Research Article
BibTex RIS Cite

Kent Kanyon Geometrilerinin Yer Yüzeyi Sıcaklığı Üzerindeki Etkisi: Kurtuluş Mahallesi Örneği

Year 2022, Volume: 3 Issue: 2, 98 - 111, 18.09.2022
https://doi.org/10.48123/rsgis.1095619

Abstract

Kentsel mekanda binalar ve sokakların oluşturduğu form kent kanyonu olarak tanımlanmaktadır. Kent kanyonlarının geometrik özellikleri dış mekan ısıl durumu üzerinde etkiye sahiptir. Bu yüzden çalışmada sıcak-nemli Adana kent dokusunda yer alan Kurtuluş Mahallesi’ndeki kent kanyonlarının uydu görüntüleri aracılığı ile ısıl durumlarının tespit edilmesi amaçlanmıştır. Çalışmanın yöntemi 4 basamaktan oluşmaktadır. (i) Landsat 8’den elde edilen termal görüntüler aracılığı ile çalışma alanı yer yüzeyi sıcaklık (YYS) durumu belirlenmiştir. (ii) Çalışma alanındaki kent kanyonları geometrik özelliklerine (yönelim ve bina yüksekliği/sokak genişliği oranı) göre sınıflanmıştır. (iii) YYS ve geometrik özellikler arasındaki ilişki istatistiksel olarak saptanmıştır. (iv) Bulgular doğrultusunda kent planlarına yansıtılabilir öneriler geliştirilmiştir. Çalışmada en düşük YYS’ye sahip olan alanlar gölge oranının yüksek olduğu derin kent kanyonları ve yoğun kanopi dokusuna sahip yeşil alanlar olarak belirlenmiştir (34,0-35,5℃). En yüksek YYS’ye sahip alanlar ise güneş maruziyetinin yüksek ve gölge oranının düşük olduğu istasyon alanı, stadyum, vb. kentsel mekanlardır (36,5-37,2℃). Derin kanyonlarda D-B yönelimli alanlar K-G yönelimli alanlardan daha düşük YYS’ye sahip olarak istatistiksel olarak ayrılmaktadır (p<0.05). Sığ ve orta derin kanyonlarda ise D-B yönelimli alanlar, K-G yönelimli alanlardan daha yüksek YYS’ye sahip olarak istatistiksel olarak anlamlı farklılık göstermektedir (p<0.05).

