Research Article
BibTex RIS Cite

FUTA'da Sürdürülebilir Su Yönetimi için Mini Baraj Yerleşiminin Optimize Edilmesi: Bir CBS-ÇKKA Yaklaşımı

Year 2024, Volume: 5 Issue: 1, 41 - 53, 28.03.2024
https://doi.org/10.48123/rsgis.1366317

Abstract

Artan nüfus nedeniyle Akure Federal Teknoloji Üniversitesi'nde (FUTA) su kaynaklarına yönelik artan talebin karşılanması, veri odaklı bir çözüm gerektirmektedir. Bu çalışmada, beş tematik faktör (drenaj yoğunluğu, eğim, yükseklik, arazi örtüsü ve toprak dokusu) ve Coğrafi Bilgi Sistemleri (CBS) tabanlı Çok Kriterli Karar Analizi (ÇKKA) yaklaşımı kullanılarak FUTA'daki su kıtlığı sorununa alternatif bir çözüm olarak mini barajlar için uygun yerler belirlemiştir. Kriterlere baraj için önemlerine göre tercih değerleri atanmıştır. Kriterlerin ağırlıklarını belirlemek için Analitik Hiyerarşi Proses (AHP) yöntemi kullanılmış ve çalışma alanında bir mini baraj uygunluk haritası üretmek için ağırlıklı toplam yöntemi uygulanmıştır. Uygun alanlar beş sınıfa ayrılmıştır: çok uygun (%9), uygun (%18), marjinal olarak uygun (%30), en az uygun (%26) ve uygun değil (%17). Uygunluk haritası, çalışma alanındaki mevcut barajların konumlarına göre doğrulanmıştır. Bu çalışma, FUTA'da artan nüfus için su kaynaklarını yönetme çabalarına ve küçük bir çalışma alanı için baraj yerleşimi için CBS-AHP yaklaşımının değerlendirilmesine katkıda bulunmaktadır.

