Research Article
BibTex RIS Cite

Üzüm tanelerinde VvPDR genlerinin İfade Analizi

Year 2022, , 11 - 20, 30.06.2022
https://doi.org/10.53501/rteufemud.1081147

Abstract

ATP bağlayıcı kaset (ABC) taşıyıcı membran proteinleri, tüm organizmalarda büyük oranda korunmuş en büyük membran protein ailelerindendir. Ökaryotik ABC taşıyıcılarının yapısı, bir transmembran alanı (TMD) ve bir nükleotit bağlama alanı (NBD) olarak adlandırılan iki bölgeden oluşmaktadır. Bu proteinler, ökaryot canlılarda ABCA’dan ABCG’ye kadar devam eden toplam yedi ana aileye ayrılmaktadırlar ve bu ana aileler de kendi içlerinde alt ailelere ayrılmaktadır. Plazma zarında ve tonoplast, kloroplast, mitokondri ve peroksizomlar gibi organların zarlarında lokalizedirler ve çok sayıda işlevi yerine getirmektedirler. Başlangıçta detoksifikasyon işlemlerine katılan taşıyıcılar olarak tanımlanmış olmalarına rağmen daha sonraki yapılan çalışmalarda bu proteinlerin bitki büyümesi ve gelişim dönemlerinde ve çevresel streslere karşı tepkilerde de etkili oldukları gösterilmiştir. ABCG'nin tam molekül üyelerinden PDR alt grubu sadece mantar ve bitkilerde tanımlanmıştır. Plant pleiotropic drug resistance (PDR) alt ailesine ait proteinlerin çeşitli lipidlerin ve hormonların taşınmasında görev aldıkları ve aynı zamanda bu proteinlerin abiyotik ve biyotik streslere karşı tepkiler sırasında da görevlerinin olduğu yapılan farklı çalışmalarla bildirilmiştir. Yapılan bu çalışmada ise Vitis vinifera sp. genomunda tanımlanan ve PDR alt ailesine ait VvABCG35, VvABCG36, VvABCG37 genlerinin asmada meyve gelişim dönemleri boyunca gösterdiği ifadeler incelenmiş ve bu genlerin fonksiyonları hakkında fikir sahibi olmak için STRING veritabanı kullanılarak etkileşime girdiği diğer proteinler belirlenmiştir.

Supporting Institution

Ege Üniversitesi Bilimsel Araştırma Projeleri koordinatörlüğü tarafından desteklenmiştir.

Project Number

FYL-2018-20042

Thanks

Bu çalışma Yüksek Lisans projesi olarak Ege Üniversitesi Bilimsel Araştırma Projeleri koordinatörlüğü tarafından desteklenmiştir (FYL-2018-20042).

