Research Article
BibTex RIS Cite

NDVI Analysis of Australian Bushfires with Cloud Computing

Year 2020, Volume: 1 Issue: 2, 78 - 84, 30.09.2020

Abstract

Our planet is constantly exposed to massive forest fires, which threaten the natural ecosystem. Determining damages of forest fires has been a subject of extensive research for many years. Remote sensing is one of the effective technologies used for monitoring forest fires. However, accessing and processing data are both costly and time consuming. Therefore, the use of cloud technologies for this purpose is beneficial for rapid response. Australia experienced a series of wildfires from June 2019 to February 2020. These fires are considered as one of the biggest disasters of our age. In our study, Landsat data was used to track the trend of fires across the entire timeline during forest fire events. The Google cloud platform Google Earth Engine was used to obtain the results. Landsat 8 images were processed for each month from June 2019 to March 2020. Landsat 5 images were used to eliminate the clouds. Thus, from June-2019 to March-2020, all images were processed and the damaged areas were determined by NDVI and vegetation analysis. The forest cover reference data of previous years were used for the NDVI threshold value in the study.

References

  • Akther, M. S., & Hassan, Q. K. (2011). Remote sensing-based assessment of fire danger conditions over boreal forest. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4(4), 992-999.
  • Allison, R. S., Johnston, J. M., Craig, G., & Jennings, S. (2016). Airborne optical and thermal remote sensing for wildfire detection and monitoring. Sensors, 18(8), 1310, doi: 10.3390/s16081310.
  • Amalo, L. F., Hidayat, R., & Sulma, S. (2018). Analysis of agricultural drought in east java using vegetation health index. Agrivita, 40(1), 63-73.
  • Ambika, A. K., & Mishra, V. (2019). Observational Evidence of Irrigation Influence on Vegetation Health and Land Surface Temperature in India. Geophysical Research Letters, 46, 13441-13451.
  • BBC. (2020, January 21). Australia fires: A visual guide to the bushfire crisis. Retrieved from https://www.bbc.com/news/world-australia-50951043.
  • Caccamo, G., Bradstock, R., Collins, L., Penman, T., & Watson, P. (2015). Using MODIS data to analyse post-fire vegetation recovery in Australian eucalypt forests. Journal of Spatial Science, 60(2), 341–352.
  • Chen, X., Vogelmann, J. E., Rollins, M., Ohlen, D., Key, C. H., Yang, L., … Shi, H. (2011). Detecting post-fire burn severity and vegetation recovery using multitemporal remote sensing spectral indices and field-collected composite burn index data in a ponderosa pine forest. International Journal of Remote Sensing, 32(23), 7905–7927.
  • Chuvieco, E., & Congalton, R. G. (1989). Application of remote sensing and geographic information systems to forest fire hazard mapping. Remote sensing of Environment, 29(2), 147-159.
  • Daldegan, G. A., Roberts, D. A., & de Figueiredo Ribeiro, F. (2019). Spectral mixture analysis in Google Earth Engine to model and delineate fire scars over a large extent and a long time-series in a rainforest-savanna transition zone. Remote Sensing of Environment, 232, 111340, doi: 10.1016/j.rse.2019.111340.
  • Escuin, S., Navarro, R., & Fernández, P. (2008). Fire severity assessment by using NBR (Normalized Burn Ratio) and NDVI (Normalized Difference Vegetation Index) derived from LANDSAT TM/ETM images. International Journal of Remote Sensing, 29(4), 1053–1073.
  • Fernández, A., Illera, P., & Casanova, J. L. (1997). Automatic mapping of surfaces affected by forest fires in Spain using AVHRR NDVI composite image data. Remote Sensing of Environment, 60(2), 153–162.
  • Australian Government. (2019, February 16). Forests of Australia. Retrieved from https://www.agriculture.gov.au/abares/forestsaustralia/forest-data-maps-and-tools/spatial-data/forest-cover.
