivalued mappings wit non-acyclic values, Lecture Notes in Nonlinear Analysis {17} (2001), 125--131.
  • B. O'Neill, A fixed point theorem for multivalued functions, Duke Math. J. {14} (1947), 689--693.
  • D. Pastor, A remark on generalized compact maps, Stud. Univ. Zilina Math. Ser.{13} (2001), 147--155.
  • H.W. Seigberg, G. Skordev, Fixed point index and chain approximation, Pacific J. Math. {102} (1982), 455-486.
  • R. Skiba, M. Slosarski, On a generalization of absolute neighborhood retracts, Topology Appl. { 156} (2009), 697--709.
  • F. Von Haesler, H.-O. Peitgen, G. Skordev, Lefschetz fixed point theorem for acyclic maps with multiplicity, Topol. Methods Nonlinear Anal. { 19} (2002), 339--374.
Year 2021, Volume: 4 Issue: 2, 116 - 126, 30.06.2021
https://doi.org/10.53006/rna.941060

Abstract

References

  • J. Andres, L. Gorniewicz, On the Lefschetz fixed point theorem for radom multivalued mappings, Lib. Math. (N.S.) (2013), 69--78.
  • J. Andres, L. Gorniewicz, Recent results on the topological fixed point theory of multivalued mappings: a survey, Fixed Point Theory Appl.184 (2015), 1--34.
  • J. Andres, L. Gorniewicz, Lefschetz-type fixed point theorem for spheric mappings, Fixed Point Theory { 19} (2018), no.\ 2, 453--461.
  • K. Borsuk, Theory of Retracts, PWN, Warszawa 1967.
  • R. Brown, The Lefschetz Fixed Point Theorem, London 1971.
  • R. Brown, The Lefschetz number of an $n$-valued multimap, Fixed Point Theory Appl. {2} (2007), 53--60.
  • A. Dawidowicz, Spherical maps, Fund. Math. { 127} (1987), 187--196.
  • Z. Dzedzej, Fixed Point Index for a class of nonacyclic multivalued maps, Dissertationes Math. {25} (1985).
  • O. Ege, I. Karaca, Lefschetz fixed point theorem for digital images, Fixed Point Theory Appl. {253} (2013), 1--13.
  • S. Eilenberg, D. Montgomerry, Fixed point theorems for multivalued transformations, Amer. J. Math. { 58} (1946), 214--222.
  • G. Fournier, L. Gorniewicz, The Lefschetz fixed point theorem for some noncompact multivalued mappings, Fund. Math. { 94} (1977), 245--254.
  • D.L. Goncalves, J. Guaschi, Fixed points of $n$-valued maps, the fixed point property and the case of surfraces - a braid approach, Indag. Math. {29} (2018), 91--124.
  • L. Gorniewicz, Topological Fixed Point Theory of Multivalued Mappings, second edition, Springer 2006.
  • L. Gorniewicz, A Lefschetz-type fixed point theorem, Fund. Math. { 88} (1975), 103--115.
  • L. Gorniewicz, The Lefschetz coincidence theorem, Lecture Notes in Math. { 886} (1981), 116--131.
  • L. Gorniewicz, Homological methods in fixed point theory of multivalued mappings, Dissertationes Math. { 129} (1976), 1--66.
  • L. Gorniewicz, A. Granas, Fixed point theorems for multivalued mappings of \rom{ANR}-s, J. Math. Pures Appl. { 49} (1970), 381--395.
  • L. Gorniewicz, A. Granas, Some general theorems in coincidence theory, J. Math. Pures Appl. {60} (1981), 361--373.
  • L. Gorniewicz, Danuta Rozploch-Nowakowska, The Lefschetz fixed point theory for morphisms in topological vector spaces, Topol. Methods Nonlinear Anal. {20} (2002), 215--233.
  • A. Granas, J. Dugundji, Fixed Point Theory, Springer 2003.
  • R. Brown, M. Furi, L. Gorniewicz and B. Jiang, Handbook of Topological Fixed Point Theory, eds, Springer 2005, 43--82; 217--264.
  • J. Jezierski, An example of finitely valued fixed point free map, University Gdansk { 6} (1987), 87--92.
  • D. Miklaszewski, A fixed point theorem for multivalued mappings wit non-acyclic values, Lecture Notes in Nonlinear Analysis {17} (2001), 125--131.
  • B. O'Neill, A fixed point theorem for multivalued functions, Duke Math. J. {14} (1947), 689--693.
  • D. Pastor, A remark on generalized compact maps, Stud. Univ. Zilina Math. Ser.{13} (2001), 147--155.
  • H.W. Seigberg, G. Skordev, Fixed point index and chain approximation, Pacific J. Math. {102} (1982), 455-486.
  • R. Skiba, M. Slosarski, On a generalization of absolute neighborhood retracts, Topology Appl. { 156} (2009), 697--709.
  • F. Von Haesler, H.-O. Peitgen, G. Skordev, Lefschetz fixed point theorem for acyclic maps with multiplicity, Topol. Methods Nonlinear Anal. { 19} (2002), 339--374.
There are 28 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Lech Górnıewıcz

Publication Date June 30, 2021
Published in Issue Year 2021 Volume: 4 Issue: 2

Cite

APA Górnıewıcz, L. (2021). Recent advances in the Lefschetz fixed point theory for multivalued mappings. Results in Nonlinear Analysis, 4(2), 116-126. https://doi.org/10.53006/rna.941060
AMA Górnıewıcz L. Recent advances in the Lefschetz fixed point theory for multivalued mappings. RNA. June 2021;4(2):116-126. doi:10.53006/rna.941060
Chicago Górnıewıcz, Lech. “Recent Advances in the Lefschetz Fixed Point Theory for Multivalued Mappings”. Results in Nonlinear Analysis 4, no. 2 (June 2021): 116-26. https://doi.org/10.53006/rna.941060.
EndNote Górnıewıcz L (June 1, 2021) Recent advances in the Lefschetz fixed point theory for multivalued mappings. Results in Nonlinear Analysis 4 2 116–126.
IEEE L. Górnıewıcz, “Recent advances in the Lefschetz fixed point theory for multivalued mappings”, RNA, vol. 4, no. 2, pp. 116–126, 2021, doi: 10.53006/rna.941060.
ISNAD Górnıewıcz, Lech. “Recent Advances in the Lefschetz Fixed Point Theory for Multivalued Mappings”. Results in Nonlinear Analysis 4/2 (June 2021), 116-126. https://doi.org/10.53006/rna.941060.
JAMA Górnıewıcz L. Recent advances in the Lefschetz fixed point theory for multivalued mappings. RNA. 2021;4:116–126.
MLA Górnıewıcz, Lech. “Recent Advances in the Lefschetz Fixed Point Theory for Multivalued Mappings”. Results in Nonlinear Analysis, vol. 4, no. 2, 2021, pp. 116-2, doi:10.53006/rna.941060.
Vancouver Górnıewıcz L. Recent advances in the Lefschetz fixed point theory for multivalued mappings. RNA. 2021;4(2):116-2.