References

  • Böttcher, C., Boss, P.K., Davies, C. (2011). Acyl substrate preferences of an IAA-amido synthetase account for variations in grape (Vitis vinifera L.) berry ripening caused by different auxinic compounds indicating the importance of auxin conjugation in plant development. Journal of Experimental Botany, 62(12), 4267-4280. Doi:10.1093/jxb/err134.
  • Castellarin, S.D., Gambetta, G.A., Wada, H., Krasnow, M.N., Cramer, G.R., Peterlunger, E., Shackel, K.A., Matthews, M.A. (2015). Characterization of major ripening events during softening in grape: turgor, sugar accumulation, abscisic acid metabolism, colour development, and their relationship with growth. Journal of Experimental Botany, 67, 709–722. Doi: 10.1093/jxb/erv483.
  • Christian von, M., Jensen, L.J., Snel, B., Hooper, S.D., Krupp, M., Foglierini, M., Jouffre, N., Huynen, A.M., Bork, P. (2005). STRING: known and predicted protein–protein associations, integrated and transferred across organisms. Nucleic Acids Research, 33, D433–D437. Doi:10.1093/nar/gki005.
  • Chervin, C., El-Kereamy, A., Roustan, J-P., Latché, A., Lamon, J., Bouzayen, M. (2004). Ethylene seems required for the berry development and ripening in grape, a non-climacteric fruit. Plant Science, 167 (6), 1301-1305. https://doi.org/10.1016/j.plantsci.2004.06.026.
  • Conde, C., Silva, P., Fontes, N., C.P., Dias A., Tavares, Rui M., Sousa, M.J., Agasse, A., Delrot, S., Gerós, H. (2007). Biochemical changes throughout grape berry development and fruit and wine quality. Food Biophysics, 1(1), 1-22.
  • Crouzet, J., Trombik, T., Fraysse, A. S., and Boutry, M. (2006). Organization and function of the plant pleiotropic drug resistance ABC transporter family. FEBS Letters, 580, 1123-30.
  • Çakır, B., Kılıçkaya, O. (2013). Whole-genome survey of the putative ATP-binding cassette transporter family genes in Vitis vinifera. PLoS One, 8(11): e78860. Doi: 10.1371/journal.pone.0078860.
  • Davies, C., Robinson, S.P. (1996). Sugar accumulation in grape berries (Cloning of Two putative vacuolar invertase cDNAs and their expression in grapevine tissues. Plant Physiology, 111, 275.
  • Dokoozlian, N.K. (2000). Grape berry growth and development, Vol. 3393, Agricultural and Natural Resources Publication, University of California, Oakland, CA, Raisin Production Manual, Christiansen, L. P. (Ed.), 0-37.
  • Do, T.H.T., Martinoia, E., Lee, Y. (2018). Functions of ABC transporters in plant growth and development. Current Opinion in Plant Biology, 41, 32-38. Doi: 10.1016/j.pbi.2017.08.003.
  • Garcia, O., Bouige, P., Kolukisaoglu, U., Forestier, C., Müller, A., Ansorge, M., Becker, D., Mamnun, Y., Kuchler, K., Schulz, B., Mueller-Roeber, B., Martinoia, E. (2004). Inventory and comparative analysis of rice and Arabidopsis ATP-binding cassette (ABC) systems. Journal of Molecular Biology, 343(1), 249-265.
  • Geisler, M., Aryal, B., Donato, M., Hao, A.P. (2017). Critical view on ABC transporters and their interacting partners in auxin transport. Plant Cell Physiology, 58(10), 1601–1614. Doi:10.1093/pcp/pcx104.
  • Gennis, R.B. (1989). Biomembranes: molecular structure and function, Springer-Verlag, 1st Edition, ISBN: 978-1-4757-2065-5, New York, 533.
  • Higgins, C.F. (1995). The ABC of channel regulation. Cell, 82, 693-696.
  • Higgins, C.F., Linton, K.J. (2004). The ATP switch model for ABC transporters. Natural Strucuralt Molecular Biology, 11, 918–926.
  • Holland, I.B., Cole, S.P.C., Kuchler, K., Higgins, C.F. (2003). ABC proteins from bacteria to man, Academic Press, 1st Edition, ISBN: 9780080481876, San Diego, 530.
  • Keller, M. (2010). Botany and anatomy, 1-47, The Science of grapevines, Keller, M. (Ed.), Academic Press, San Diego.
  • Kennedy, J. (2002). Understanding grape berry development. Practical Winery and Vineyard Journal, 1-5.
  • Khare, D., Choi, H., Huh, S.U., Bassin, B., Kim, J., Martinoia, E., Sohn, K.H., Paek, K.H., Lee, Y. (2017). Arabidopsis ABCG34 contributes to defense against necrotrophic pathogens by mediating the secretion of camalexin. Proceedings of the National Academy of Sciences of the United States of America, 114: E5712-E5720.
