Research Article
BibTex RIS Cite

GaN-WSSe'nin Dikey Gerinim Altında Fotokatalitik Performansının İncelenmesi

Year 2023, , 30 - 38, 30.06.2023
https://doi.org/10.53501/rteufemud.1282942

Abstract

Mekanik gerinim uygulaması, malzemelerin fiziksel özelliklerini ayarlamak ve optimize etmek için çok önemli bir tekniktir. Bu uygulama sayesinde malzemeler yenilenebilir enerji kaynakları ve nanoelektronik dahil olmak üzere çeşitli uygulamalar için potansiyel olarak yararlı olmaktadır. Su ayırma yoluyla hidrojen üretimi, enerji krizine umut verici bir çözüm olarak önerilmektedir. Bu nedenle, bu işlem için düşük maliyetli ve verimli fotokatalizörlerin keşfedilmesi için literatürde büyük ölçüde talep bulunmaktadır. Bu çalışmada WSSe/grafen benzeri GaN (g-GaN) heteroyapısının elektronik özellikleri, yapısal özellikleri ve bant hizalaması araştırılmıştır. Sonuçlarımız, AA yığınlı WSSe/g-GaN heteroyapısının bant hizalamasının, pH7'de su redoks potansiyellerini karşıladığını ortaya koymaktadır. Düzenlemenin bu iki heteroyapı üzerindeki etkisini araştırmak için %-2 ile %2 arasında değişen düzlem dışı gerinim uygulanmıştır. Sonuçlar heteroyapıya gerinim uygulanmasının değerlik ve iletim bandlarının redoks potansiyellerine göre sıralanması ile fotokatalitik özelliklerin artıracağını göstermektedir.

