Research Article
BibTex RIS Cite

Dosimetric Validation of Treatment Planning System for Conventional Linac and 1.5 T Mr-Linac

Year 2025, Volume: 6 Issue: 1, 372 - 385, 30.06.2025
https://doi.org/10.53501/rteufemud.1581517

Abstract

This study aims to validate and compare the Monte Carlo (MC) beam modeling of the Monaco treatment planning system (TPS) for both conventional linear accelerator (linac) and 1.5 T MR-linac systems. It was evaluated the accuracy of beam profile and percentage depth dose (PDD) calculations by Monaco TPS for various photon energies and field sizes. Measurements of beam profiles and PDD were conducted using a water phantom and detectors for both systems. The Monaco TPS calculations, using MC algorithms, were compared with the corresponding measured data. Gamma analysis was used to assess the agreement between calculated and measured dose distributions. Results demonstrated a high level of agreement for both systems. For the conventional linac, gamma passing rates were above 95% for dose difference (DD) 2% and distance to agreement (DTA) 2 mm in most cases, with some instances in the 85-95% range. For the 1.5 T MR-linac, gamma passing rates were generally above 95% for DD 2% and DTA 2 mm. However, with stricter criteria of DD 1% and DTA 1 mm, certain measurements, particularly in the inline direction at gantry 0° and at gantry 270°, yielded passing rates below 95%. The Monaco TPS demonstrates good accuracy in dose calculations for both systems. The study emphasizes the importance of validating beam modeling in TPS, especially for MR-linac systems where the magnetic field can affect dose distributions. Further research is recommended to improve the modeling of magnetic field effects and enhance dose calculation accuracy in specific scenarios.

