Research Article
BibTex RIS Cite

On the weakly completely continuous operators and factorization

Year 2022, Volume: 5 Issue: 1, 62 - 71, 31.03.2022
https://doi.org/10.53006/rna.1052346

Abstract

In this paper, we establish some relationships between Left and right weakly completely continuous operators and topological centers of module actions and relationships between the factorization and the kinds of amenability. We define the locally topological center of the left and right module actions and investigate some of its properties. Also, we want to examine some conditions that under those the duality of a Banach algebra is strongly Connes-amenable.
Finally, we generalize the concept of the weakly strongly connes amenable to even dual in higher orders.


References

  • Arens, {\it The adjoint of a bilinear operation}, Proc. Amer. Math. Soc. {\bf 2} (1951), 839-848.
  • F. Bonsall, J. Duncan, {\it Complete normed algebras}, Springer-Verlag, Berlin 1973.
  • John B. Conway, {\it A Course in Functional Analysis}, Springer-Verlag, New York 1985.
  • H. G. Dales, {\it Banach algebra and automatic continuity}, Oxford 2000.
  • H. G. Dales, A. Rodrigues-Palacios, M.V. Velasco, {\it The second transpose of a derivation}, J. London. Math. Soc. {\bf2} 64 (2001) 707-721.
  • J. Duncan and S. A. Hosseiniun,{\it The second dual of a Banach algebra}, Proc. Roy. Soc. Edinburg Sect. A {\bf 84}(1979) 309-325.
  • } F. Ghahramani, R.J. Loy and G.A. Willis, {\it Amenability and weak amenability of second conjugate Banach algebras}, Proc. Amer. Math. Soc. {\bf 129} (1996), 1489-1497.
  • B. E. Johoson, {\it Cohomology in Banach algebra}, Mem. Amer. Math. Soc. {\bf 127}, 1972.
  • A. T. Lau and A. \"{U}lger, {\it Topological center of certain dual algebras}, Trans. Amer. Math. Soc. {\bf 348} (1996), 1191-1212.
  • S. Mohamadzadih and H. R. E. Vishki, {\it Arens regularity of module actions and the second adjoint of a derivation}, Bulletin of the Australian Mathematical Society {\bf77} (2008), 465-476.
  • V. Runde, {\it Amenability for dual Banach algebras}. Studia Math. {\bf 148} (2001), 47-66.
  • A. $\ddot{U}$lger, Arens regularity sometimes implies the RNP, Pacific J. Math. {\bf 143} (1990), 377-399.
Year 2022, Volume: 5 Issue: 1, 62 - 71, 31.03.2022
https://doi.org/10.53006/rna.1052346

Abstract

References

  • Arens, {\it The adjoint of a bilinear operation}, Proc. Amer. Math. Soc. {\bf 2} (1951), 839-848.
  • F. Bonsall, J. Duncan, {\it Complete normed algebras}, Springer-Verlag, Berlin 1973.
  • John B. Conway, {\it A Course in Functional Analysis}, Springer-Verlag, New York 1985.
  • H. G. Dales, {\it Banach algebra and automatic continuity}, Oxford 2000.
  • H. G. Dales, A. Rodrigues-Palacios, M.V. Velasco, {\it The second transpose of a derivation}, J. London. Math. Soc. {\bf2} 64 (2001) 707-721.
  • J. Duncan and S. A. Hosseiniun,{\it The second dual of a Banach algebra}, Proc. Roy. Soc. Edinburg Sect. A {\bf 84}(1979) 309-325.
  • } F. Ghahramani, R.J. Loy and G.A. Willis, {\it Amenability and weak amenability of second conjugate Banach algebras}, Proc. Amer. Math. Soc. {\bf 129} (1996), 1489-1497.
  • B. E. Johoson, {\it Cohomology in Banach algebra}, Mem. Amer. Math. Soc. {\bf 127}, 1972.
  • A. T. Lau and A. \"{U}lger, {\it Topological center of certain dual algebras}, Trans. Amer. Math. Soc. {\bf 348} (1996), 1191-1212.
  • S. Mohamadzadih and H. R. E. Vishki, {\it Arens regularity of module actions and the second adjoint of a derivation}, Bulletin of the Australian Mathematical Society {\bf77} (2008), 465-476.
  • V. Runde, {\it Amenability for dual Banach algebras}. Studia Math. {\bf 148} (2001), 47-66.
  • A. $\ddot{U}$lger, Arens regularity sometimes implies the RNP, Pacific J. Math. {\bf 143} (1990), 377-399.
There are 12 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Hossein Eghbali Sarai This is me

Hojjat Afshari

Publication Date March 31, 2022
Published in Issue Year 2022 Volume: 5 Issue: 1

Cite

APA Eghbali Sarai, H., & Afshari, H. (2022). On the weakly completely continuous operators and factorization. Results in Nonlinear Analysis, 5(1), 62-71. https://doi.org/10.53006/rna.1052346
AMA Eghbali Sarai H, Afshari H. On the weakly completely continuous operators and factorization. RNA. March 2022;5(1):62-71. doi:10.53006/rna.1052346
Chicago Eghbali Sarai, Hossein, and Hojjat Afshari. “On the Weakly Completely Continuous Operators and Factorization”. Results in Nonlinear Analysis 5, no. 1 (March 2022): 62-71. https://doi.org/10.53006/rna.1052346.
EndNote Eghbali Sarai H, Afshari H (March 1, 2022) On the weakly completely continuous operators and factorization. Results in Nonlinear Analysis 5 1 62–71.
IEEE H. Eghbali Sarai and H. Afshari, “On the weakly completely continuous operators and factorization”, RNA, vol. 5, no. 1, pp. 62–71, 2022, doi: 10.53006/rna.1052346.
ISNAD Eghbali Sarai, Hossein - Afshari, Hojjat. “On the Weakly Completely Continuous Operators and Factorization”. Results in Nonlinear Analysis 5/1 (March 2022), 62-71. https://doi.org/10.53006/rna.1052346.
JAMA Eghbali Sarai H, Afshari H. On the weakly completely continuous operators and factorization. RNA. 2022;5:62–71.
MLA Eghbali Sarai, Hossein and Hojjat Afshari. “On the Weakly Completely Continuous Operators and Factorization”. Results in Nonlinear Analysis, vol. 5, no. 1, 2022, pp. 62-71, doi:10.53006/rna.1052346.
Vancouver Eghbali Sarai H, Afshari H. On the weakly completely continuous operators and factorization. RNA. 2022;5(1):62-71.