References

  • Andoshe, D.M., Jeon, J.M., Kim, S.Y., Jang, H.W. (2015). Two-dimensional transition metal dichalcogenide nanomaterials for solar water splitting. Electronic Materials Letters, 11, 323-335. https://doi.org/10.1007/s13391-015-4402-9
  • Brennan, C.J., Ghosh, R., Koul, K., Banerjee, S.K., Lu, N.S., Yu, E.T. (2017). Out-of plane electromechanical response of monolayer molybdenum disulfide measured by piezoresponse force microscopy. Nano Letters, 17, 5464-5471. https://doi.org/10.1021/acs.nanolett.7b02123
  • Chang, C., Fan, X., Lin, S., Kuo, J. (2013). Orbital analysis of electronic structure and phonon dispersion in MoS2, MoSe2, WS2, and WSe2 monolayers under strain. Physical Review B, 88, 195420. https://doi.org/10.1103/PhysRevB.88.195420
  • Christoforidis, K.C., Fornasiero, P. (2017). Photocatalytic hydrogen production: a rift into the future energy supply. ChemCatChem, 9, 1523-1544. https://doi.org/10.1002/cctc.201601659
  • Eda, G., Yamaguchi, H., Voiry, D., Fujita, T., Chen, M.W., Chhowalla, M. (2011). Photoluminescence from chemically exfoliated MoS2. Nano Letters, 11, 5111-5116. https://doi.org/10.1021/nl201874w
  • Er, D., Ye, H., Frey, N., Kumar, H., Lou, J., Shenoy, V. (2018). Prediction of enhanced catalytic activity for hydrogen evolution reaction in Janus transition metal dichalcogenides. Nano Letters, 18, 3943. https://doi.org/10.1021/acs.nanolett.8b01335
  • Fox, M.A., Dulay, M.T. (1993). Heterogeneous photocatalysis. Chemical Reviews, 93(1), 341-357. https://doi.org/10.1021/cr00017a016
  • Guan, Z., Ni, S., Hu, S. (2018). Tunable electronic and optical properties of monolayer and multilayer Janus MoSSe as a photocatalyst for solar water splitting: a first-principles study. Journal of Physical Chemistry C, 122, 6209–6216. https://doi.org/10.1021/acs.jpcc.
  • He, C., Han, F., Zhang, W. (2022). The InSe/g-CN van der Waals hybrid heterojunction as a photocatalyst for water splitting driven by visible light. Chinese Chemical Letters, 33(1), 404–409. https://doi.org/10.1016/j.cclet.2021.07.010
  • Hoffmann, M.R., Martin, S.T., Choi, W.Y., Bahnemann, D.W. (1995). Environmental applications of semiconductor photocatalysis. Chemical Reviews, 95(1), 69-96. https://doi.org/10.1021/cr00033a004
  • Hsieh, H., Kochat, V., Zhang, X., Gong, Y.J., Tiwary, C.S., Ajayan, P.M., Ghosh, A. (2017). Effect of carrier localization on electrical transport and noise at individual grain boundaries in monolayer MoS2. Nano Letters, 17, 5452-5457. https://doi.org/10.1021/acs.nanolett.7b02099
  • Idrees, M., Nguyen, C.V., Bui, H.D., Ahmad, I., Amin, B. (2020). van der Waals heterostructures based on MSSe (M = Mo, W) and graphene-like GaN: enhanced optoelectronic and photocatalytic properties for water splitting. Physical Chemistry Chemical Physics, 22, 20704-20711. https://doi.org/10.1039/D0CP03434G
  • Karande, S., Kaushik, N., Narang, D., Late, D., Lodha, S. (2016). Thickness tunable transport in alloyed WSSe field effect transistors. Applied Physics Letters, 109, 142101. https://doi.org/10.1063/1.4964289 Liang, Y., Li, J., Jin, H., Huang, B., Dai, Y. (2018). Photoexcitation dynamics in janus-MoSSe/WSe2 heterobilayers: ab initio time-domain study. Journal of Physical Chemistry Letters, 9, 2797–2802. https://doi.org/10.1021/acs.jpclett.8b00903
  • Liao, J., Sa, B., Zhou, J., Ahuja, R., Sun, Z. (2014). Design of high-efficiency visible-light photocatalysts for water splitting: MoS2/AlN(GaN) heterostructures. Journal of Physical Chemistry C, 118, 17594-17599. https://doi.org/10.1021/jp5038014
  • Linic, S., Christopher, P., Ingram, D.B. (2011). Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nature Materials, 10, 911-921. https://doi.org/10.1038/nmat3151