References

  • Byrnes, K., Ford, A., and Bennie, N. (2019). Verification of the Elekta Monaco TPS Monte Carlo in modelling radiation transmission through metals in a water equivalent phantom. Australasian Physical and Engineering Sciences in Medicine, 42(2), 639-645. https://doi.org/10.1007/s13246-019-00763-0
  • Cheng, B., Xu, Y., Li, S., Zhang, J., Wang, Y., Liu, H. and Chen, X. (2023). Development and clinical application of a GPU-based Monte Carlo dose verification module and software for 1.5 T MR-LINAC. Medical Physics, 50(4), 3172-3183. https://doi.org/10.1002/mp.15812
  • Corradini, S., Alongi, F., Andratschke, N., Belka, C., Boldrini, L., Cellini, F., Debus, J., Guckenberger, M., Hörner-Rieber, J., Lagerwaard, F., Mancosu, P., Niyazi, M., Palacios, M. A., Reiner, M., Ricardi, U., Scorsetti, M., Sterzing, F., Valentini, V., and Verellen, D. (2019). MR-guidance in clinical reality: Current treatment challenges and future perspectives. Radiation Oncology, 14, 92. https://doi.org/10.1186/s13014-019-1308-y
  • Das, I.J., Cheng, C.-W., Watts, R.J., Ahnesjö, A., Gibbons, J., Li, X.A., Lowenstein, J., Mitra, R.K., Simon, W.E. and Zhu, T.C. (2008). Accelerator beam data commissioning equipment and procedures: Report of the TG-106 of the therapy physics committee of the AAPM. Medical Physics, 35(10), 4186-4215. https://doi.org/10.1118/1.2969070
  • International Atomic Energy Agency. (2017). Dosimetry of small static fields used in external beam radiotherapy, Technical Reports Series No. 483, IAEA, Vienna, Austria.
  • International Commission on Radiation Units and Measurements. (1976). Determination of absorbed dose in a patient irradiated by beams of X or gamma rays in radiotherapy procedures (Report No. 24). Bethesda, MD: ICRU.
  • Kawrakow, I., and Fippel, M. (2000). Investigation of variance reduction techniques for Monte Carlo photon dose calculation using XVMC. Physics in Medicine and Biology, 45(8), 2163. https://doi.org/10.1088/0031-9155/45/8/307
  • Kinoshita, N., Shimizu, M., Motegi, K., Tsuruta, Y., Takakura, T., Oguchi, H., & Kurokawa, C. (2025). Quantification of uncertainties in reference and relative dose measurements, dose calculations, and patient setup in modern external beam radiotherapy. Radiological physics and technology, 18(1), 58–77. https://doi.org/10.1007/s12194-024-00856-0
  • Klein, E.E., Hanley, J., Bayouth, J., Yin, F.-F., Simon, W., Dresser, S., Serago, C., Aguirre, F., Ma, L., Arjomandy, B., Liu, C., Sandin, C. and Holmes, T. (2009). Task Group 142 report: Quality assurance of medical accelerators. Medical Physics, 36, 4197-4212. https://doi.org/10.1118/1.3190392
  • Lagendijk, J. J. W., van Vulpen, M., and Raaymakers, B. W. (2016). The development of the MRI linac system for online MRI-guided radiotherapy: A clinical update. Journal of Internal Medicine, 280(2), 203-208. https://doi.org/10.1111/joim.12516
  • Low, D.A., Harms, W.B., Mutic, S. and Purdy, J.A. (1998). A technique for the quantitative evaluation of dose distributions. Medical Physics, 25(4), 656-661. https://doi.org/10.1118/1.598248
  • Ma, C. M., Li, J. S., Jiang, S. B., Pawlicki, T., Xiong, W., Qin, L. H., & Yang, J. (2005). Effect of statistical uncertainties on Monte Carlo treatment planning. Physics in Medicine and Biology, 50(5), 891–907. https://doi.org/10.1088/0031-9155/50/5/013
  • Narayanasamy, G., Saenz, D., Defoor, D., Papanikolaou, N. and Stathakis, S. (2017). Dosimetric validation of Monaco treatment planning system on an Elekta VersaHD linear accelerator. Journal of Applied Clinical Medical Physics, 18(6), 123-129. https://doi.org/10.1002/acm2.12206
  • Palanisamy, M., David, K., Durai, M., Bhalla, N., & Puri, A. (2019). Dosimetric impact of statistical uncertainty on Monte Carlo dose calculation algorithm in volumetric modulated arc therapy using Monaco TPS for three different clinical cases. Reports of practical oncology and radiotherapy : journal of Greatpoland Cancer Center in Poznan and Polish Society of Radiation Oncology, 24(2), 188–199. https://doi.org/10.1016/j.rpor.2019.01.005
  • Podgorsak, E.B. (Ed.). (2005). Radiation oncology physics: A handbook for teachers and students, International Atomic Energy Agency (IAEA), ISBN 92–0–107304–6, Vienna, Austria.
  • Raaijmakers, A.J.E., Raaymakers, B.W. and Lagendijk, J.J.W. (2005). Integrating a MRI scanner with a 6 MV radiotherapy accelerator: Dose increase at tissue-air interfaces in a lateral magnetic field due to returning electrons. Physics in Medicine and Biology, 50, 1363–1376. https://doi.org/10.1088/0031-9155/50/7/002
  • Raaymakers, B.W., Jürgenliemk-Schulz, I.M. and Bol, G.H. (2017). First patients treated with a 1.5 T MRI-Linac: Clinical proof of concept of a high-precision, high-field MRI guided radiotherapy treatment. Physics in Medicine and Biology, 62, 41–50. https://doi.org/10.1088/1361-6560/aa9517
  • Shortall, J., Vasquez Osorio, E., Aitkenhead, A., Budgell, G.J. and MacKay, R.I. (2020). Experimental verification of the electron return effect around spherical air cavities for the MR-Linac using Monte Carlo calculation. Medical Physics, 47(6), 2506-2515. https://doi.org/10.1002/mp.14147
  • Snyder, J.E., Hyer, D.E., Flynn, R.T., Boczkowski, A. and Wang, D. (2019). The commissioning and validation of Monaco treatment planning system on an Elekta VersaHD linear accelerator. Journal of Applied Clinical Medical Physics, 20(1), 184-193. https://doi.org/10.1002/acm2.12501
  • Snyder, J.E., St-Aubin, J., Yaddanapudi, S., Boczkowski, A., Dunkerley, D.A.P., Graves, S.A. and Hyer, D.E. (2020). Commissioning of a 1.5T Elekta Unity MR-linac: A single institution experience. Journal of Applied Clinical Medical Physics, 21(7), 160-172. https://doi.org/10.1002/acm2.12902
  • Stanescu, T., Shessel, A., Carpino-Rocca, C., Erler, D., Ruschin, M., and Sahgal, A. (2022). MRI-guided online adaptive stereotactic body radiation therapy of liver and pancreas tumors on an MR-Linac system. Cancers, 14(3), 716. https://doi.org/10.3390/cancers14030716
  • Takahashi, W., Yamashita, H., Saotome, N., Okuma, K., Shibamoto, Y. and Nakagawa, K. (2012). Evaluation of heterogeneity dose distributions for Stereotactic Radiotherapy (SRT): Comparison of commercially available Monte Carlo dose calculation with other algorithms. Radiation Oncology, 7, 20. https://doi.org/10.1186/1748-717X-7-20
  • Tsuneda, M., Abe, K., Fujita, Y., Ikeda, Y., Furuyama, Y. and Uno, T. (2023). Elekta Unity MR-linac commissioning: Mechanical and dosimetry tests. Journal of Radiation Research, 64(1), 73–84. https://doi.org/10.1093/jrr/rrac086
  • Van Dyk, J. (Ed.). (2018). The Modern Technology of Radiation Oncology: A Compendium For Medical Physicists And Radiation Oncologists, Medical Physics Publishing, ISBN 0-944838-38-3, Madison, Wisconsin, USA.
  • Wegener, S., and Sauer, O.A. (2019). The effective point of measurement for depth-dose measurements in small MV photon beams with different detectors. Medical Physics, 46, 5209-5215. https://doi.org/10.1002/mp.13795