  • Illera, P., Fernandez, A., & Delgado, J. A. (1996). Temporal evolution of the NDVI as an indicator of forest fire danger. International Journal of remote sensing, 17(6), 1093-1105.
  • Karpov, A. (2017, August 8). Description code for article “Using the Google Earth Engine (GEE) for Detection of Burned Areas. Retrieved from https://digital-geography.com/description-code-article-using-google-earth-engine-gee-detection-burned-areas/.
  • Leblon, B. (2001). Forest wildfire hazard monitoring using remote sensing: A review. Remote Sensing Reviews, 20(1), 1-43.
  • Liu, D., Chen, N., Zhang, X., Wang, C., & Du, W. (2020). Annual large-scale urban land mapping based on Landsat time series in Google Earth Engine and OpenStreetMap data: A case study in the middle Yangtze River basin. ISPRS Journal of Photogrammetry and Remote Sensing, 159, 337-351.
  • Long, T., Zhang, Z., He, G., Jiao, W., Tang, C., Wu, B., ... & Yin, R. (2019). 30 m Resolution Global Annual Burned Area Mapping Based on Landsat Images and Google Earth Engine. Remote Sensing, 11(5), 489, doi: 10.3390/rs11050489.
  • Matricardi, E. A., Skole, D. L., Pedlowski, M. A., Chomentowski, W., & Fernandes, L. C. (2010). Assessment of tropical forest degradation by selective logging and fire using Landsat imagery. Remote Sensing of Environment, 114(5), 1117-1129.
  • Parks, S. A., Holsinger, L. M., Voss, M. A., Loehman, R. A., & Robinson, N. P. (2018). Mean composite fire severity metrics computed with google earth engine offer improved accuracy and expanded mapping potential. Remote Sensing, 10(6), 879, doi: 10.3390/rs10060879.
  • Parto, F., Saradjian, M., & Homayouni, S. (2020). MODIS Brightness Temperature Change-Based Forest Fire Monitoring. Journal of the Indian Society of Remote Sensing, 48(1), 163–169.
  • Quintero, N., Viedma, O., Urbieta, I. R., & Moreno, J. M. (2019). Assessing Landscape Fire Hazard by Multitemporal Automatic Classification of Landsat Time Series Using the Google Earth Engine in West-Central Spain. Forests, 10(6), 518, doi: 10.3390/f10060518.
  • Remmel, T. K., & Perera, A. H. (2001). Fire mapping in a northern boreal forest: assessing AVHRR/NDVI methods of change detection. Forest Ecology and Management, 152(1-3), 119-129.
  • Sunar, F., & Özkan, C. (2001). Forest fire analysis with remote sensing data. International Journal of Remote Sensing, 22(12), 2265-2277.
  • USGS. (2020, August 8). Landsat Surface Reflectance-Derived Spectral Indices. Retrieved from https://www.usgs.gov/land-resources/nli/landsat/landsat-enhanced-vegetation-index?qt-science_support_page_ related_con=0#qt-science_support_page_related_con.
  • Wittenberg, L., Malkinson, D., Beeri, O., Halutzy, A., & Tesler, N. (2007). Spatial and temporal patterns of vegetation recovery following sequences of forest fires in a Mediterranean landscape, Mt. Carmel Israel. Catena, 71(1), 76-83.
  • Xiao, X., Braswell, B., Zhang, Q., Boles, S., Frolking, S., & Moore III, B. (2003). Sensitivity of vegetation indices to atmospheric aerosols: continental-scale observations in Northern Asia. Remote Sensing of Environment, 84(3), 385-392.
  • Wikipedia. (2020, April 5). Bushfires in Australia. Retrieved from https://en.wikipedia.org/wiki/Bushfires_in_Australia.
  • Zhang, T., Gong, W., Wang, W., Ji, Y., Zhu, Z., & Huang, Y. (2016). Ground level PM2. 5 estimates over China using satellite-based geographically weighted regression (GWR) models are improved by including NO2 and enhanced vegetation index (EVI). International journal of environmental research and public health, 13(12), 1215, doi: 10.3390/ijerph13121215.
  • Zhu, Z., Woodcock, C. E., & Olofsson, P. (2012). Continuous monitoring of forest disturbance using all available Landsat imagery. Remote sensing of environment, 122, 75-91.

