Research Article
BibTex RIS Cite

Polimer Kompozitlerde Ahşap Atığı Tozu İkamesinin Etkileri: Mekanik ve Fiziksel Özellikler

Year 2024, Volume: 5 Issue: 2, 123 - 134, 31.12.2024
https://doi.org/10.53501/rteufemud.1552851

Abstract

Orman endüstrisi atık malzemelerinin polimer kompozit malzemelerde kullanılması, kompozit malzemelerde yaygın olarak kullanılan malzemelere olan bağımlığı azaltmanın yanı sıra atıkların değerlendirilmesi ve sektörlerden gelen atık bertarafını azaltmakta ve çevreye olan olumsuz etkiyi en aza indirmektedir. Yapılan bu çalışmada, MDF malzemenin planya atığı olan ahşap atığı tozu (AAT) kullanılmıştır. Birinci aşamada hacimsel olarak %50 doymamış polyester reçine ve %50 standart CEN kumu kullanılarak kontrol grubu oluşturuldu. Daha sonra CEN kumu yerine hacimsel olarak %25, %50, %75 ve %100 oranında AAT kullanılarak diğer kompozit numune grupları üretildi. Üretilen polimer kompozit numunelerin yoğunluk, su emme, porozite, ultrases geçiş hızı, basınç dayanımı ve UL94 dikey yanma testi özellikleri belirlendi. Sonuç olarak AAT ikamesi ile birlikte yoğunluk, ultrases geçiş hızı, basınç dayanımı azalırken su emme ve porozite değerlerinde artış tespit edilmiştir. Numunelerin tamamı UL94 dikey yanma testinde V0 özellikleri taşımaktadır. Bu çalışma, atık malzemelerin kompozit malzeme üretiminde kullanılabilirliğini göstermesi açısından önemli bir katkı sunmaktadır.