Konvansiyonel Linak ve 1,5 T Mr-Linak için Tedavi Planlama Sisteminin Dozimetrik Doğrulaması

Year 2025, Volume: 6 Issue: 1, 372 - 385, 30.06.2025
https://doi.org/10.53501/rteufemud.1581517

Abstract

Bu çalışma, Monaco tedavi planlama sisteminin (TPS) Monte Carlo (MC) ışın modellemesini konvansiyonel lineer hızlandırıcı (linak) ve 1,5 T MR-linak sistemlerinde doğrulamayı ve karşılaştırmayı amaçlamaktadır. Çalışma, Monaco TPS tarafından farklı foton enerjileri ve alan boyutları için yapılan ışın profili ve yüzde derinlik dozu (PDD) hesaplamalarının doğruluğunu değerlendirmektedir. Hem konvansiyonel linak hem de 1,5 T MR-linak sistemleri için su fantomu ve dedektörler kullanılarak ışın profili ve PDD ölçümleri yapılmıştır. Monaco TPS hesaplamaları, MC algoritmaları kullanılarak ölçülen verilerle karşılaştırılmıştır. Hesaplanan ve ölçülen doz dağılımları arasındaki uyumu değerlendirmek için gamma analizi yapılmıştır. Sonuçlar, her iki sistem için de yüksek derecede uyum göstermiştir. Konvansiyonel linak için, gamma geçiş oranları çoğu durumda doz farkı (dose difference, DD) %2 ve uzaklık uyumu (distance to agreement, DTA) 2 mm için %95'in üzerindedir, bazı durumlarda ise %85-95 aralığındadır. 1,5 T MR-linak için, gamma geçiş oranları genellikle DD %2 ve DTA 2 mm için %95'in üzerindedir. Ancak, daha hassas DD %1 ve DTA 1 mm kriterleri kullanıldığında, özellikle inline doğrultuda gantri 0° ve gantri 270°'de yapılan ölçümlerde geçiş oranları %95'in altına düşmüştür. Monaco TPS, her iki sistem için de doz hesaplamalarında iyi bir doğruluk sergilemektedir. Çalışma, özellikle manyetik alanın doz dağılımlarını etkileyebileceği MR-linak sistemleri için TPS'de ışın modellemesini doğrulamanın önemini vurgulamaktadır. Manyetik alan etkilerinin modellenmesini iyileştirmek ve belirli senaryolarda doz hesaplama doğruluğunu artırmak için daha fazla araştırma yapılması gerekmektedir.