  • Kim, D.Y., Bovet, L., Maeshima, M., Martinoia, E., Lee, Y. (2007). The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant Journal, 50, 207-18.
  • Klein, I., Sarkadi, B., Varadi, A. (1999). An inventory of the human ABC proteins. Biochimica et Biophysica Acta, 1461, 237–62.
  • Klokouzas, A., Shahi, S., Hladky, S.B., Barrand, M.A., van Veen, H.W. (2003) ABC transporters and drug resistance in parasitic protozoa. International Journal of Antimicrobial Agents, 22, 301–317.
  • Kılıçkaya, O. (2014). Asma Bitkisinde (Vitis vinifera) ABA Taşıyıcılarının izolasyonu ve moleküler karakterizasyonu. Doktora Tezi, Ege Üniversitesi Fen Bilimleri Enstitüsü, İzmir.
  • Lefèvre, F., Boutry, M. (2018). Towards identification of the substrates of ATP-binding cassette transporters. Plant Physiology, 178(1), 18-39. Doi: 10.1104/pp.18.00325. Lodish, H., Berk, A., Kaiser, C. A., Krieger, M., Bretscher, A., Ploegh, H., Amon, A., Scott, M.P. (2013). Biomembrane structure. Molecular Cell Biology, New York, 5th Edition, 64-472.
  • Mullins, M.G., Bouquet, A., Williams, L.E. (1992). Biology of the grapevine, Cambridge, UK, ISBN 0521305071, 9780521305075, 239.
  • Pighin, J.A., Zheng, H., Balakshin, L.J., Goodman, I.P., Western, T.L., Jetter, R., Kunst, L., Samuels, A.L. (2004). Plant cuticular lipid export requires an ABC transporter. Science, 306,702-704.
  • Potdukhe, R.M., Bedi, P., Sarangi, B.K., Pandey, R.A., Thul, S.T. (2018). Root transcripts associated with arsenic accumulation in hyperaccumulator Pteris vittata. Journal of Biosciences, 43, 105-115.
  • Ružicka, K., C. Strader, L., Bailly, A., Yang, H., Blakesle, J., Łangowski, Ł., Nejedlá, E., Fujitag, H., Itoh, H., Syono, K., Hejátko, J., Gray, W.M., Martinoia, E., Geisler, M., Bonnie, B. (2010). Arabidopsis PIS1 encodes the ABCG37 transporter of auxinic compounds including the auxin precursor indole-3-butyric acid, Proceedings of the National Academy of Sciences, 107(23), 10749-10753. Doi: 10.1073/pnas.1005878107.
  • Sadava, D., Hillis, D., Heller, H.C., Berenbaum, M. (2011). Cell membranes, Life - The Science of Biology, W. H. Freeman and Company, ISBN10: 0716799014, 8th Edition, 105-127.
  • Sánchez-Fernández, R., Davies, T.G.E., Coleman, J.O.D., Rea, P.A. (2001). The Arabidopsis thaliana ABC protein superfamily, a complete inventory. Journal of Biology and Chemistry, 276, 30231–30244.
  • Scienza, A., Miravalle, R., Visai, C., Fregoni, M. (1978). Relationships between seed number, gibberellin and abscisic acid levels and ripening in Cabernet Sauvignon grape berries. Vitis, 17, 361–8.
  • Symons, G.M., Davies, C., Shavrukov, Y., Dry, I.B., Reid, J.B., Thomas, M.R. (2006). Grapes on steroids. Brassinosteroids are involved in grape berry ripening. Plant Physiology, 140, 150–158.
  • Sun, L., Zhang, M., Ren, J., Qi, J., Zhang, G., Leng, P. (2010). Reciprocity between abscisic acid and ethylene at the onset of berry ripening and after harvest. BMC Plant Biology, 10:257. Doi: 10.1186/1471-2229-10-257.
  • Suzuki, M., Jasinski, M., Martinoia, E., Nakabayashi, R., Suzuki, M., Saito, K., Shiratake, K. (2014). Molecular cloning and characterization of ABCG/PDR-type ABC transporter in grape berry skin. Advances in Horticultural Science, 28(2), 53-63. https://doi.org/10.13128/ahs-22795.
  • Teagen, D.Q., Michael C.F., Lacey Samuels, A., Douglas C.J. (2010). ATP-binding cassette transporter G26 is required for male fertility and pollen exine formation in Arabidopsis. Plant Physiology, 154(2), 678–690. Doi: https://doi.org/10.1104/pp.110.161968.
  • Xiong, J., Mao, D.A., Liu, L.Q. (2015). Research Progress on the Role of ABC transporters in the drug resistance mechanism of intractable epilepsy. Biomedical Reserach International, 194541. Doi: 10.1155/2015/194541.
  • Zhang, M., Leng, P., Zhang, G., and Li, X. (2009). Cloning and functional analysis of 9-cis-epoxycarotenoid dioxygenase (NCED) genes encoding a key enzyme during abscisic acid biosynthesis from peach and grape fruits. Journal of Plant Physiology, 166, 1241–1252. Doi: 10.1016/j.jplph.2009.01.013.