References

  • Akbaş, S., Güleç, T., Tufan, M., Taşçıoğlu, C., Peker, H. (2013). Fındık kabuklarının polipropilen esaslı polimer kompozit üretiminde değerlendirilmesi. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 14(1),50-56.
  • Akyuncu, V., Sanliturk, F. (2021). Investigation of physical and mechanical properties of mortars produced by polymer coated perlite aggregate. Journal of Building Engineering, 38, 102182. https://doi.org/10.1016/j.jobe.2021.102182
  • ASTM C597-16. (1979). Standard test method for pulse velocity through Concrete. Annual Book of ASTM Standard, Pennsylvania, USA.
  • Aydoğan, B., Usta, N. (2015). Nanokil ve kabaran alev geciktirici ilavesinin rijit poliüretan köpük malzemelerin ısıl bozunma ve yanma davranışlarına etkilerinin incelenmesi. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 30(1), 9–18. https://doi.org/10.17341/gummfd.50725
  • Binici, H., Aksogan, O., Dıncer, A., Luga, E., Eken, M., Isikaltun, O. (2020). The possibility of vermiculite, sunflower stalk and wheat stalk using for thermal insulation material production. Thermal Science and Engineering Progress, 18, 100567. https://doi.org/10.1016/j.tsep.2020.100567
  • Binici, H., Sevinç, A.H., Eken, M., Demirhan, C. (2014). Mısır koçanı katkılı ısı yalıtım malzemesi üretimi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 29(2), 13-26. https://doi.org/10.21605/cukurovaummfd.242831
  • Das, S., Das, P., Das, N.C., Das, D. (2024). A review of emerging bio-based constituents for natural fiber polymer composites. The Journal of The Textile Institute, 1–27. https://doi.org/10.1080/00405000.2023.2300592
  • De Farias, M.A., Farina, M.Z., Pezzin, A.P.T., Silva, D.A.K. (2009). Unsaturated polyester composites reinforced with fiber and powder of peach palm: Mechanical characterization and water absorption profile. Materials Science and Engineering: C, 29(2), 510–513. https://doi.org/10.1016/j.msec.2008.09.020
  • Ehrlich, H., Janussen, D., Simon, P., Bazhenov, V.V., Shapkin, N.P., Erler, C., Vournakis, J.N. (2008). Nanostructural organization of naturally occurring composites-Part II: Silica-chitin-based biocomposites. Journal of Nanomaterials, 2008, 670235. https://doi.org/10.1155/2008/670235
  • Gençel, O., Uygunoğlu, T., Köksal, F., Durgun, M.Y. (2016). Hafif Agregalı polimer betonların özellikleri. Mühendislik ve Teknoloji Bilimleri Dergisi, 3(2), 42–50.
  • Gomes, J.W., Souza, L.G.M.D., Souza Filho, L.G.V.M.D. Santos, N.R. (2015). Production and characterization of polymeric composite materials using MDF waste in powder and poliester terephthalic resin. Materials Research, 18(Suppl 2), 25-29.
  • https://doi.org/10.1590/1516-1439.338014
  • Hale, D.K. (1976). The physical properties of composite materials. Journal of Materials Science, 11, 2105-2141. https://doi.org/10.1007/BF02403361
  • Isitman, N.A., Kaynak, C. (2012). Effect of partial substitution of aluminum hydroxide with colemanite in fire retarded low-density polyethylene. Journal of Fire Sciences, 31(1), 73–84. https://doi.org/10.1177/0734904112454835
  • Jami, T., Karade, S.R., Singh, L.P. (2019). A review of the properties of hemp concrete for green building applications. Journal of Cleaner Production, 239, 117852. https://doi.org/10.1016/j.jclepro.2019.117852
  • Kangishwar, S., Radhika, N., Sheik, A.A., Chavali, A., Hariharan, S. (2023). A comprehensive review on polymer matrix composites: material selection, fabrication, and application. Polymer Bulletin, 80(1), 47-87. https://doi.org/10.1007/s00289-022-04087-4
  • Kaya, M. (1998). Alev geciktirici ve duman bastırıcı katkı maddeleri. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 11(2), 77–88.
  • Kolak, M.N., Oltulu, M. (2021). Atık malzeme içeren polimer bazlı kompozitlerin ısıl iletkenlik özelliklerinin incelenmesi. International Journal of Engineering Research and Development, 13(2), 310-320. https://doi.org/10.29137/umagd.822265
  • Madrid, M., Orbe, A., Rojí, E., Cuadrado, J. (2017). The effects of by-products incorporated in low-strength concrete for concrete masonry units. Construction and Building Materials, 153, 117-128. https://doi.org/10.1016/j.conbuildmat.2017.07.086