References

  • Byrnes, K., Ford, A., and Bennie, N. (2019). Verification of the Elekta Monaco TPS Monte Carlo in modelling radiation transmission through metals in a water equivalent phantom. Australasian Physical and Engineering Sciences in Medicine, 42(2), 639-645. https://doi.org/10.1007/s13246-019-00763-0
  • Cheng, B., Xu, Y., Li, S., Zhang, J., Wang, Y., Liu, H. and Chen, X. (2023). Development and clinical application of a GPU-based Monte Carlo dose verification module and software for 1.5 T MR-LINAC. Medical Physics, 50(4), 3172-3183. https://doi.org/10.1002/mp.15812
  • Corradini, S., Alongi, F., Andratschke, N., Belka, C., Boldrini, L., Cellini, F., Debus, J., Guckenberger, M., Hörner-Rieber, J., Lagerwaard, F., Mancosu, P., Niyazi, M., Palacios, M. A., Reiner, M., Ricardi, U., Scorsetti, M., Sterzing, F., Valentini, V., and Verellen, D. (2019). MR-guidance in clinical reality: Current treatment challenges and future perspectives. Radiation Oncology, 14, 92. https://doi.org/10.1186/s13014-019-1308-y
  • Das, I.J., Cheng, C.-W., Watts, R.J., Ahnesjö, A., Gibbons, J., Li, X.A., Lowenstein, J., Mitra, R.K., Simon, W.E. and Zhu, T.C. (2008). Accelerator beam data commissioning equipment and procedures: Report of the TG-106 of the therapy physics committee of the AAPM. Medical Physics, 35(10), 4186-4215. https://doi.org/10.1118/1.2969070
  • International Atomic Energy Agency. (2017). Dosimetry of small static fields used in external beam radiotherapy, Technical Reports Series No. 483, IAEA, Vienna, Austria.
  • International Commission on Radiation Units and Measurements. (1976). Determination of absorbed dose in a patient irradiated by beams of X or gamma rays in radiotherapy procedures (Report No. 24). Bethesda, MD: ICRU.
  • Kawrakow, I., and Fippel, M. (2000). Investigation of variance reduction techniques for Monte Carlo photon dose calculation using XVMC. Physics in Medicine and Biology, 45(8), 2163. https://doi.org/10.1088/0031-9155/45/8/307
  • Kinoshita, N., Shimizu, M., Motegi, K., Tsuruta, Y., Takakura, T., Oguchi, H., & Kurokawa, C. (2025). Quantification of uncertainties in reference and relative dose measurements, dose calculations, and patient setup in modern external beam radiotherapy. Radiological physics and technology, 18(1), 58–77. https://doi.org/10.1007/s12194-024-00856-0
  • Klein, E.E., Hanley, J., Bayouth, J., Yin, F.-F., Simon, W., Dresser, S., Serago, C., Aguirre, F., Ma, L., Arjomandy, B., Liu, C., Sandin, C. and Holmes, T. (2009). Task Group 142 report: Quality assurance of medical accelerators. Medical Physics, 36, 4197-4212. https://doi.org/10.1118/1.3190392
  • Lagendijk, J. J. W., van Vulpen, M., and Raaymakers, B. W. (2016). The development of the MRI linac system for online MRI-guided radiotherapy: A clinical update. Journal of Internal Medicine, 280(2), 203-208. https://doi.org/10.1111/joim.12516
  • Low, D.A., Harms, W.B., Mutic, S. and Purdy, J.A. (1998). A technique for the quantitative evaluation of dose distributions. Medical Physics, 25(4), 656-661. https://doi.org/10.1118/1.598248
  • Ma, C. M., Li, J. S., Jiang, S. B., Pawlicki, T., Xiong, W., Qin, L. H., & Yang, J. (2005). Effect of statistical uncertainties on Monte Carlo treatment planning. Physics in Medicine and Biology, 50(5), 891–907. https://doi.org/10.1088/0031-9155/50/5/013
  • Narayanasamy, G., Saenz, D., Defoor, D., Papanikolaou, N. and Stathakis, S. (2017). Dosimetric validation of Monaco treatment planning system on an Elekta VersaHD linear accelerator. Journal of Applied Clinical Medical Physics, 18(6), 123-129. https://doi.org/10.1002/acm2.12206
