Thalidomide Modulates Oxidative Stress and Tubular Pathology in Renal Ischemia-Reperfusion in a Timing-Dependent Manner
Year 2025,
Volume: 3 Issue: 3, 75 - 86, 15.01.2026
Onural Özhan
,
Ugur Cem Mete
,
Azibe Yıldız
,
Merve Durhan
,
Nigar Vardı
,
Yılmaz Çiğremiş
,
Ahmet Acet
,
Hakan Parlakpınar
Abstract
Background: Renal ischemia–reperfusion (IR) drives acute kidney injury through oxidative stress and inflammation. Thalidomide (TD), an immunomodulatory agent, may attenuate IR-related biochemical and structural damage.
Methods: Thirty-two female Wistar albino rats were randomized to four groups (n=8): Sham, IR, TD+IR (20 mg/kg i.p. 30 min before ischemia), and IR+TD (20 mg/kg i.p. immediately after 60-min ischemia). All animals underwent right nephrectomy, left renal ischemia (60 min), and 24-h reperfusion. Outcomes included serum blood urea nitrogen (BUN)/creatinine (CR)/albumin; renal malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), catalase (CAT); and histopathology (tubular dilatation, epithelial shedding, intertubular congestion).
Results: IR increased BUN/CR versus Sham, while albumin was unchanged. TD+IR modestly lowered BUN/CR compared with IR, whereas IR+TD did not improve these indices at 24 h. MDA rose with IR and was reduced by TD+IR (vs IR), but not by IR+TD; CAT fell with IR and was highest in IR+TD, while GSH and SOD showed no significant group differences. Histologically, IR produced tubular epithelial shedding, dilatation, and intertubular congestion. TD+IR improved all parameters except epithelial shedding (vs IR), and IR+TD improved all except tubular dilatation; medullary congestion decreased in both TD groups, more prominently with IR+TD.
Conclusion: TD confers schedule-dependent renoprotection in renal IR. Pre-ischemic dosing more consistently preserves function and limits lipid peroxidation, whereas post-ischemic dosing better enhances CAT activity and alleviates medullary congestion. These data support TD as a context-dependent adjunct for peri-ischemic kidney protection.
Ethical Statement
Ethical approval (Protocol No. 2017/A-19) was granted by the Experimental Animal Ethics Committee of the Faculty of Medicine, İnönü University, on 23 March 2017.
Supporting Institution
Research Fund of the Inonu University
Project Number
TLO-2017-799
References
-
Abbate, M., Bonventre, J. V., & Brown, D. (1994). The microtubule network of renal epithelial cells is disrupted by ischemia and reperfusion. American Journal of Physiology, 267(6 Pt 2), F971-978. https://doi.org/10.1152/ajprenal.1994.267.6.F971
-
Ali, Z., Ismail, M., Rehman, I. U., Rani, G. F., Ali, M., & Khan, M. T. M. (2023). Long-term clinical efficacy and safety of thalidomide in patients with transfusion-dependent β-thalassemia: results from Thal-Thalido study. Scientific Reports, 13(1), 13592. https://doi.org/10.1038/s41598-023-40849-4
-
Amirshahrokhi, K. (2021). Thalidomide reduces glycerol-induced acute kidney injury by inhibition of NF-κB, NLRP3 inflammasome, COX-2 and inflammatory cytokines. Cytokine, 144, 155574. https://doi.org/10.1016/j.cyto.2021.155574
-
Bowers, L. D., & Wong, E. T. (1980). Kinetic serum creatinine assays. II. A critical evaluation and review. Clinical Chemistry, 26(5), 555-561.