  • Maraveas, C. (2020). Production of sustainable construction materials using agro-wastes. Materials, 13(2), 262. https://doi.org/10.3390/ma13020262
  • Mohamed, G.R., Mahmoud, R.K., Shaban, M., Fahim, I.S., Abd El Salam, H.M., Mahmoud, H.M. (2023). Towards a circular economy: valorization of banana peels by developing bio-composites thermal insulators. Scientific Reports, 13(1), 12756. https://doi.org/10.1038/s41598-023-37994-1
  • Muthuraj, R., Lacoste, C., Lacroix, P., Bergeret, A. (2019). Sustainable thermal insulation biocomposites from rice husk, wheat husk, wood fibers and textile waste fibers: Elaboration and performances evaluation. Industrial Crops and Products, 135, 238–245. https://doi.org/10.1016/j.indcrop.2019.04.053
  • Naik, T.R. (1999). Tests of wood ash as a potential source for construction materials. UWM Center for By-product Utilisation, Report No. CBU-1999-09, Department of Civil Engineering and Mechanics, University of Wisconsin-Milwauke, Milwauke.
  • Narlıoğlu, N., Çetin, N.S., Alma, M.H. (2018). Karaçam testere talaşının polipropilen kompozitlerin mekanik özelliklerine etkisi. Mobilya ve Ahşap Malzeme Araştırmaları Dergisi, 1(1), 38-45. https://doi.org/10.33725/mamad.433532
  • Novák, I., Krupa, I.; Sedliačik, J., Nógellová, Z., Matyašovský, J., Duchovič, P., Jurkovič, P. (2018). Investigation of plastic/wood Composites. Innovation in Woodworking Industry and Engineering Design, 14, 67–70.
  • Nukala, S.G., Kong, I., Kakarla, A.B., Kong, W., Kong, W. (2022). Development of wood polymer composites from recycled wood and plastic waste: Thermal and mechanical properties. Journal of Composites Science, 6(7), 194. https://doi.org/10.3390/jcs6070194
  • Ozbay, E., Oztas, A., Baykasoglu, A., Ozbebek, H. (2009). Investigating mix proportions of high strength self compacting concrete by using Taguchi method. Construction and Building Materials, 23(2), 694–702. https://doi.org/10.1016/j.conbuildmat.2008.02.014
  • Özel, C., İren, B. (2019). Polimer betonlarda gaz beton atiklarinin kullanilabilirliğinin araştirilmasi. SDU Teknik Bilimler Dergisi, 6(2), 28-38.
  • Özsin, G., Kılıç, M., Kırbıyık Kurukavak, Ç., Varol, E. (2023). Thermal characteristics, stability, and degradation of PVC composites and nanocomposites. In Poly (Vinyl Chloride) Based Composites and Nanocomposites, 293-318. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-45375-5_14
  • Polat, H., Özel, C. (2024). Radiation shielding properties of shotcrete containing different aggregates. Materials Chemistry and Physics, 323, 129596. https://doi.org/10.1016/j.matchemphys.2024.129596
  • Polat, H., Üstün, İ., Şafak, A., Çakılcıoğlu, A.N. (2023). Atık tuğla tozunun polimer betonda katkı malzemesi olarak kullanımı: Mekanik özelliklerin incelenmesi. Recep Tayyip Erdoğan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 4(2), 76-86. https://doi.org/10.53501/rteufemud.1306484
  • Sengul, O., Azizi, S., Karaosmanoglu, F., Tasdemir, M.A. (2011). Effect of expanded perlite on the mechanical properties and thermal conductivity of lightweight concrete. Energy and Buildings, 43(2–3), 671–676. https://doi.org/10.1016/j.enbuild.2010.11.008
  • Taşdemir, M., Şen, E.G. (2022). Polipropilen/üzüm sapı ve çeltik polimer kompozitinin mekanik özelliklerinin atık cam elyaf ile geliştirilmesi. International Journal of Advances in Engineering and Pure Sciences, 34(1), 131-140. https://doi.org/10.7240/jeps.1041672
  • Thule, A., Shanks, R. (2014). Natural fibre composites: materials, processes and properties. Woodhead Publishing.
  • Türk Standartları Enstitüsü, (TS EN). (2014). TS EN 60695-11-10. Fire hazard testing- Part 11-10: Test flames- 50 W horizontal and vertical flame test methods. Ankara.
  • Türk Standartları Enstitüsü, (TS EN). (2016). TS EN 196-1, Çimento Deney Metotları- Bölüm 1: Dayanım, Ankara.
  • Türk Standartları Enstitüsü, (TS EN). (2019). TS EN 12390-3. Testing hardened concrete- Part 3: Compressive strength of test specimens, Ankara.
  • Zhiltsova, T., Costa, A., Oliveira, M.S.A. (2024). Assessment of long-term water absorption on thermal, morphological, and mechanical properties of polypropylene-based composites with agro-waste fillers. Journal of Composites Science, 8(8), 288. https://doi.org/10.3390/jcs8080288