Expression Analysis of VvPDR Genes in Grape Berries

Year 2022, , 11 - 20, 30.06.2022
https://doi.org/10.53501/rteufemud.1081147

Abstract

The ATP-binding cassette (ABC) carrier membrane proteins are among the largest families of membrane proteins that are highly conserved in all organisms. The structure of eukaryotic ABC transporters consists of two domains called a transmembrane domain (TMD) and a nucleotide binding domain (NBD). In eukaryotes, it is classified into seven main families, ordered from ABCA to ABCG, and the main families are divided into subfamilies within themselves. They are localized in the membranes of a plant cell, such as the plasma membrane, tonoplast, chloroplast, mitochondria, and peroxisomes, and perform numerous functions. Initially identified as carriers involved in detoxification processes, they were later shown to be essential for organ growth, plant nutrition, plant growth, response to abiotic stress, pathogen resistance, and plant interaction with its environment. The plant pleiotropic drug resistance (PDR) subgroup consists of full structure members of ABCG subfamily that have only been identified in fungi and plants. It has been reported in various studies that the PDR subfamily is involved in the transport of various lipids and hormones, as well as playing a role in abiotic and biotic stresses. In this study, expressions of VvABCG35, VvABCG36, VvABCG37 genes belonging to the PDR subfamily, which are defined in Vitis vinifera sp. genome, during berry development periods were determined and other proteins with which they interact were examined by using the STRING database to have an idea about the functions of these genes.