References

  • Alchapar, N. L., & Correa, E. N. (2016). The use of reflective materials as a strategy for urban cooling in an arid “OASIS” city. Sustainable Cities and Society, 27, 1-14.
  • Ali-Toudert, F., Djenane, M., Bensalem, R., & Mayer, H. (2005). Outdoor thermal comfort in the old desert city of Beni-Isguen, Algeria. Climate Research, 28(3), 243-256.
  • Ali-Toudert, F., & Mayer, H. (2006). Numerical study on the effects of aspect ratio and orientation of an urban street canyon on outdoor thermal comfort in hot and dry climate. Building and Environment, 41(2), 94-108.
  • Ali-Toudert, F., & Mayer, H. (2007). Effects of asymmetry, galleries, overhanging facades and vegetation on thermal comfort in urban street canyons. Solar Energy, 81(6), 742-754.
  • Alobaydi, D., Bakarman, M. A., & Obeidat, B. (2016). The impact of urban form configuration on the urban heat island: the case study of Baghdad, Iraq. Procedia Engineering, 145, 820-827.
  • Altunkasa, M. F. (1987). Çukurova Bölgesi'nde Biyoklimatik Veriler Kullanılarak Açık ve Yeşil Alan Sistemlerinin Belirlenmesi İlkeleri Üzerinde Bir Araştırma (Doktora Tezi), Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Peyzaj Mimarlığı Anabilim Dalı, Adana.
  • Andreou, E. (2013). Thermal comfort in outdoor spaces and urban canyon microclimate. Renewable Energy, 55, 182-188.
  • Boeters, R., Donkers, S., Lee, D.J., Liem, V., Montazeri, S., van Oostveen, J., & Pietrzyk, P. (2012). The effect of 3D geometry complexity on simulating radiative, conductive and convective fluxes in an urban canyon (Student theses). Retrieved from https://repository.tudelft.nl/islandora/object/uuid%3Aa957e358-0d7d-4f6b-92ea-dccf8d89babc
  • Bölük, E. (2016). Köppen iklim sınıflandırmasına göre Türkiye iklimi. T.C. Orman ve Su İşleri Bakanlığı, Meteoroloji Genel Müdürlüğü, Araştırma Dairesi Başkanlığı, Klimatoloji Şube Müdürlüğü, Ankara.
  • Chatzidimitriou, A., & Yannas, S. (2017). Street canyon design and improvement potential for urban open spaces; the influence of canyon aspect ratio and orientation on microclimate and outdoor comfort. Sustainable Cities and Society, 33, 85-101.
  • Chen, Y., Zheng, B., & Hu, Y. (2020). Mapping Local Climate Zones Using ArcGIS-Based Method and Exploring Land Surface Temperature Characteristics in Chenzhou, China. Sustainability, 12(7), 2974. doi: 10.3390/su12072974.
  • Dash, P., Göttsche, F. M., Olesen, F. S., & Fischer, H. (2002). Land surface temperature and emissivity estimation from passive sensor data: Theory and practice-current trends. International Journal of Remote Sensing, 23(13), 2563-2594.
  • De, B., & Mukherjee, M. (2018). Optimisation of canyon orientation and aspect ratio in warm-humid climate: Case of Rajarhat Newtown, India. Urban Climate, 24, 887-920.
  • Demircioğlu Yıldız, N., Aydan, U., Yılmaz, S., & Irmak, M. A., (2018). The effect of the temperature of the surface of vegetation to the temperature of an urban area. International Journal of Multidisciplinary Studies and Innovative Technologies, 2(2), 76-85.
  • Dickinson, R. E. (1994). Satellite systems and models for future climate change. In Henderson-Sellers, A. (Eds.), Future Climates of the World: A Modelling Perspective (World Survey of Climatology) (pp. 16-26), Netherlands: Elsevier Science.
  • Emmanuel, R., & Fernando, H. J. S. (2007). Urban heat islands in humid and arid climates: Role of urban form and thermal properties in Colombo, Sri Lanka and Phoenix, USA. Climate Research, 34(3), 241–251.
  • Ferguson, G. A. (1972). Statistical analysis in psychology and education. Journal of the Royal Statistical Society, Series A (General), 135(1), 153-154.
  • Geletič, J., Lehnert, M., Savić, S., & Milošević, D. (2019). Inter-/intra-zonal seasonal variability of the surface urban heat island based on local climate zones in three central European cities. Building and Environment, 156, 21-32.
  • Johansson, E. (2006). Influence of urban geometry on outdoor thermal comfort in a hot dry climate: A study in Fez, Morocco. Building and Environment, 41(10), 1326-1338.
  • Koc, C. B., Osmond, P., Peters, A., & Irger, M. (2018). Understanding land surface temperature differences of local climate zones based on airborne remote sensing data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(8), 2724-2730.
  • Lobaccaro, G., & Acero, J. A. (2015). Comparative analysis of green actions to improve outdoor thermal comfort inside typical urban street canyons. Urban Climate, 14, 251-267.
  • Kayri, M. (2009). The multiple comparison (post-hoc) techniques to determine the difference between groups in researches. Fırat University Journal of Social Science, 19(1), 51-64.
  • Mallick, J., Rahman, A., & Singh, C. K. (2013). Modeling urban heat islands in heterogeneous land surface and its correlation with impervious surface area by using night-time ASTER satellite data in highly urbanizing city, Delhi-India. Advances in Space Research, 52(4), 639-655.
  • Martins, T., Adolphe, L., & Krause, C. (2012). Microclimate effects of urban geometry on outdoor thermal comfort in the Brazilian tropical semi-arid Climate. Retrieved from http://plea-arch.org/ARCHIVE/websites/2012/files/T01-20120111-0010.pdf
  • MGM. (2020, Eylül 9). Adana iklim verileri. Retrieved from https://www.mgm.gov.tr/?il=Adana
  • Oke, T. R. (1982). The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society, 108(455), 1-24.
  • Oke, T. R. (1988). The urban energy balance. Progress in Physical geography, 12(4), 471-508.
  • Paolini, R., Mainini, A. G., Poli, T., & Vercesi, L. (2014). Assessment of thermal stress in a street canyon in pedestrian area with or without canopy shading. Energy Procedia, 48, 1570-1575.
  • Sharmin, T., Steemers, K., & Matzarakis, A. (2017). Microclimatic modelling in assessing the impact of urban geometry on urban thermal environment. Sustainable Cities and Society, 34, 293-308.
  • Shashua-Bar, L., & Hoffman, M. E. (2000). Vegetation as a climatic component in the design of an urban street. Energy and Buildings, 31, 221-235.
  • Targhi, M. Z., & Van Dessel, S. (2015). Potential contribution of urban developments to outdoor thermal comfort conditions: The influence of urban geometry and form in Worcester, Massachusetts, USA. Procedia engineering, 118, 1153-1161.
  • Unal Cilek, M. (2021). Outdoor Thermal Comfort Indicators and Indices. In L. G. Kayalar & F. Celik Aslan (Eds.), Academic Research and Reviews in Architecture, Planning and Design Sciences (pp. 19-40), Ankara: Duvar Publishing.
  • Unal Cilek, M., & Cilek, A. (2021). Analyses of land surface temperature (LST) variability among local climate zones (LCZs) comparing Landsat-8 and ENVI-met model data. Sustainable Cities and Society, 69, 102877.
  • Unal Cilek, M. (2022). Kentsel Yüzey Isı Adalarının Belirlenmesinde Yer Yüzey Sıcaklık Verilerinin Kullanımı. Avrupa Bilim ve Teknoloji Dergisi, 33, 213-222.
  • Zhou, W., Huang, G., & Cadenasso, M. L. (2011). Does spatial configuration matter? Understanding the effects of land cover pattern on land surface temperature in urban landscapes. Landscape and Urban Planning, 102(1), 54-63.