Effects of Wood Waste Powder Substitution in Polymer Composites: Mechanical and Physical Properties

Year 2024, Volume: 5 Issue: 2, 123 - 134, 31.12.2024
https://doi.org/10.53501/rteufemud.1552851

Abstract

In this study, it was aimed to investigate the potential of using wood waste powder, which is the Planing waste of MDF material, as a filler material in polymer composites and to determine its effect on the physical and mechanical properties of composites.
In the first stage, a control group was created using 50% unsaturated polyester resin and 50% standard CEN sand by volume. Other composite sample groups were then produced in a similar manner using 25%, 50%, 75% and 100% WWP by volume instead of CEN sand. The density, water absorption, porosity, ultrasonic transmission rate, compressive strength and UL94 vertical combustion test properties of the polymer composite samples were determined. As a result, density, ultrasound transmission rate, compressive strength decreased while water absorption and porosity values increased with WWP substitution. All composite sample groups, including the control group, have V0 properties in UL94 vertical combustion test. This study demonstrated that WWP has potential as a low-cost filler material in polymer composites and can be used in applications where moderate strength is required but lightweight materials are preferred.

References

  • Akbaş, S., Güleç, T., Tufan, M., Taşçıoğlu, C., Peker, H. (2013). Fındık kabuklarının polipropilen esaslı polimer kompozit üretiminde değerlendirilmesi. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 14(1),50-56.
  • Akyuncu, V., Sanliturk, F. (2021). Investigation of physical and mechanical properties of mortars produced by polymer coated perlite aggregate. Journal of Building Engineering, 38, 102182. https://doi.org/10.1016/j.jobe.2021.102182
  • ASTM C597-16. (1979). Standard test method for pulse velocity through Concrete. Annual Book of ASTM Standard, Pennsylvania, USA.
  • Aydoğan, B., Usta, N. (2015). Nanokil ve kabaran alev geciktirici ilavesinin rijit poliüretan köpük malzemelerin ısıl bozunma ve yanma davranışlarına etkilerinin incelenmesi. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 30(1), 9–18. https://doi.org/10.17341/gummfd.50725
  • Binici, H., Aksogan, O., Dıncer, A., Luga, E., Eken, M., Isikaltun, O. (2020). The possibility of vermiculite, sunflower stalk and wheat stalk using for thermal insulation material production. Thermal Science and Engineering Progress, 18, 100567. https://doi.org/10.1016/j.tsep.2020.100567
  • Binici, H., Sevinç, A.H., Eken, M., Demirhan, C. (2014). Mısır koçanı katkılı ısı yalıtım malzemesi üretimi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 29(2), 13-26. https://doi.org/10.21605/cukurovaummfd.242831
  • Das, S., Das, P., Das, N.C., Das, D. (2024). A review of emerging bio-based constituents for natural fiber polymer composites. The Journal of The Textile Institute, 1–27. https://doi.org/10.1080/00405000.2023.2300592
  • De Farias, M.A., Farina, M.Z., Pezzin, A.P.T., Silva, D.A.K. (2009). Unsaturated polyester composites reinforced with fiber and powder of peach palm: Mechanical characterization and water absorption profile. Materials Science and Engineering: C, 29(2), 510–513. https://doi.org/10.1016/j.msec.2008.09.020
  • Ehrlich, H., Janussen, D., Simon, P., Bazhenov, V.V., Shapkin, N.P., Erler, C., Vournakis, J.N. (2008). Nanostructural organization of naturally occurring composites-Part II: Silica-chitin-based biocomposites. Journal of Nanomaterials, 2008, 670235. https://doi.org/10.1155/2008/670235