-
Cengiz, A. N., Ozhan, O., Tanriverdi, L. H., Dogru, F., Yildiz, A., Polat, A.,…Parlakpinar, H. (2025). Alamandine: Protective Effects Against Renal Ischemia-Reperfusion Injury-Induced Renal and Liver Damage in Diabetic Rats. Journal of Biochemical and Molecular Toxicology, 39(8), e70423. https://doi.org/10.1002/jbt.70423
-
Chen, J. M., Zhu, W. J., Liu, J., Wang, G. Z., Chen, X. Q., Tan, Y.,…Zhou, G. B. (2021). Safety and efficacy of thalidomide in patients with transfusion-dependent β-thalassemia: a randomized clinical trial. Signal Transduct Target Ther, 6(1), 405. https://doi.org/10.1038/s41392-021-00811-0
-
Doumas, B. T., Watson, W. A., & Biggs, H. G. (1971). Albumin standards and the measurement of serum albumin with bromcresol green. Clinica Chimica Acta, 31(1), 87-96. https://doi.org/10.1016/0009-8981(71)90365-2
-
Ellman, G. L. (1959). Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 82(1), 70-77. https://doi.org/10.1016/0003-9861(59)90090-6
-
Fan, H., Liu, J., Sun, J., Feng, G., & Li, J.-F. (2023). Advances in the study of B cells in renal ischemia-reperfusion injury. Frontiers in Immunology, 14. https://doi.org/10.3389/fimmu.2023.1216094
-
Faucher, Q., Alarcan, H., Marquet, P., & Barin-Le Guellec, C. (2020). Effects of Ischemia-Reperfusion on Tubular Cell Membrane Transporters and Consequences in Kidney Transplantation. Journal of Clinical Medicine, 9(8). https://doi.org/10.3390/jcm9082610
-
Fawcett, J. K., & Scott, J. E. (1960). A rapid and precise method for the determination of urea. Journal of Clinical Pathology, 13(2), 156-159. https://doi.org/10.1136/jcp.13.2.156
-
Forni, L., Forni, L., Darmon, M., Ostermann, M., Straaten, H., Pettilä, V.,…Joannidis, M. (2017). Renal recovery after acute kidney injury. Intensive Care Medicine, 43, 855-866. https://doi.org/10.1007/s00134-017-4809-x
-
Gobé, G., Willgoss, D., Hogg, N., Schoch, E., & Endre, Z. (1999). Cell survival or death in renal tubular epithelium after ischemia-reperfusion injury. Kidney International, 56(4), 1299-1304. https://doi.org/10.1046/j.1523-1755.1999.00701.x
-
Guo, M., Shen, D., Su, Y., Xu, J., Zhao, S., Zhang, W.,…Xu, X. (2023). Syndecan-1 shedding destroys epithelial adherens junctions through STAT3 after renal ischemia/reperfusion injury. iScience, 26(11), 108211. https://doi.org/10.1016/j.isci.2023.108211
-
Guo, M., Xu, J., Zhao, S., Shen, D., Jiang, W., Zhang, L.,…Xu, X. (2022). Suppressing Syndecan-1 Shedding to Protect Against Renal Ischemia/Reperfusion Injury by Maintaining Polarity of Tubular Epithelial Cells. Shock, 57(2), 256-263. https://doi.org/10.1097/shk.0000000000001838
-
Hiller, A., Greif, R. L., & Beckman, W. W. (1948). Determination of protein in urine by the biuret method. Journal of Biological Chemistry, 176(3), 1421-1429.
-
Hoste, E., Kellum, J., Selby, N., Zarbock, A., Palevsky, P., Bagshaw, S.,…Chawla, L. (2018). Global epidemiology and outcomes of acute kidney injury. Nature Reviews Nephrology, 14, 607-625. https://doi.org/10.1038/s41581-018-0052-0
-
İlhan, N., Susam, S., Gül, H. F., & İlhan, N. (2019). The therapeutic effects of thalidomide and etanercept on septic rats exposed to lipopolysaccharide. Ulusal Travma ve Acil Cerrahi Dergisi, 25(2), 99-104. https://doi.org/10.5505/tjtes.2018.68473
-
Lu, Y., Wei, Z.-W., Yang, G., Lai, Y., & Liu, R. (2022). Investigating the Efficacy and Safety of Thalidomide for Treating Patients With ß-Thalassemia: A Meta-Analysis. Frontiers in Pharmacology, 12. https://doi.org/10.3389/fphar.2021.814302
-
Luck, H. J. E. a. i. v. N. Y., London: Academic Press. (1963). Methods of enzymatic analysis.