Project Number

FYL-2018-20042

References

  • Böttcher, C., Boss, P.K., Davies, C. (2011). Acyl substrate preferences of an IAA-amido synthetase account for variations in grape (Vitis vinifera L.) berry ripening caused by different auxinic compounds indicating the importance of auxin conjugation in plant development. Journal of Experimental Botany, 62(12), 4267-4280. Doi:10.1093/jxb/err134.
  • Castellarin, S.D., Gambetta, G.A., Wada, H., Krasnow, M.N., Cramer, G.R., Peterlunger, E., Shackel, K.A., Matthews, M.A. (2015). Characterization of major ripening events during softening in grape: turgor, sugar accumulation, abscisic acid metabolism, colour development, and their relationship with growth. Journal of Experimental Botany, 67, 709–722. Doi: 10.1093/jxb/erv483.
  • Christian von, M., Jensen, L.J., Snel, B., Hooper, S.D., Krupp, M., Foglierini, M., Jouffre, N., Huynen, A.M., Bork, P. (2005). STRING: known and predicted protein–protein associations, integrated and transferred across organisms. Nucleic Acids Research, 33, D433–D437. Doi:10.1093/nar/gki005.
  • Chervin, C., El-Kereamy, A., Roustan, J-P., Latché, A., Lamon, J., Bouzayen, M. (2004). Ethylene seems required for the berry development and ripening in grape, a non-climacteric fruit. Plant Science, 167 (6), 1301-1305. https://doi.org/10.1016/j.plantsci.2004.06.026.
  • Conde, C., Silva, P., Fontes, N., C.P., Dias A., Tavares, Rui M., Sousa, M.J., Agasse, A., Delrot, S., Gerós, H. (2007). Biochemical changes throughout grape berry development and fruit and wine quality. Food Biophysics, 1(1), 1-22.
  • Crouzet, J., Trombik, T., Fraysse, A. S., and Boutry, M. (2006). Organization and function of the plant pleiotropic drug resistance ABC transporter family. FEBS Letters, 580, 1123-30.
  • Çakır, B., Kılıçkaya, O. (2013). Whole-genome survey of the putative ATP-binding cassette transporter family genes in Vitis vinifera. PLoS One, 8(11): e78860. Doi: 10.1371/journal.pone.0078860.
  • Davies, C., Robinson, S.P. (1996). Sugar accumulation in grape berries (Cloning of Two putative vacuolar invertase cDNAs and their expression in grapevine tissues. Plant Physiology, 111, 275.
  • Dokoozlian, N.K. (2000). Grape berry growth and development, Vol. 3393, Agricultural and Natural Resources Publication, University of California, Oakland, CA, Raisin Production Manual, Christiansen, L. P. (Ed.), 0-37.
  • Do, T.H.T., Martinoia, E., Lee, Y. (2018). Functions of ABC transporters in plant growth and development. Current Opinion in Plant Biology, 41, 32-38. Doi: 10.1016/j.pbi.2017.08.003.
  • Garcia, O., Bouige, P., Kolukisaoglu, U., Forestier, C., Müller, A., Ansorge, M., Becker, D., Mamnun, Y., Kuchler, K., Schulz, B., Mueller-Roeber, B., Martinoia, E. (2004). Inventory and comparative analysis of rice and Arabidopsis ATP-binding cassette (ABC) systems. Journal of Molecular Biology, 343(1), 249-265.
  • Geisler, M., Aryal, B., Donato, M., Hao, A.P. (2017). Critical view on ABC transporters and their interacting partners in auxin transport. Plant Cell Physiology, 58(10), 1601–1614. Doi:10.1093/pcp/pcx104.
  • Gennis, R.B. (1989). Biomembranes: molecular structure and function, Springer-Verlag, 1st Edition, ISBN: 978-1-4757-2065-5, New York, 533.
  • Higgins, C.F. (1995). The ABC of channel regulation. Cell, 82, 693-696.
  • Higgins, C.F., Linton, K.J. (2004). The ATP switch model for ABC transporters. Natural Strucuralt Molecular Biology, 11, 918–926.
  • Holland, I.B., Cole, S.P.C., Kuchler, K., Higgins, C.F. (2003). ABC proteins from bacteria to man, Academic Press, 1st Edition, ISBN: 9780080481876, San Diego, 530.
  • Keller, M. (2010). Botany and anatomy, 1-47, The Science of grapevines, Keller, M. (Ed.), Academic Press, San Diego.
  • Kennedy, J. (2002). Understanding grape berry development. Practical Winery and Vineyard Journal, 1-5.
  • Khare, D., Choi, H., Huh, S.U., Bassin, B., Kim, J., Martinoia, E., Sohn, K.H., Paek, K.H., Lee, Y. (2017). Arabidopsis ABCG34 contributes to defense against necrotrophic pathogens by mediating the secretion of camalexin. Proceedings of the National Academy of Sciences of the United States of America, 114: E5712-E5720.
  • Kim, D.Y., Bovet, L., Maeshima, M., Martinoia, E., Lee, Y. (2007). The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant Journal, 50, 207-18.
  • Klein, I., Sarkadi, B., Varadi, A. (1999). An inventory of the human ABC proteins. Biochimica et Biophysica Acta, 1461, 237–62.