References

  • Abushandi, E., & Alatawi, S. (2015). Dam Site Selection Using Remote Sensing Techniques and Geographical Information System to Control Flood Events in Tabuk City. Hydrology Current Research, 6(1), 1000189. https://doi.org/10.4172/2157-7587.1000189
  • Akeju, S. B., Ojo, O. M., & Adewumi, J. R. (2021). Current and Future Potable Water Demand and Supply at the Federal University of Technology, Akure, Nigeria. FUOYE Journal of Engineering and Technology, 6(3), 77–81. https://doi.org/10.46792/fuoyejet.v6i3.669
  • Aldaya, M. M., Allan, J. A., & Hoekstra, A. Y. (2010). Strategic importance of green water in international crop trade. Ecological Economics, 69(4), 887–894. https://doi.org/10.1016/j.ecolecon.2009.11.001
  • Al-Ruzouq, R., Shanableh, A., Yilmaz, A. G., Idris, A., Mukherjee, S., Khalil, M. A., & Gibril, M. B. A. (2019a). Dam Site Suitability Mapping and Analysis Using an Integrated GIS and Machine Learning Approach. Water, 11, 1880. https://doi.org/10.3390/w11091880
  • Al-Ruzouq, R., Shanableh, A., Merabtene, T., Siddique, M., Khalil, M. A., Idris, A., & Almulla, E. (2019b). Potential groundwater zone mapping based on geo-hydrological considerations and multi-criteria spatial analysis: North UAE. Catena, 173, 511–524. https://doi.org/10.1016/j.catena.2018.10.037
  • Al-shabeeb, A. R. (2016). The Use of AHP within GIS in Selecting Potential Sites for Water Harvesting Sites in the Azraq Basin—Jordan. Journal of Geographic Information System, 8(1), 73–88. https://doi.org/10.4236/jgis.2016.81008
  • Amadi, A. N., Olasehinde, P. I., Ameh, I. M., okunlola, I. A., & Dan-Hassan, M. A. (2015). Investigating the Groundwater Potential at The Boys Hostel, Bosso Campus, Federal University of Technology Minna, Using Electrical Resistivity Method. Water Resources, 25, 92–107.
  • Boroushaki, S., & Malczewski, J. (2008). Implementing an extension of the analytical hierarchy process using ordered weighted averaging operators with fuzzy quantifiers in ArcGIS. Computers & Geosciences, 34(4), 399–410. https://doi.org/10.1016/j.cageo.2007.04.003
  • Cosgrove, W. J., & Loucks, D. P. (2015). Water management: Current and future challenges and research directions. Water Resources Research, 51(6), 4823–4839. https://doi.org/10.1002/2014WR016869
  • Dai, X. (2016). Dam site selection using an integrated method of AHP and GIS for decision making support in Bortala, Northwest China [Master’s thesis, Lund University]. http://lup.lub.lu.se/student-papers/record/8886448
  • Egbinola, C. N., & Amanambu, A. C. (2014). Groundwater contamination in Ibadan, South-West Nigeria. SpringerPlus, 3, 448. https://doi.org/10.1186/2193-1801-3-448
  • Etikala, B., Golla, V., Li, P., & Renati, S. (2019). Deciphering groundwater potential zones using MIF technique and GIS: A study from Tirupati area, Chittoor District, Andhra Pradesh, India. HydroResearch, 1, 1–7. https://doi.org/10.1016/j.hydres.2019.04.001
  • Gallego-Ayala, J., & Juízo, D. (2011). Strategic implementation of integrated water resources management in Mozambique: An A’WOT analysis. Physics and Chemistry of the Earth, Parts A/B/C, 36(14–15), 1103–1111. https://doi.org/10.1016/j.pce.2011.07.040
  • Goepel, K. D. (2018). Implementation of an Online Software Tool for the Analytic Hierarchy Process (AHP-OS). International Journal of the Analytic Hierarchy Process, 10(3), 469–487. https://doi.org/10.13033/ijahp.v10i3.590
  • Hagos, Y. G., Andualem, T. G., Mengie, M. A., Ayele, W. T., & Malede, D. A. (2022). Suitable dam site identification using GIS-based MCDA: A case study of Chemoga watershed, Ethiopia. Applied Water Science, 12(4), 69. https://doi.org/10.1007/s13201-022-01592-9