-
McLarnon, S. R., Wilson, K., Patel, B., Sun, J., Sartain, C. L., Mejias, C. D.,…O'Connor, P. M. (2022). Lipopolysaccharide Pretreatment Prevents Medullary Vascular Congestion following Renal Ischemia by Limiting Early Reperfusion of the Medullary Circulation. Journal of the American Society of Nephrology, 33(4), 769-785. https://doi.org/10.1681/asn.2021081089
-
Mihara, M., & Uchiyama, M. (1978). Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Analytical Biochemistry, 86(1), 271-278. https://doi.org/10.1016/0003-2697(78)90342-1
-
Nieuwenhuijs-Moeke, G. J., Pischke, S. E., Berger, S. P., Sanders, J. S. F., Pol, R. A., Struys, M.,…Leuvenink, H. G. D. (2020). Ischemia and Reperfusion Injury in Kidney Transplantation: Relevant Mechanisms in Injury and Repair. Journal of Clinical Medicine, 9(1). https://doi.org/10.3390/jcm9010253
-
Palencia, G., Medrano, J. Á. N., Ortiz-Plata, A., Farfán, D. J., Sotelo, J., Sánchez, A., & Trejo-Solís, C. (2015). Anti-apoptotic, anti-oxidant, and anti-inflammatory effects of thalidomide on cerebral ischemia/reperfusion injury in rats. Journal of the Neurological Sciences, 351(1), 78-87. https://doi.org/https://doi.org/10.1016/j.jns.2015.02.043
-
Percie du Sert, N., Hurst, V., Ahluwalia, A., Alam, S., Avey, M. T., Baker, M.,…Würbel, H. (2020). The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. BMC Veterinary Research, 16(1), 242. https://doi.org/10.1186/s12917-020-02451-y
-
Rewa, O., & Bagshaw, S. (2014). Acute kidney injury—epidemiology, outcomes and economics. Nature Reviews Nephrology, 10, 193-207. https://doi.org/10.1038/nrneph.2013.282
-
Santana, A., Andraus, W., Silva, F., Sala, A. C. G., Schust, A., Neri, L.,…Figueiredo, E. (2022). Thalidomide modulates renal inflammation induced by brain death experimental model. Transplant Immunology, 101710. https://doi.org/10.1016/j.trim.2022.101710
-
Santana, A., Degaspari, S., Catanozi, S., Dellê, H., De Sá Lima, L., Silva, C.,…Noronha, I. (2013). Thalidomide suppresses inflammation in adenine-induced CKD with uraemia in mice. Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association - European Renal Association, 28(5), 1140-1149. https://doi.org/10.1093/ndt/gfs569
-
Shin, N. S., Marlier, A., Xu, L., Lam, T., Cantley, L. G., & Guo, J. K. (2022). Characterization of temporospatial distribution of renal tubular casts by nephron tracking after ischemia-reperfusion injury. American Journal of Physiology-Renal Physiology, 322(3), F322-f334. https://doi.org/10.1152/ajprenal.00284.2021
-
Shiva, N., Sharma, N., Kulkarni, Y., Mulay, S., & Gaikwad, A. (2020). Renal ischemia/reperfusion injury: An insight on in vitro and in vivo models. Life Sciences, 117860. https://doi.org/10.1016/j.lfs.2020.117860
-
Sun, Y., Oberley, L. W., & Li, Y. (1988). A simple method for clinical assay of superoxide dismutase. Clinical Chememistry, 34(3), 497-500.
-
Thapa, K., Singh, T., & Kaur, A. (2021). Cyclic nucleotide phosphodiesterase inhibition as a potential therapeutic target in renal ischemia reperfusion injury. Life Sciences, 119843. https://doi.org/10.1016/j.lfs.2021.119843
-
Yang, W. J., Shi, L. D., Liang, Y., Liang, L. M., Zhang, H., Wang, L., & Zhou, Q. (2024). Comparison of Efficacy and Safety Outcomes of Different Doses Schedules of Thalidomide for Treating Moderate-to-Severe β-Thalassemia Patients. Therapeutics and Clinical Risk Management, 20, 799-809. https://doi.org/10.2147/tcrm.S481128
-
Yuzer, H., Yuzbasioglu, M. F., Ciralik, H., Kurutas, E. B., Ozkan, O. V., Bulbuloglu, E.,…Kale, I. T. (2009). Effects of intravenous anesthetics on renal ischemia/reperfusion injury. Ren Fail, 31(4), 290-296. https://doi.org/10.1080/08860220902779962
-
Zhao, H., Alam, A., Soo, A. P., & George, A. (2018). Ischemia-Reperfusion Injury Reduces Long Term Renal Graft Survival: Mechanism and Beyond. EBioMedicine, 28, 31-42. https://doi.org/10.1016/j.ebiom.2018.01.025