  • Klokouzas, A., Shahi, S., Hladky, S.B., Barrand, M.A., van Veen, H.W. (2003) ABC transporters and drug resistance in parasitic protozoa. International Journal of Antimicrobial Agents, 22, 301–317.
  • Kılıçkaya, O. (2014). Asma Bitkisinde (Vitis vinifera) ABA Taşıyıcılarının izolasyonu ve moleküler karakterizasyonu. Doktora Tezi, Ege Üniversitesi Fen Bilimleri Enstitüsü, İzmir.
  • Lefèvre, F., Boutry, M. (2018). Towards identification of the substrates of ATP-binding cassette transporters. Plant Physiology, 178(1), 18-39. Doi: 10.1104/pp.18.00325. Lodish, H., Berk, A., Kaiser, C. A., Krieger, M., Bretscher, A., Ploegh, H., Amon, A., Scott, M.P. (2013). Biomembrane structure. Molecular Cell Biology, New York, 5th Edition, 64-472.
  • Mullins, M.G., Bouquet, A., Williams, L.E. (1992). Biology of the grapevine, Cambridge, UK, ISBN 0521305071, 9780521305075, 239.
  • Pighin, J.A., Zheng, H., Balakshin, L.J., Goodman, I.P., Western, T.L., Jetter, R., Kunst, L., Samuels, A.L. (2004). Plant cuticular lipid export requires an ABC transporter. Science, 306,702-704.
  • Potdukhe, R.M., Bedi, P., Sarangi, B.K., Pandey, R.A., Thul, S.T. (2018). Root transcripts associated with arsenic accumulation in hyperaccumulator Pteris vittata. Journal of Biosciences, 43, 105-115.
  • Ružicka, K., C. Strader, L., Bailly, A., Yang, H., Blakesle, J., Łangowski, Ł., Nejedlá, E., Fujitag, H., Itoh, H., Syono, K., Hejátko, J., Gray, W.M., Martinoia, E., Geisler, M., Bonnie, B. (2010). Arabidopsis PIS1 encodes the ABCG37 transporter of auxinic compounds including the auxin precursor indole-3-butyric acid, Proceedings of the National Academy of Sciences, 107(23), 10749-10753. Doi: 10.1073/pnas.1005878107.
  • Sadava, D., Hillis, D., Heller, H.C., Berenbaum, M. (2011). Cell membranes, Life - The Science of Biology, W. H. Freeman and Company, ISBN10: 0716799014, 8th Edition, 105-127.
  • Sánchez-Fernández, R., Davies, T.G.E., Coleman, J.O.D., Rea, P.A. (2001). The Arabidopsis thaliana ABC protein superfamily, a complete inventory. Journal of Biology and Chemistry, 276, 30231–30244.
  • Scienza, A., Miravalle, R., Visai, C., Fregoni, M. (1978). Relationships between seed number, gibberellin and abscisic acid levels and ripening in Cabernet Sauvignon grape berries. Vitis, 17, 361–8.
  • Symons, G.M., Davies, C., Shavrukov, Y., Dry, I.B., Reid, J.B., Thomas, M.R. (2006). Grapes on steroids. Brassinosteroids are involved in grape berry ripening. Plant Physiology, 140, 150–158.
  • Sun, L., Zhang, M., Ren, J., Qi, J., Zhang, G., Leng, P. (2010). Reciprocity between abscisic acid and ethylene at the onset of berry ripening and after harvest. BMC Plant Biology, 10:257. Doi: 10.1186/1471-2229-10-257.
  • Suzuki, M., Jasinski, M., Martinoia, E., Nakabayashi, R., Suzuki, M., Saito, K., Shiratake, K. (2014). Molecular cloning and characterization of ABCG/PDR-type ABC transporter in grape berry skin. Advances in Horticultural Science, 28(2), 53-63. https://doi.org/10.13128/ahs-22795.
  • Teagen, D.Q., Michael C.F., Lacey Samuels, A., Douglas C.J. (2010). ATP-binding cassette transporter G26 is required for male fertility and pollen exine formation in Arabidopsis. Plant Physiology, 154(2), 678–690. Doi: https://doi.org/10.1104/pp.110.161968.
  • Xiong, J., Mao, D.A., Liu, L.Q. (2015). Research Progress on the Role of ABC transporters in the drug resistance mechanism of intractable epilepsy. Biomedical Reserach International, 194541. Doi: 10.1155/2015/194541.
  • Zhang, M., Leng, P., Zhang, G., and Li, X. (2009). Cloning and functional analysis of 9-cis-epoxycarotenoid dioxygenase (NCED) genes encoding a key enzyme during abscisic acid biosynthesis from peach and grape fruits. Journal of Plant Physiology, 166, 1241–1252. Doi: 10.1016/j.jplph.2009.01.013.
There are 37 citations in total.

Details

Primary Language Turkish
Journal Section Research Articles
Authors

Birsen Çakır Aydemir 0000-0003-4268-8547

Selin Altıntaş 0000-0001-5683-8011

Project Number FYL-2018-20042
Publication Date June 30, 2022
Published in Issue Year 2022

Cite

APA Çakır Aydemir, B., & Altıntaş, S. (2022). Üzüm tanelerinde VvPDR genlerinin İfade Analizi. Recep Tayyip Erdogan University Journal of Science and Engineering, 3(1), 11-20. https://doi.org/10.53501/rteufemud.1081147

Taranılan Dizinler

27717   22936   22937  22938   22939     22941   23010    23011   23019  23025