  • Jozaghi, A., Alizadeh, B., Hatami, M., Flood, I., Khorrami, M., Khodaei, N., & Ghasemi Tousi, E. (2018). A Comparative Study of the AHP and TOPSIS Techniques for Dam Site Selection Using GIS: A Case Study of Sistan and Baluchestan Province, Iran. Geosciences, 8(12), 494. https://doi.org/10.3390/geosciences8120494
  • Karakuş, C. B., & Yıldız, S. (2022). GIS-multi criteria decision analysis-based land suitability assessment for dam site selection. International Journal of Environmental Science and Technology, 19(12), 12561–12580. https://doi.org/10.1007/s13762-022-04323-4
  • Luís, A. D. A., & Cabral, P. (2021). Small dams/reservoirs site location analysis in a semi-arid region of Mozambique. International Soil and Water Conservation Research, 9(3), 381–393. https://doi.org/10.1016/j.iswcr.2021.02.002
  • Malczewski, J. (2006). GIS‐based multicriteria decision analysis: A survey of the literature. International Journal of Geographical Information Science, 20(7), 703–726. https://doi.org/10.1080/13658810600661508
  • Njiru, F. M., & Siriba, D. N. (2018). Site Selection for an Earth Dam in Mbeere North, Embu County—Kenya. Journal of Geoscience and Environment Protection, 06(07), 113–133. https://doi.org/10.4236/gep.2018.67009
  • Noori, A. M., Pradhan, B., & Ajaj, Q. M. (2019). Dam site suitability assessment at the Greater Zab River in northern Iraq using remote sensing data and GIS. Journal of Hydrology, 574, 964–979. https://doi.org/10.1016/j.jhydrol.2019.05.001
  • Nzelibe, I. U., Akinboyewa, T. E., Nzelibe, T. N., & Inekwe, G. G. (2022). Geospatial Assessment of The Potentials of Rooftop Rainwater Harvest at The Federal University of Technology, Akure, Nigeria. FUOYE Journal of Engineering and Technology, 7(2), 249–256. https://doi.org/10.46792/fuoyejet.v7i2.839
  • Olujumoke, A. O., Folorunso, M. A., Valerie, G., & Christian, B. (2016). Descriptive analysis of rainfall and temperature trends over Akure, Nigeria. Journal of Geography and Regional Planning, 9(11), 195–202. https://doi.org/10.5897/JGRP2016.0583
  • Ouma, Y., & Tateishi, R. (2014). Urban Flood Vulnerability and Risk Mapping Using Integrated Multi-Parametric AHP and GIS: Methodological Overview and Case Study Assessment. Water, 6(6), 1515–1545. https://doi.org/10.3390/w6061515
  • Rincón, D., Khan, U., & Armenakis, C. (2018). Flood Risk Mapping Using GIS and Multi-Criteria Analysis: A Greater Toronto Area Case Study. Geosciences, 8(8), 275. https://doi.org/10.3390/geosciences8080275
  • Saaty, R. W. (1987). The analytic hierarchy process—What it is and how it is used. Mathematical Modelling, 9(3–5), 161–176. https://doi.org/10.1016/0270-0255(87)90473-8
  • Saaty, T. L. (1990). How to make a decision: The analytic hierarchy process. European Journal of Operational Research, 48(1), 9–26. https://doi.org/10.1016/0377-2217(90)90057-I
  • Saaty, T. L. (2008). Decision making with the analytic hierarchy process. International Journal of Services Sciences, 1(1), 83. https://doi.org/10.1504/IJSSCI.2008.017590
  • Shao, Z., Jahangir, Z., Muhammad Yasir, Q., Atta-ur-Rahman, & Mahmood, S. (2020). Identification of Potential Sites for a Multi-Purpose Dam Using a Dam Suitability Stream Model. Water, 12(11), 3249. https://doi.org/10.3390/w12113249
  • Wang, Y., Tian, Y., & Cao, Y. (2021). Dam Siting: A Review. Water, 13(15), 2080. https://doi.org/10.3390/w13152080
  • Winter, T. C., Harvey, J. W., Franke, O. L., & Alley, W. M. (1998). Ground water and surface water: A single resource (Report 1139; Circular). U.S. Geological Survey; USGS Publications Warehouse. https://doi.org/10.3133/cir1139
  • Yasser, M., Jahangir, K., & Mohmmad, A. (2013). Earth dam site selection using the analytic hierarchy process (AHP): A case study in the west of Iran. Arabian Journal of Geosciences, 6(9), 3417–3426. https://doi.org/10.1007/s12517-012-0602-x