The Influence of Urban Canyon Geometry on Land Surface Temperature: Kurtuluş Neighborhood

Year 2022, Volume: 3 Issue: 2, 98 - 111, 18.09.2022
https://doi.org/10.48123/rsgis.1095619

Abstract

Cities have been formed by buildings and streets in urban spaces, defined as city canyons. The geometrical characteristics of canyons affect outdoor thermal conditions. Therefore, this study uses satellite images to determine the thermal conditions of city canyons in the Kurtuluş Neighborhood, which is located in hot-humid Adana city. The study methodology consists of four steps: (i) determination of the land surface temperature (LST) by Landsat 8 thermal images; (ii) classification of canyons according to their geometric characteristics, including orientation and aspect ratio; (iii) determining the statistical relationship between LST and geometric characteristics; and (iv) developing suggestions for future city plans. The study results show that the lowest LSTs (34.0-35.5℃) were determined in deep canyons with a high shadow ratio and green spaces with dense canopy layers. In contrast, the highest LSTs (36.5-37.2℃) were determined in the canyons, where the sun exposure is high, and the shade ratio is low (spaces, train stations, stadiums, etc.). In deep canyons, E-W oriented areas have lower LST than the N-S oriented canyons, and these canyons are statistically distinguished (p<0.05). On the contrary, in shallow and medium-deep canyons, E-W oriented canyons have a higher temperature than the N-W canyons, and these canyons have statistically significant differences (p<0.05).