  • Long, C., Dai, Y., Gong, Z-R., Jin, H. (2019). Robust type-II band alignment in Janus-MoSSe bilayer with extremely long carrier lifetime induced by the intrinsic electric field. Physical Review B, 99, 115316. https://doi.org/10.1103/PhysRevB.99.115316
  • Lu, A-Yu., Zhu, H., Chuu, C-Pu., Han, Y., Chiu, M-Hu., Cheng, C.C., Yang, C-W., Wei, K-H., Yang, Y., Wang, Y., Sokaras, D., Nordlund, D., Yang, P., Muller, D.A., Chou, M-Y., Zhang, X., Li, L-J. (2017). Janus monolayers of transition metal dichalcogenides. Nature Nanotechnology, 12, 744–749. https://doi.org/10.1038/nnano.2017.100
  • Mu, Y. (2015). Chemical functionalization of GaN monolayer by adatom adsorption. Journal of Physical Chemistry C, 119, 20911–20916. https://doi.org/10.1021/acs.jpcc.5b04695
  • Neumayer, D.A., Ekerdt, J.G. (1996). Growth of group III nitrides. A review of precursors and techniques. Chemistry of Materials, 8, 9-25. https://doi.org/10.1021/cm950108r
  • Novoselov, K.S., Mishchenko, A., Carvalho, A., Castro Neto, A. H. (2016). 2D materials and van der Waals heterostructures. Science, 353(6298), aac9439. https://doi.org/10.1126/science.aac9439
  • Riis-Jensen, A.C., Pandey, M., Thygesen, K.S. (2018). Efficient charge separation in 2d janus van der waals structures with built-in electric fields and intrinsic p–n doping. Journal of Physical Chemistry C, 122, 24520–24526. https://doi.org/10.1021/acs.jpcc.8b05792
  • Song, J., Zheng, H., Liu, M., Zhang, G., Ling, D., Wei, D. (2021). A first-principles study on the electronic and optical properties of a type-II C2N/g-ZnO van der Waals heterostructure. Physical Chemistry Chemical Physics, 23(6), 3963–3973. https://doi.org/10.1039/D1CP00122A
  • Wang, H., Yuan, H., Hong, S.S., Li, Y., Cui, Y. (2015). Physical and chemical tuning of two-dimensional transition metal dichalcogenides. Chemical Society Reviews, 44(9), 2664-2680. https://doi.org/10.1039/C4CS00287C Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., Strano, M.S. (2012). Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 7, 699-712. https://doi.org/10.1038/nnano.2012.193
  • Wang, X.M., Xia, F.N. (2015). Stacked 2D materials shed light. Nature Materials, 14, 264-265. https://doi.org/10.1038/nmat4218
  • Xu, D., He, H., Pandey, R., Karna, S.P. (2013). Stacking and electric field effects in atomically thin layers of GaN. Journal of Physics: Condensed Matter, 25(34), 345302. https://doi.org/10.1088/0953-8984/25/34/345302
  • Yao, Q-F., Cai, J., Tong, W-Y., Gong, S-J., Wang, J.-Q., Wan, X., Duan, C.-G., Chu, J.H. (2017). Manipulation of the large rashba spin splitting in polar two-dimensional transition-metal dichalcogenides. Physical Review B, 95, 165401. https://doi.org/10.1103/PhysRevB.95.165401
  • Yu, J-Q, Ke, S-S, Lü, H-F. (2022). Electronic properties and tunable Schottky barrier of non-Janus MoSSe/graphene heterostructures. Journal of Physics D: Applied Physics, 55(3), 035104. 10.1088/1361-6463/ac2d61
  • Zeng, H., Liu, X., Zhang, H., Cheng, X. (2021). New theoretical insights into the photoinduced carrier transfer dynamics in WS2/WSe2 van der Waals heterostructures. Physical Chemistry Chemical Physics, 23(1), 694–701. https://doi.org/10.1039/D0CP04517A
  • Zhang, H., Zhang, Y.N., Liu, H., Li, L.M. (2014). Novel heterostructures by stacking layered molybdenum disulfides and nitrides for solar energy conversion. Journal of Materials Chemistry, 37, 15389-15395. https://doi.org/10.1039/C4TA03134B
  • Zhang, J., Jia, S., Kholmanov, I., Dong, L., Er, D., Chen, W., Guo, H., Jin, Z., Shenoy, V.B., Shi, L., Lou, J. (2017). Janus monolayer transition-metal dichalcogenides. ACS Nano, 11, 8192–8198. https://doi.org/10.1021/acsnano.7b03186
  • Zhou, W., Chen, J., Yang, Z., Liu, J., Ouyang, F. (2019). Geometry and electronic structure of monolayer, bilayer, and multilayer Janus WSSe. Physical Review B, 99, 75160. https://doi.org/10.1103/PhysRevB.99.075160