Bulut Tabanlı Hesaplama ile Avustralya Orman Yangınlarının NDVI Analizi

Year 2020, Volume: 1 Issue: 2, 78 - 84, 30.09.2020

Abstract

Gezegenimiz sürekli olarak büyük orman yangınlarına maruz kalmakta ve bu da doğal ekosistemi tehdit etmektedir. Orman yangınlarının zararlarının belirlenmesi uzun yıllardır geniş bir araştırma konusu olmuştur. Uzaktan algılama, orman yangınlarını izlemek için etkili teknolojilerden biridir. Fakat veriye ulaşma, işleme hem maliyetli hem de zaman alıcı işlemlerdir. Bu yüzden bulut teknolojilerinin bu amaçla kullanımı hızlı müdahale için faydalı olmaktadır. Avustralya, Haziran 2019'dan Şubat 2020'ye kadar bir dizi orman yangını yaşamıştır. Bu yangın dizisi çağımızın en büyük felaketlerinden birisi olarak gösterilmektedir. Çalışmamızda, orman yangını olayları sırasında tüm zaman çizgisi boyunca yangının eğilimini izlemek için Landsat verileri kullanılmıştır. Sonuçları elde etmek için Google bulut platformu Google Earth Engine kullanılmıştır. Haziran 2019'dan Mart 2020'ye kadar olan görüntüler her ay için Landsat 8 TOA görüntüleri işlenmiştir. Bulutların elemine edilmesi için de Landsat 5 görüntülerinden faydalanılmıştır. Böylece, Haziran-2019'dan Mart-2020'ye kadar tüm görüntüler işlenerek NDVI ve bitki örtüsü analizi ile hasar gören bölgeler belirlenmiştir. Çalışmada NDVI eşik değeri için geçmiş yıllara ait orman örtüsü referans verisi kullanılmıştır.