References

  • Alchapar, N. L., & Correa, E. N. (2016). The use of reflective materials as a strategy for urban cooling in an arid “OASIS” city. Sustainable Cities and Society, 27, 1-14.
  • Ali-Toudert, F., Djenane, M., Bensalem, R., & Mayer, H. (2005). Outdoor thermal comfort in the old desert city of Beni-Isguen, Algeria. Climate Research, 28(3), 243-256.
  • Ali-Toudert, F., & Mayer, H. (2006). Numerical study on the effects of aspect ratio and orientation of an urban street canyon on outdoor thermal comfort in hot and dry climate. Building and Environment, 41(2), 94-108.
  • Ali-Toudert, F., & Mayer, H. (2007). Effects of asymmetry, galleries, overhanging facades and vegetation on thermal comfort in urban street canyons. Solar Energy, 81(6), 742-754.
  • Alobaydi, D., Bakarman, M. A., & Obeidat, B. (2016). The impact of urban form configuration on the urban heat island: the case study of Baghdad, Iraq. Procedia Engineering, 145, 820-827.
  • Altunkasa, M. F. (1987). Çukurova Bölgesi'nde Biyoklimatik Veriler Kullanılarak Açık ve Yeşil Alan Sistemlerinin Belirlenmesi İlkeleri Üzerinde Bir Araştırma (Doktora Tezi), Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Peyzaj Mimarlığı Anabilim Dalı, Adana.
  • Andreou, E. (2013). Thermal comfort in outdoor spaces and urban canyon microclimate. Renewable Energy, 55, 182-188.
  • Boeters, R., Donkers, S., Lee, D.J., Liem, V., Montazeri, S., van Oostveen, J., & Pietrzyk, P. (2012). The effect of 3D geometry complexity on simulating radiative, conductive and convective fluxes in an urban canyon (Student theses). Retrieved from https://repository.tudelft.nl/islandora/object/uuid%3Aa957e358-0d7d-4f6b-92ea-dccf8d89babc
  • Bölük, E. (2016). Köppen iklim sınıflandırmasına göre Türkiye iklimi. T.C. Orman ve Su İşleri Bakanlığı, Meteoroloji Genel Müdürlüğü, Araştırma Dairesi Başkanlığı, Klimatoloji Şube Müdürlüğü, Ankara.
  • Chatzidimitriou, A., & Yannas, S. (2017). Street canyon design and improvement potential for urban open spaces; the influence of canyon aspect ratio and orientation on microclimate and outdoor comfort. Sustainable Cities and Society, 33, 85-101.
  • Chen, Y., Zheng, B., & Hu, Y. (2020). Mapping Local Climate Zones Using ArcGIS-Based Method and Exploring Land Surface Temperature Characteristics in Chenzhou, China. Sustainability, 12(7), 2974. doi: 10.3390/su12072974.
  • Dash, P., Göttsche, F. M., Olesen, F. S., & Fischer, H. (2002). Land surface temperature and emissivity estimation from passive sensor data: Theory and practice-current trends. International Journal of Remote Sensing, 23(13), 2563-2594.
  • De, B., & Mukherjee, M. (2018). Optimisation of canyon orientation and aspect ratio in warm-humid climate: Case of Rajarhat Newtown, India. Urban Climate, 24, 887-920.
  • Demircioğlu Yıldız, N., Aydan, U., Yılmaz, S., & Irmak, M. A., (2018). The effect of the temperature of the surface of vegetation to the temperature of an urban area. International Journal of Multidisciplinary Studies and Innovative Technologies, 2(2), 76-85.
  • Dickinson, R. E. (1994). Satellite systems and models for future climate change. In Henderson-Sellers, A. (Eds.), Future Climates of the World: A Modelling Perspective (World Survey of Climatology) (pp. 16-26), Netherlands: Elsevier Science.
  • Emmanuel, R., & Fernando, H. J. S. (2007). Urban heat islands in humid and arid climates: Role of urban form and thermal properties in Colombo, Sri Lanka and Phoenix, USA. Climate Research, 34(3), 241–251.
  • Ferguson, G. A. (1972). Statistical analysis in psychology and education. Journal of the Royal Statistical Society, Series A (General), 135(1), 153-154.
  • Geletič, J., Lehnert, M., Savić, S., & Milošević, D. (2019). Inter-/intra-zonal seasonal variability of the surface urban heat island based on local climate zones in three central European cities. Building and Environment, 156, 21-32.