Optimizing Mini Dam Placement for Sustainable Water Management in FUTA: A GIS-MCDA Approach

Year 2024, Volume: 5 Issue: 1, 41 - 53, 28.03.2024
https://doi.org/10.48123/rsgis.1366317

Abstract

Addressing the increasing demand for water resources at the Federal University of Technology, Akure (FUTA) due to the growing population requires a data-driven solution. This study determined the suitable locations for the siting of mini-dams as an alternative solution to the problem of water scarcity in FUTA using a Geographical Information Systems (GIS)-based Multi-Criteria Decision Analysis (MCDA) approach by integrating five thematic factors: drainage density, slope, elevation, land cover and soil texture. Preference values were assigned to the criteria based on their importance to a dam. Analytical Hierarchy Process (AHP) was used to assign weights to these criteria, and they were combined using a weighted sum to produce a mini dam suitability map within the study area. The suitable areas were divided into five classes: highly suitable (9%), suitable (18%), marginally suitable (30%), least suitable (26%) and not suitable (17%). The suitability map was validated against the locations of existing dams in the study area. This study contributes to the efforts to manage water resources for a growing population in FUTA and to evaluate the GIS-AHP approach for dam siting for a small study area.

References

  • Abushandi, E., & Alatawi, S. (2015). Dam Site Selection Using Remote Sensing Techniques and Geographical Information System to Control Flood Events in Tabuk City. Hydrology Current Research, 6(1), 1000189. https://doi.org/10.4172/2157-7587.1000189
  • Akeju, S. B., Ojo, O. M., & Adewumi, J. R. (2021). Current and Future Potable Water Demand and Supply at the Federal University of Technology, Akure, Nigeria. FUOYE Journal of Engineering and Technology, 6(3), 77–81. https://doi.org/10.46792/fuoyejet.v6i3.669
  • Aldaya, M. M., Allan, J. A., & Hoekstra, A. Y. (2010). Strategic importance of green water in international crop trade. Ecological Economics, 69(4), 887–894. https://doi.org/10.1016/j.ecolecon.2009.11.001
  • Al-Ruzouq, R., Shanableh, A., Yilmaz, A. G., Idris, A., Mukherjee, S., Khalil, M. A., & Gibril, M. B. A. (2019a). Dam Site Suitability Mapping and Analysis Using an Integrated GIS and Machine Learning Approach. Water, 11, 1880. https://doi.org/10.3390/w11091880
  • Al-Ruzouq, R., Shanableh, A., Merabtene, T., Siddique, M., Khalil, M. A., Idris, A., & Almulla, E. (2019b). Potential groundwater zone mapping based on geo-hydrological considerations and multi-criteria spatial analysis: North UAE. Catena, 173, 511–524. https://doi.org/10.1016/j.catena.2018.10.037
  • Al-shabeeb, A. R. (2016). The Use of AHP within GIS in Selecting Potential Sites for Water Harvesting Sites in the Azraq Basin—Jordan. Journal of Geographic Information System, 8(1), 73–88. https://doi.org/10.4236/jgis.2016.81008
  • Amadi, A. N., Olasehinde, P. I., Ameh, I. M., okunlola, I. A., & Dan-Hassan, M. A. (2015). Investigating the Groundwater Potential at The Boys Hostel, Bosso Campus, Federal University of Technology Minna, Using Electrical Resistivity Method. Water Resources, 25, 92–107.
  • Boroushaki, S., & Malczewski, J. (2008). Implementing an extension of the analytical hierarchy process using ordered weighted averaging operators with fuzzy quantifiers in ArcGIS. Computers & Geosciences, 34(4), 399–410. https://doi.org/10.1016/j.cageo.2007.04.003
  • Cosgrove, W. J., & Loucks, D. P. (2015). Water management: Current and future challenges and research directions. Water Resources Research, 51(6), 4823–4839. https://doi.org/10.1002/2014WR016869
  • Dai, X. (2016). Dam site selection using an integrated method of AHP and GIS for decision making support in Bortala, Northwest China [Master’s thesis, Lund University]. http://lup.lub.lu.se/student-papers/record/8886448
  • Egbinola, C. N., & Amanambu, A. C. (2014). Groundwater contamination in Ibadan, South-West Nigeria. SpringerPlus, 3, 448. https://doi.org/10.1186/2193-1801-3-448
  • Etikala, B., Golla, V., Li, P., & Renati, S. (2019). Deciphering groundwater potential zones using MIF technique and GIS: A study from Tirupati area, Chittoor District, Andhra Pradesh, India. HydroResearch, 1, 1–7. https://doi.org/10.1016/j.hydres.2019.04.001
  • Gallego-Ayala, J., & Juízo, D. (2011). Strategic implementation of integrated water resources management in Mozambique: An A’WOT analysis. Physics and Chemistry of the Earth, Parts A/B/C, 36(14–15), 1103–1111. https://doi.org/10.1016/j.pce.2011.07.040
  • Goepel, K. D. (2018). Implementation of an Online Software Tool for the Analytic Hierarchy Process (AHP-OS). International Journal of the Analytic Hierarchy Process, 10(3), 469–487. https://doi.org/10.13033/ijahp.v10i3.590