Investigation of Photocatalytic Performance of GaN-WSSe Under Vertical Strain

Year 2023, , 30 - 38, 30.06.2023
https://doi.org/10.53501/rteufemud.1282942

Abstract

The application of mechanical strain is a crucial technique to adjust and optimize the physical properties of materials, making them potentially useful for various applications, including renewable energy resources and nanoelectronics. Hydrogen production through water splitting has been proposed as a promising solution to the energy crisis. Therefore, there is a great demand for exploring low-cost and efficient photocatalysts for this process. We investigated the electronic properties, structural properties and band alignment of WSSe/graphene-like GaN (g-GaN) heterostructure. Our results reveal that the band alignment of the AA-stacked WSSe/g-GaN heterostructure satisfies the water redox potentials at a pH of 7. In order to investigate the effect of regulation on these two heterostructures, out of plane strain ranging from -2% to 2% is applied. Results show that applying strain to the heterostructure will enhace the photocatalytic properties which was evaluated based on the valence and conduction band edge potentials.

References

  • Andoshe, D.M., Jeon, J.M., Kim, S.Y., Jang, H.W. (2015). Two-dimensional transition metal dichalcogenide nanomaterials for solar water splitting. Electronic Materials Letters, 11, 323-335. https://doi.org/10.1007/s13391-015-4402-9
  • Brennan, C.J., Ghosh, R., Koul, K., Banerjee, S.K., Lu, N.S., Yu, E.T. (2017). Out-of plane electromechanical response of monolayer molybdenum disulfide measured by piezoresponse force microscopy. Nano Letters, 17, 5464-5471. https://doi.org/10.1021/acs.nanolett.7b02123
  • Chang, C., Fan, X., Lin, S., Kuo, J. (2013). Orbital analysis of electronic structure and phonon dispersion in MoS2, MoSe2, WS2, and WSe2 monolayers under strain. Physical Review B, 88, 195420. https://doi.org/10.1103/PhysRevB.88.195420
  • Christoforidis, K.C., Fornasiero, P. (2017). Photocatalytic hydrogen production: a rift into the future energy supply. ChemCatChem, 9, 1523-1544. https://doi.org/10.1002/cctc.201601659
  • Eda, G., Yamaguchi, H., Voiry, D., Fujita, T., Chen, M.W., Chhowalla, M. (2011). Photoluminescence from chemically exfoliated MoS2. Nano Letters, 11, 5111-5116. https://doi.org/10.1021/nl201874w
  • Er, D., Ye, H., Frey, N., Kumar, H., Lou, J., Shenoy, V. (2018). Prediction of enhanced catalytic activity for hydrogen evolution reaction in Janus transition metal dichalcogenides. Nano Letters, 18, 3943. https://doi.org/10.1021/acs.nanolett.8b01335
  • Fox, M.A., Dulay, M.T. (1993). Heterogeneous photocatalysis. Chemical Reviews, 93(1), 341-357. https://doi.org/10.1021/cr00017a016
  • Guan, Z., Ni, S., Hu, S. (2018). Tunable electronic and optical properties of monolayer and multilayer Janus MoSSe as a photocatalyst for solar water splitting: a first-principles study. Journal of Physical Chemistry C, 122, 6209–6216. https://doi.org/10.1021/acs.jpcc.
  • He, C., Han, F., Zhang, W. (2022). The InSe/g-CN van der Waals hybrid heterojunction as a photocatalyst for water splitting driven by visible light. Chinese Chemical Letters, 33(1), 404–409. https://doi.org/10.1016/j.cclet.2021.07.010
  • Hoffmann, M.R., Martin, S.T., Choi, W.Y., Bahnemann, D.W. (1995). Environmental applications of semiconductor photocatalysis. Chemical Reviews, 95(1), 69-96. https://doi.org/10.1021/cr00033a004
  • Hsieh, H., Kochat, V., Zhang, X., Gong, Y.J., Tiwary, C.S., Ajayan, P.M., Ghosh, A. (2017). Effect of carrier localization on electrical transport and noise at individual grain boundaries in monolayer MoS2. Nano Letters, 17, 5452-5457. https://doi.org/10.1021/acs.nanolett.7b02099
  • Idrees, M., Nguyen, C.V., Bui, H.D., Ahmad, I., Amin, B. (2020). van der Waals heterostructures based on MSSe (M = Mo, W) and graphene-like GaN: enhanced optoelectronic and photocatalytic properties for water splitting. Physical Chemistry Chemical Physics, 22, 20704-20711. https://doi.org/10.1039/D0CP03434G
  • Karande, S., Kaushik, N., Narang, D., Late, D., Lodha, S. (2016). Thickness tunable transport in alloyed WSSe field effect transistors. Applied Physics Letters, 109, 142101. https://doi.org/10.1063/1.4964289 Liang, Y., Li, J., Jin, H., Huang, B., Dai, Y. (2018). Photoexcitation dynamics in janus-MoSSe/WSe2 heterobilayers: ab initio time-domain study. Journal of Physical Chemistry Letters, 9, 2797–2802. https://doi.org/10.1021/acs.jpclett.8b00903
  • Liao, J., Sa, B., Zhou, J., Ahuja, R., Sun, Z. (2014). Design of high-efficiency visible-light photocatalysts for water splitting: MoS2/AlN(GaN) heterostructures. Journal of Physical Chemistry C, 118, 17594-17599. https://doi.org/10.1021/jp5038014