  • Johansson, E. (2006). Influence of urban geometry on outdoor thermal comfort in a hot dry climate: A study in Fez, Morocco. Building and Environment, 41(10), 1326-1338.
  • Koc, C. B., Osmond, P., Peters, A., & Irger, M. (2018). Understanding land surface temperature differences of local climate zones based on airborne remote sensing data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(8), 2724-2730.
  • Lobaccaro, G., & Acero, J. A. (2015). Comparative analysis of green actions to improve outdoor thermal comfort inside typical urban street canyons. Urban Climate, 14, 251-267.
  • Kayri, M. (2009). The multiple comparison (post-hoc) techniques to determine the difference between groups in researches. Fırat University Journal of Social Science, 19(1), 51-64.
  • Mallick, J., Rahman, A., & Singh, C. K. (2013). Modeling urban heat islands in heterogeneous land surface and its correlation with impervious surface area by using night-time ASTER satellite data in highly urbanizing city, Delhi-India. Advances in Space Research, 52(4), 639-655.
  • Martins, T., Adolphe, L., & Krause, C. (2012). Microclimate effects of urban geometry on outdoor thermal comfort in the Brazilian tropical semi-arid Climate. Retrieved from http://plea-arch.org/ARCHIVE/websites/2012/files/T01-20120111-0010.pdf
  • MGM. (2020, Eylül 9). Adana iklim verileri. Retrieved from https://www.mgm.gov.tr/?il=Adana
  • Oke, T. R. (1982). The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society, 108(455), 1-24.
  • Oke, T. R. (1988). The urban energy balance. Progress in Physical geography, 12(4), 471-508.
  • Paolini, R., Mainini, A. G., Poli, T., & Vercesi, L. (2014). Assessment of thermal stress in a street canyon in pedestrian area with or without canopy shading. Energy Procedia, 48, 1570-1575.
  • Sharmin, T., Steemers, K., & Matzarakis, A. (2017). Microclimatic modelling in assessing the impact of urban geometry on urban thermal environment. Sustainable Cities and Society, 34, 293-308.
  • Shashua-Bar, L., & Hoffman, M. E. (2000). Vegetation as a climatic component in the design of an urban street. Energy and Buildings, 31, 221-235.
  • Targhi, M. Z., & Van Dessel, S. (2015). Potential contribution of urban developments to outdoor thermal comfort conditions: The influence of urban geometry and form in Worcester, Massachusetts, USA. Procedia engineering, 118, 1153-1161.
  • Unal Cilek, M. (2021). Outdoor Thermal Comfort Indicators and Indices. In L. G. Kayalar & F. Celik Aslan (Eds.), Academic Research and Reviews in Architecture, Planning and Design Sciences (pp. 19-40), Ankara: Duvar Publishing.
  • Unal Cilek, M., & Cilek, A. (2021). Analyses of land surface temperature (LST) variability among local climate zones (LCZs) comparing Landsat-8 and ENVI-met model data. Sustainable Cities and Society, 69, 102877.
  • Unal Cilek, M. (2022). Kentsel Yüzey Isı Adalarının Belirlenmesinde Yer Yüzey Sıcaklık Verilerinin Kullanımı. Avrupa Bilim ve Teknoloji Dergisi, 33, 213-222.
  • Zhou, W., Huang, G., & Cadenasso, M. L. (2011). Does spatial configuration matter? Understanding the effects of land cover pattern on land surface temperature in urban landscapes. Landscape and Urban Planning, 102(1), 54-63.
There are 35 citations in total.

Details

Primary Language Turkish
Subjects Geological Sciences and Engineering (Other)
Journal Section Research Articles
Authors

Müge Ünal Çilek 0000-0002-1147-9729

Publication Date September 18, 2022
Submission Date March 30, 2022
Acceptance Date June 20, 2022
Published in Issue Year 2022 Volume: 3 Issue: 2

Cite

APA Ünal Çilek, M. (2022). Kent Kanyon Geometrilerinin Yer Yüzeyi Sıcaklığı Üzerindeki Etkisi: Kurtuluş Mahallesi Örneği. Türk Uzaktan Algılama Ve CBS Dergisi, 3(2), 98-111. https://doi.org/10.48123/rsgis.1095619