  • Gençel, O., Uygunoğlu, T., Köksal, F., Durgun, M.Y. (2016). Hafif Agregalı polimer betonların özellikleri. Mühendislik ve Teknoloji Bilimleri Dergisi, 3(2), 42–50.
  • Gomes, J.W., Souza, L.G.M.D., Souza Filho, L.G.V.M.D. Santos, N.R. (2015). Production and characterization of polymeric composite materials using MDF waste in powder and poliester terephthalic resin. Materials Research, 18(Suppl 2), 25-29.
  • https://doi.org/10.1590/1516-1439.338014
  • Hale, D.K. (1976). The physical properties of composite materials. Journal of Materials Science, 11, 2105-2141. https://doi.org/10.1007/BF02403361
  • Isitman, N.A., Kaynak, C. (2012). Effect of partial substitution of aluminum hydroxide with colemanite in fire retarded low-density polyethylene. Journal of Fire Sciences, 31(1), 73–84. https://doi.org/10.1177/0734904112454835
  • Jami, T., Karade, S.R., Singh, L.P. (2019). A review of the properties of hemp concrete for green building applications. Journal of Cleaner Production, 239, 117852. https://doi.org/10.1016/j.jclepro.2019.117852
  • Kangishwar, S., Radhika, N., Sheik, A.A., Chavali, A., Hariharan, S. (2023). A comprehensive review on polymer matrix composites: material selection, fabrication, and application. Polymer Bulletin, 80(1), 47-87. https://doi.org/10.1007/s00289-022-04087-4
  • Kaya, M. (1998). Alev geciktirici ve duman bastırıcı katkı maddeleri. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 11(2), 77–88.
  • Kolak, M.N., Oltulu, M. (2021). Atık malzeme içeren polimer bazlı kompozitlerin ısıl iletkenlik özelliklerinin incelenmesi. International Journal of Engineering Research and Development, 13(2), 310-320. https://doi.org/10.29137/umagd.822265
  • Madrid, M., Orbe, A., Rojí, E., Cuadrado, J. (2017). The effects of by-products incorporated in low-strength concrete for concrete masonry units. Construction and Building Materials, 153, 117-128. https://doi.org/10.1016/j.conbuildmat.2017.07.086
  • Maraveas, C. (2020). Production of sustainable construction materials using agro-wastes. Materials, 13(2), 262. https://doi.org/10.3390/ma13020262
  • Mohamed, G.R., Mahmoud, R.K., Shaban, M., Fahim, I.S., Abd El Salam, H.M., Mahmoud, H.M. (2023). Towards a circular economy: valorization of banana peels by developing bio-composites thermal insulators. Scientific Reports, 13(1), 12756. https://doi.org/10.1038/s41598-023-37994-1
  • Muthuraj, R., Lacoste, C., Lacroix, P., Bergeret, A. (2019). Sustainable thermal insulation biocomposites from rice husk, wheat husk, wood fibers and textile waste fibers: Elaboration and performances evaluation. Industrial Crops and Products, 135, 238–245. https://doi.org/10.1016/j.indcrop.2019.04.053
  • Naik, T.R. (1999). Tests of wood ash as a potential source for construction materials. UWM Center for By-product Utilisation, Report No. CBU-1999-09, Department of Civil Engineering and Mechanics, University of Wisconsin-Milwauke, Milwauke.
  • Narlıoğlu, N., Çetin, N.S., Alma, M.H. (2018). Karaçam testere talaşının polipropilen kompozitlerin mekanik özelliklerine etkisi. Mobilya ve Ahşap Malzeme Araştırmaları Dergisi, 1(1), 38-45. https://doi.org/10.33725/mamad.433532
  • Novák, I., Krupa, I.; Sedliačik, J., Nógellová, Z., Matyašovský, J., Duchovič, P., Jurkovič, P. (2018). Investigation of plastic/wood Composites. Innovation in Woodworking Industry and Engineering Design, 14, 67–70.