References

  • Akther, M. S., & Hassan, Q. K. (2011). Remote sensing-based assessment of fire danger conditions over boreal forest. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4(4), 992-999.
  • Allison, R. S., Johnston, J. M., Craig, G., & Jennings, S. (2016). Airborne optical and thermal remote sensing for wildfire detection and monitoring. Sensors, 18(8), 1310, doi: 10.3390/s16081310.
  • Amalo, L. F., Hidayat, R., & Sulma, S. (2018). Analysis of agricultural drought in east java using vegetation health index. Agrivita, 40(1), 63-73.
  • Ambika, A. K., & Mishra, V. (2019). Observational Evidence of Irrigation Influence on Vegetation Health and Land Surface Temperature in India. Geophysical Research Letters, 46, 13441-13451.
  • BBC. (2020, January 21). Australia fires: A visual guide to the bushfire crisis. Retrieved from https://www.bbc.com/news/world-australia-50951043.
  • Caccamo, G., Bradstock, R., Collins, L., Penman, T., & Watson, P. (2015). Using MODIS data to analyse post-fire vegetation recovery in Australian eucalypt forests. Journal of Spatial Science, 60(2), 341–352.
  • Chen, X., Vogelmann, J. E., Rollins, M., Ohlen, D., Key, C. H., Yang, L., … Shi, H. (2011). Detecting post-fire burn severity and vegetation recovery using multitemporal remote sensing spectral indices and field-collected composite burn index data in a ponderosa pine forest. International Journal of Remote Sensing, 32(23), 7905–7927.
  • Chuvieco, E., & Congalton, R. G. (1989). Application of remote sensing and geographic information systems to forest fire hazard mapping. Remote sensing of Environment, 29(2), 147-159.
  • Daldegan, G. A., Roberts, D. A., & de Figueiredo Ribeiro, F. (2019). Spectral mixture analysis in Google Earth Engine to model and delineate fire scars over a large extent and a long time-series in a rainforest-savanna transition zone. Remote Sensing of Environment, 232, 111340, doi: 10.1016/j.rse.2019.111340.
  • Escuin, S., Navarro, R., & Fernández, P. (2008). Fire severity assessment by using NBR (Normalized Burn Ratio) and NDVI (Normalized Difference Vegetation Index) derived from LANDSAT TM/ETM images. International Journal of Remote Sensing, 29(4), 1053–1073.
  • Fernández, A., Illera, P., & Casanova, J. L. (1997). Automatic mapping of surfaces affected by forest fires in Spain using AVHRR NDVI composite image data. Remote Sensing of Environment, 60(2), 153–162.
  • Australian Government. (2019, February 16). Forests of Australia. Retrieved from https://www.agriculture.gov.au/abares/forestsaustralia/forest-data-maps-and-tools/spatial-data/forest-cover.
  • Illera, P., Fernandez, A., & Delgado, J. A. (1996). Temporal evolution of the NDVI as an indicator of forest fire danger. International Journal of remote sensing, 17(6), 1093-1105.
  • Karpov, A. (2017, August 8). Description code for article “Using the Google Earth Engine (GEE) for Detection of Burned Areas. Retrieved from https://digital-geography.com/description-code-article-using-google-earth-engine-gee-detection-burned-areas/.
  • Leblon, B. (2001). Forest wildfire hazard monitoring using remote sensing: A review. Remote Sensing Reviews, 20(1), 1-43.
  • Liu, D., Chen, N., Zhang, X., Wang, C., & Du, W. (2020). Annual large-scale urban land mapping based on Landsat time series in Google Earth Engine and OpenStreetMap data: A case study in the middle Yangtze River basin. ISPRS Journal of Photogrammetry and Remote Sensing, 159, 337-351.
  • Long, T., Zhang, Z., He, G., Jiao, W., Tang, C., Wu, B., ... & Yin, R. (2019). 30 m Resolution Global Annual Burned Area Mapping Based on Landsat Images and Google Earth Engine. Remote Sensing, 11(5), 489, doi: 10.3390/rs11050489.
  • Matricardi, E. A., Skole, D. L., Pedlowski, M. A., Chomentowski, W., & Fernandes, L. C. (2010). Assessment of tropical forest degradation by selective logging and fire using Landsat imagery. Remote Sensing of Environment, 114(5), 1117-1129.
  • Parks, S. A., Holsinger, L. M., Voss, M. A., Loehman, R. A., & Robinson, N. P. (2018). Mean composite fire severity metrics computed with google earth engine offer improved accuracy and expanded mapping potential. Remote Sensing, 10(6), 879, doi: 10.3390/rs10060879.
  • Parto, F., Saradjian, M., & Homayouni, S. (2020). MODIS Brightness Temperature Change-Based Forest Fire Monitoring. Journal of the Indian Society of Remote Sensing, 48(1), 163–169.
  • Quintero, N., Viedma, O., Urbieta, I. R., & Moreno, J. M. (2019). Assessing Landscape Fire Hazard by Multitemporal Automatic Classification of Landsat Time Series Using the Google Earth Engine in West-Central Spain. Forests, 10(6), 518, doi: 10.3390/f10060518.
  • Remmel, T. K., & Perera, A. H. (2001). Fire mapping in a northern boreal forest: assessing AVHRR/NDVI methods of change detection. Forest Ecology and Management, 152(1-3), 119-129.
  • Sunar, F., & Özkan, C. (2001). Forest fire analysis with remote sensing data. International Journal of Remote Sensing, 22(12), 2265-2277.
  • USGS. (2020, August 8). Landsat Surface Reflectance-Derived Spectral Indices. Retrieved from https://www.usgs.gov/land-resources/nli/landsat/landsat-enhanced-vegetation-index?qt-science_support_page_ related_con=0#qt-science_support_page_related_con.
  • Wittenberg, L., Malkinson, D., Beeri, O., Halutzy, A., & Tesler, N. (2007). Spatial and temporal patterns of vegetation recovery following sequences of forest fires in a Mediterranean landscape, Mt. Carmel Israel. Catena, 71(1), 76-83.
  • Xiao, X., Braswell, B., Zhang, Q., Boles, S., Frolking, S., & Moore III, B. (2003). Sensitivity of vegetation indices to atmospheric aerosols: continental-scale observations in Northern Asia. Remote Sensing of Environment, 84(3), 385-392.
  • Wikipedia. (2020, April 5). Bushfires in Australia. Retrieved from https://en.wikipedia.org/wiki/Bushfires_in_Australia.
  • Zhang, T., Gong, W., Wang, W., Ji, Y., Zhu, Z., & Huang, Y. (2016). Ground level PM2. 5 estimates over China using satellite-based geographically weighted regression (GWR) models are improved by including NO2 and enhanced vegetation index (EVI). International journal of environmental research and public health, 13(12), 1215, doi: 10.3390/ijerph13121215.
  • Zhu, Z., Woodcock, C. E., & Olofsson, P. (2012). Continuous monitoring of forest disturbance using all available Landsat imagery. Remote sensing of environment, 122, 75-91.
There are 29 citations in total.

Details

Primary Language English
Subjects Photogrammetry and Remote Sensing
Journal Section Research Articles
Authors

Nusret Demir 0000-0002-8756-7127

Publication Date September 30, 2020
Submission Date April 5, 2020
Acceptance Date August 20, 2020
Published in Issue Year 2020 Volume: 1 Issue: 2

Cite

APA Demir, N. (2020). NDVI Analysis of Australian Bushfires with Cloud Computing. Türk Uzaktan Algılama Ve CBS Dergisi, 1(2), 78-84.