  • Hagos, Y. G., Andualem, T. G., Mengie, M. A., Ayele, W. T., & Malede, D. A. (2022). Suitable dam site identification using GIS-based MCDA: A case study of Chemoga watershed, Ethiopia. Applied Water Science, 12(4), 69. https://doi.org/10.1007/s13201-022-01592-9
  • Jozaghi, A., Alizadeh, B., Hatami, M., Flood, I., Khorrami, M., Khodaei, N., & Ghasemi Tousi, E. (2018). A Comparative Study of the AHP and TOPSIS Techniques for Dam Site Selection Using GIS: A Case Study of Sistan and Baluchestan Province, Iran. Geosciences, 8(12), 494. https://doi.org/10.3390/geosciences8120494
  • Karakuş, C. B., & Yıldız, S. (2022). GIS-multi criteria decision analysis-based land suitability assessment for dam site selection. International Journal of Environmental Science and Technology, 19(12), 12561–12580. https://doi.org/10.1007/s13762-022-04323-4
  • Luís, A. D. A., & Cabral, P. (2021). Small dams/reservoirs site location analysis in a semi-arid region of Mozambique. International Soil and Water Conservation Research, 9(3), 381–393. https://doi.org/10.1016/j.iswcr.2021.02.002
  • Malczewski, J. (2006). GIS‐based multicriteria decision analysis: A survey of the literature. International Journal of Geographical Information Science, 20(7), 703–726. https://doi.org/10.1080/13658810600661508
  • Njiru, F. M., & Siriba, D. N. (2018). Site Selection for an Earth Dam in Mbeere North, Embu County—Kenya. Journal of Geoscience and Environment Protection, 06(07), 113–133. https://doi.org/10.4236/gep.2018.67009
  • Noori, A. M., Pradhan, B., & Ajaj, Q. M. (2019). Dam site suitability assessment at the Greater Zab River in northern Iraq using remote sensing data and GIS. Journal of Hydrology, 574, 964–979. https://doi.org/10.1016/j.jhydrol.2019.05.001
  • Nzelibe, I. U., Akinboyewa, T. E., Nzelibe, T. N., & Inekwe, G. G. (2022). Geospatial Assessment of The Potentials of Rooftop Rainwater Harvest at The Federal University of Technology, Akure, Nigeria. FUOYE Journal of Engineering and Technology, 7(2), 249–256. https://doi.org/10.46792/fuoyejet.v7i2.839
  • Olujumoke, A. O., Folorunso, M. A., Valerie, G., & Christian, B. (2016). Descriptive analysis of rainfall and temperature trends over Akure, Nigeria. Journal of Geography and Regional Planning, 9(11), 195–202. https://doi.org/10.5897/JGRP2016.0583
  • Ouma, Y., & Tateishi, R. (2014). Urban Flood Vulnerability and Risk Mapping Using Integrated Multi-Parametric AHP and GIS: Methodological Overview and Case Study Assessment. Water, 6(6), 1515–1545. https://doi.org/10.3390/w6061515
  • Rincón, D., Khan, U., & Armenakis, C. (2018). Flood Risk Mapping Using GIS and Multi-Criteria Analysis: A Greater Toronto Area Case Study. Geosciences, 8(8), 275. https://doi.org/10.3390/geosciences8080275
  • Saaty, R. W. (1987). The analytic hierarchy process—What it is and how it is used. Mathematical Modelling, 9(3–5), 161–176. https://doi.org/10.1016/0270-0255(87)90473-8
  • Saaty, T. L. (1990). How to make a decision: The analytic hierarchy process. European Journal of Operational Research, 48(1), 9–26. https://doi.org/10.1016/0377-2217(90)90057-I
  • Saaty, T. L. (2008). Decision making with the analytic hierarchy process. International Journal of Services Sciences, 1(1), 83. https://doi.org/10.1504/IJSSCI.2008.017590
  • Shao, Z., Jahangir, Z., Muhammad Yasir, Q., Atta-ur-Rahman, & Mahmood, S. (2020). Identification of Potential Sites for a Multi-Purpose Dam Using a Dam Suitability Stream Model. Water, 12(11), 3249. https://doi.org/10.3390/w12113249
  • Wang, Y., Tian, Y., & Cao, Y. (2021). Dam Siting: A Review. Water, 13(15), 2080. https://doi.org/10.3390/w13152080
  • Winter, T. C., Harvey, J. W., Franke, O. L., & Alley, W. M. (1998). Ground water and surface water: A single resource (Report 1139; Circular). U.S. Geological Survey; USGS Publications Warehouse. https://doi.org/10.3133/cir1139
  • Yasser, M., Jahangir, K., & Mohmmad, A. (2013). Earth dam site selection using the analytic hierarchy process (AHP): A case study in the west of Iran. Arabian Journal of Geosciences, 6(9), 3417–3426. https://doi.org/10.1007/s12517-012-0602-x
There are 32 citations in total.

Details

Primary Language English
Subjects Geospatial Information Systems and Geospatial Data Modelling
Journal Section Research Articles
Authors

Herbert Tata 0000-0002-9755-1612

Lukumon Lateef 0000-0003-2383-5820

Ifechukwu Ugochukwu Nzelibe 0000-0002-2293-0925

Early Pub Date March 24, 2024
Publication Date March 28, 2024
Submission Date December 2, 2023
Acceptance Date March 5, 2024
Published in Issue Year 2024 Volume: 5 Issue: 1

Cite

APA Tata, H., Lateef, L., & Nzelibe, I. U. (2024). Optimizing Mini Dam Placement for Sustainable Water Management in FUTA: A GIS-MCDA Approach. Türk Uzaktan Algılama Ve CBS Dergisi, 5(1), 41-53. https://doi.org/10.48123/rsgis.1366317