  • Nukala, S.G., Kong, I., Kakarla, A.B., Kong, W., Kong, W. (2022). Development of wood polymer composites from recycled wood and plastic waste: Thermal and mechanical properties. Journal of Composites Science, 6(7), 194. https://doi.org/10.3390/jcs6070194
  • Ozbay, E., Oztas, A., Baykasoglu, A., Ozbebek, H. (2009). Investigating mix proportions of high strength self compacting concrete by using Taguchi method. Construction and Building Materials, 23(2), 694–702. https://doi.org/10.1016/j.conbuildmat.2008.02.014
  • Özel, C., İren, B. (2019). Polimer betonlarda gaz beton atiklarinin kullanilabilirliğinin araştirilmasi. SDU Teknik Bilimler Dergisi, 6(2), 28-38.
  • Özsin, G., Kılıç, M., Kırbıyık Kurukavak, Ç., Varol, E. (2023). Thermal characteristics, stability, and degradation of PVC composites and nanocomposites. In Poly (Vinyl Chloride) Based Composites and Nanocomposites, 293-318. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-45375-5_14
  • Polat, H., Özel, C. (2024). Radiation shielding properties of shotcrete containing different aggregates. Materials Chemistry and Physics, 323, 129596. https://doi.org/10.1016/j.matchemphys.2024.129596
  • Polat, H., Üstün, İ., Şafak, A., Çakılcıoğlu, A.N. (2023). Atık tuğla tozunun polimer betonda katkı malzemesi olarak kullanımı: Mekanik özelliklerin incelenmesi. Recep Tayyip Erdoğan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 4(2), 76-86. https://doi.org/10.53501/rteufemud.1306484
  • Sengul, O., Azizi, S., Karaosmanoglu, F., Tasdemir, M.A. (2011). Effect of expanded perlite on the mechanical properties and thermal conductivity of lightweight concrete. Energy and Buildings, 43(2–3), 671–676. https://doi.org/10.1016/j.enbuild.2010.11.008
  • Taşdemir, M., Şen, E.G. (2022). Polipropilen/üzüm sapı ve çeltik polimer kompozitinin mekanik özelliklerinin atık cam elyaf ile geliştirilmesi. International Journal of Advances in Engineering and Pure Sciences, 34(1), 131-140. https://doi.org/10.7240/jeps.1041672
  • Thule, A., Shanks, R. (2014). Natural fibre composites: materials, processes and properties. Woodhead Publishing.
  • Türk Standartları Enstitüsü, (TS EN). (2014). TS EN 60695-11-10. Fire hazard testing- Part 11-10: Test flames- 50 W horizontal and vertical flame test methods. Ankara.
  • Türk Standartları Enstitüsü, (TS EN). (2016). TS EN 196-1, Çimento Deney Metotları- Bölüm 1: Dayanım, Ankara.
  • Türk Standartları Enstitüsü, (TS EN). (2019). TS EN 12390-3. Testing hardened concrete- Part 3: Compressive strength of test specimens, Ankara.
  • Zhiltsova, T., Costa, A., Oliveira, M.S.A. (2024). Assessment of long-term water absorption on thermal, morphological, and mechanical properties of polypropylene-based composites with agro-waste fillers. Journal of Composites Science, 8(8), 288. https://doi.org/10.3390/jcs8080288
There are 38 citations in total.

Details

Primary Language Turkish
Subjects Construction Materials
Journal Section Research Articles
Authors

Mehmet Nuri Kolak 0000-0003-3533-3422

Hasan Polat 0000-0003-1521-0695

Publication Date December 31, 2024
Submission Date September 19, 2024
Acceptance Date November 15, 2024
Published in Issue Year 2024 Volume: 5 Issue: 2

Cite

APA Kolak, M. N., & Polat, H. (2024). Polimer Kompozitlerde Ahşap Atığı Tozu İkamesinin Etkileri: Mekanik ve Fiziksel Özellikler. Recep Tayyip Erdogan University Journal of Science and Engineering, 5(2), 123-134. https://doi.org/10.53501/rteufemud.1552851

Indexing

22936   22937   22938  22939     22941  23010   23011  23019  23025