  • Palanisamy, M., David, K., Durai, M., Bhalla, N., & Puri, A. (2019). Dosimetric impact of statistical uncertainty on Monte Carlo dose calculation algorithm in volumetric modulated arc therapy using Monaco TPS for three different clinical cases. Reports of practical oncology and radiotherapy : journal of Greatpoland Cancer Center in Poznan and Polish Society of Radiation Oncology, 24(2), 188–199. https://doi.org/10.1016/j.rpor.2019.01.005
  • Podgorsak, E.B. (Ed.). (2005). Radiation oncology physics: A handbook for teachers and students, International Atomic Energy Agency (IAEA), ISBN 92–0–107304–6, Vienna, Austria.
  • Raaijmakers, A.J.E., Raaymakers, B.W. and Lagendijk, J.J.W. (2005). Integrating a MRI scanner with a 6 MV radiotherapy accelerator: Dose increase at tissue-air interfaces in a lateral magnetic field due to returning electrons. Physics in Medicine and Biology, 50, 1363–1376. https://doi.org/10.1088/0031-9155/50/7/002
  • Raaymakers, B.W., Jürgenliemk-Schulz, I.M. and Bol, G.H. (2017). First patients treated with a 1.5 T MRI-Linac: Clinical proof of concept of a high-precision, high-field MRI guided radiotherapy treatment. Physics in Medicine and Biology, 62, 41–50. https://doi.org/10.1088/1361-6560/aa9517
  • Shortall, J., Vasquez Osorio, E., Aitkenhead, A., Budgell, G.J. and MacKay, R.I. (2020). Experimental verification of the electron return effect around spherical air cavities for the MR-Linac using Monte Carlo calculation. Medical Physics, 47(6), 2506-2515. https://doi.org/10.1002/mp.14147
  • Snyder, J.E., Hyer, D.E., Flynn, R.T., Boczkowski, A. and Wang, D. (2019). The commissioning and validation of Monaco treatment planning system on an Elekta VersaHD linear accelerator. Journal of Applied Clinical Medical Physics, 20(1), 184-193. https://doi.org/10.1002/acm2.12501
  • Snyder, J.E., St-Aubin, J., Yaddanapudi, S., Boczkowski, A., Dunkerley, D.A.P., Graves, S.A. and Hyer, D.E. (2020). Commissioning of a 1.5T Elekta Unity MR-linac: A single institution experience. Journal of Applied Clinical Medical Physics, 21(7), 160-172. https://doi.org/10.1002/acm2.12902
  • Stanescu, T., Shessel, A., Carpino-Rocca, C., Erler, D., Ruschin, M., and Sahgal, A. (2022). MRI-guided online adaptive stereotactic body radiation therapy of liver and pancreas tumors on an MR-Linac system. Cancers, 14(3), 716. https://doi.org/10.3390/cancers14030716
  • Takahashi, W., Yamashita, H., Saotome, N., Okuma, K., Shibamoto, Y. and Nakagawa, K. (2012). Evaluation of heterogeneity dose distributions for Stereotactic Radiotherapy (SRT): Comparison of commercially available Monte Carlo dose calculation with other algorithms. Radiation Oncology, 7, 20. https://doi.org/10.1186/1748-717X-7-20
  • Tsuneda, M., Abe, K., Fujita, Y., Ikeda, Y., Furuyama, Y. and Uno, T. (2023). Elekta Unity MR-linac commissioning: Mechanical and dosimetry tests. Journal of Radiation Research, 64(1), 73–84. https://doi.org/10.1093/jrr/rrac086
  • Van Dyk, J. (Ed.). (2018). The Modern Technology of Radiation Oncology: A Compendium For Medical Physicists And Radiation Oncologists, Medical Physics Publishing, ISBN 0-944838-38-3, Madison, Wisconsin, USA.
  • Wegener, S., and Sauer, O.A. (2019). The effective point of measurement for depth-dose measurements in small MV photon beams with different detectors. Medical Physics, 46, 5209-5215. https://doi.org/10.1002/mp.13795
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Radiation Technology
Journal Section Research Article
Authors

Uğur Akbayirli 0000-0002-0440-8279

Halil Arslan 0000-0001-6176-9719

Publication Date June 30, 2025
Submission Date November 11, 2024
Acceptance Date June 10, 2025
Published in Issue Year 2025 Volume: 6 Issue: 1

Cite

APA Akbayirli, U., & Arslan, H. (2025). Konvansiyonel Linak ve 1,5 T Mr-Linak için Tedavi Planlama Sisteminin Dozimetrik Doğrulaması. Recep Tayyip Erdogan University Journal of Science and Engineering, 6(1), 372-385. https://doi.org/10.53501/rteufemud.1581517

Indexing

22936   22937   22938  22939     22941  23010   23011  23019  23025