  • Linic, S., Christopher, P., Ingram, D.B. (2011). Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nature Materials, 10, 911-921. https://doi.org/10.1038/nmat3151
  • Long, C., Dai, Y., Gong, Z-R., Jin, H. (2019). Robust type-II band alignment in Janus-MoSSe bilayer with extremely long carrier lifetime induced by the intrinsic electric field. Physical Review B, 99, 115316. https://doi.org/10.1103/PhysRevB.99.115316
  • Lu, A-Yu., Zhu, H., Chuu, C-Pu., Han, Y., Chiu, M-Hu., Cheng, C.C., Yang, C-W., Wei, K-H., Yang, Y., Wang, Y., Sokaras, D., Nordlund, D., Yang, P., Muller, D.A., Chou, M-Y., Zhang, X., Li, L-J. (2017). Janus monolayers of transition metal dichalcogenides. Nature Nanotechnology, 12, 744–749. https://doi.org/10.1038/nnano.2017.100
  • Mu, Y. (2015). Chemical functionalization of GaN monolayer by adatom adsorption. Journal of Physical Chemistry C, 119, 20911–20916. https://doi.org/10.1021/acs.jpcc.5b04695
  • Neumayer, D.A., Ekerdt, J.G. (1996). Growth of group III nitrides. A review of precursors and techniques. Chemistry of Materials, 8, 9-25. https://doi.org/10.1021/cm950108r
  • Novoselov, K.S., Mishchenko, A., Carvalho, A., Castro Neto, A. H. (2016). 2D materials and van der Waals heterostructures. Science, 353(6298), aac9439. https://doi.org/10.1126/science.aac9439
  • Riis-Jensen, A.C., Pandey, M., Thygesen, K.S. (2018). Efficient charge separation in 2d janus van der waals structures with built-in electric fields and intrinsic p–n doping. Journal of Physical Chemistry C, 122, 24520–24526. https://doi.org/10.1021/acs.jpcc.8b05792
  • Song, J., Zheng, H., Liu, M., Zhang, G., Ling, D., Wei, D. (2021). A first-principles study on the electronic and optical properties of a type-II C2N/g-ZnO van der Waals heterostructure. Physical Chemistry Chemical Physics, 23(6), 3963–3973. https://doi.org/10.1039/D1CP00122A
  • Wang, H., Yuan, H., Hong, S.S., Li, Y., Cui, Y. (2015). Physical and chemical tuning of two-dimensional transition metal dichalcogenides. Chemical Society Reviews, 44(9), 2664-2680. https://doi.org/10.1039/C4CS00287C Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., Strano, M.S. (2012). Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 7, 699-712. https://doi.org/10.1038/nnano.2012.193
  • Wang, X.M., Xia, F.N. (2015). Stacked 2D materials shed light. Nature Materials, 14, 264-265. https://doi.org/10.1038/nmat4218
  • Xu, D., He, H., Pandey, R., Karna, S.P. (2013). Stacking and electric field effects in atomically thin layers of GaN. Journal of Physics: Condensed Matter, 25(34), 345302. https://doi.org/10.1088/0953-8984/25/34/345302
  • Yao, Q-F., Cai, J., Tong, W-Y., Gong, S-J., Wang, J.-Q., Wan, X., Duan, C.-G., Chu, J.H. (2017). Manipulation of the large rashba spin splitting in polar two-dimensional transition-metal dichalcogenides. Physical Review B, 95, 165401. https://doi.org/10.1103/PhysRevB.95.165401
  • Yu, J-Q, Ke, S-S, Lü, H-F. (2022). Electronic properties and tunable Schottky barrier of non-Janus MoSSe/graphene heterostructures. Journal of Physics D: Applied Physics, 55(3), 035104. 10.1088/1361-6463/ac2d61
  • Zeng, H., Liu, X., Zhang, H., Cheng, X. (2021). New theoretical insights into the photoinduced carrier transfer dynamics in WS2/WSe2 van der Waals heterostructures. Physical Chemistry Chemical Physics, 23(1), 694–701. https://doi.org/10.1039/D0CP04517A
  • Zhang, H., Zhang, Y.N., Liu, H., Li, L.M. (2014). Novel heterostructures by stacking layered molybdenum disulfides and nitrides for solar energy conversion. Journal of Materials Chemistry, 37, 15389-15395. https://doi.org/10.1039/C4TA03134B
  • Zhang, J., Jia, S., Kholmanov, I., Dong, L., Er, D., Chen, W., Guo, H., Jin, Z., Shenoy, V.B., Shi, L., Lou, J. (2017). Janus monolayer transition-metal dichalcogenides. ACS Nano, 11, 8192–8198. https://doi.org/10.1021/acsnano.7b03186
  • Zhou, W., Chen, J., Yang, Z., Liu, J., Ouyang, F. (2019). Geometry and electronic structure of monolayer, bilayer, and multilayer Janus WSSe. Physical Review B, 99, 75160. https://doi.org/10.1103/PhysRevB.99.075160
There are 31 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Övgü Ceyda Yelgel 0000-0001-5888-5743

Publication Date June 30, 2023
Published in Issue Year 2023

Cite

APA Yelgel, Ö. C. (2023). Investigation of Photocatalytic Performance of GaN-WSSe Under Vertical Strain. Recep Tayyip Erdogan University Journal of Science and Engineering, 4(1), 30-38. https://doi.org/10.53501/rteufemud.1282942

Taranılan Dizinler

27717   22936   22937  22938   22939     22941   23010    23011   23019  23025