Review Article
BibTex RIS Cite
Year 2024, Volume: 2 Issue: 2, 79 - 82, 29.08.2024
https://doi.org/10.62425/rtpharma.1467636

Abstract

References

  • Agalakova, N. I., & Gusev, G. P. (2012). Fluoride induces oxidative stress and ATP depletion in the rat erythrocytes in vitro. Environmental Toxicology and Pharmacology, 34(2), 334–337. https://doi.org/10.1016/j.etap.2012.05.006
  • Aldemir, M. N., Simsek, M., Kara, A. V., Ozcicek, F., Mammadov, R., Yazıcı, G. N., Sunar, M., Coskun, R., Gulaboglu, M., & Suleyman, H. (2020). The effect of adenosine triphosphate on sunitinib-induced cardiac injury in rats. Human & Experimental Toxicology, 39(8), 1046–1053. https://doi.org/10.1177/0960327120909874
  • Dagel, T., Altuner, D., Suleyman, B., Mammadov, R., Bulut, S., Bal Tastan, T., Gulaboglu, M., & Suleyman, H. (2024). Effects of adenosine triphosphate, Lacidipine, and Benidipine on 5-fluorouracil-induced kidney damage in rats. European Review for Medical and Pharmacological Sciences, 28(6), 2538–2549. https://doi.org/10.26355/eurrev_202403_35760
  • De Cristóbal, J., Madrigal, J. L., Lizasoain, I., Lorenzo, P., Leza, J. C., & Moro, M. A. (2002). Aspirin inhibits stress-induced increase in plasma glutamate, brain oxidative damage and ATP fall in rats. Neuroreport, 13(2), 217–221. https://doi.org/10.1097/00001756-200202110-00009
  • Dunn, J., & Grider, M. H. (2023). Physiology, adenosine triphosphate. In StatPearls. StatPearls Publishing. Gandhi, S., & Abramov, A. Y. (2012). Mechanism of oxidative stress in neurodegeneration. Oxidative Medicine and Cellular Longevity, 2012, 428010. https://doi.org/10.1155/2012/428010
  • Ghezzi, P., Jaquet, V., Marcucci, F., & Schmidt, H. H. H. W. (2017). The oxidative stress theory of disease: Levels of evidence and epistemological aspects. British Journal of Pharmacology, 174(12), 1784–1796. https://doi.org/10.1111/bph.13544
  • Kowalczyk, P., Sulejczak, D., Kleczkowska, P., Bukowska-Ośko, I., Kucia, M., Popiel, M., Wietrak, E., Kramkowski, K., Wrzosek, K., & Kaczyńska, K. (2021). Mitochondrial oxidative stress—a causative factor and therapeutic target in many diseases. International Journal of Molecular Sciences, 22(24), 13384. https://doi.org/10.3390/ijms222413384
  • Liang, H., Van Remmen, H., Frohlich, V., Lechleiter, J., Richardson, A., & Ran, Q. (2007). Gpx4 protects mitochondrial ATP generation against oxidative damage. Biochemical and Biophysical Research Communications, 356(4), 893–898. https://doi.org/10.1016/j.bbrc.2007.03.045
  • López, A., García, J. A., Escames, G., Venegas, C., Ortiz, F., López, L. C., & Acuña-Castroviejo, D. (2009). Melatonin protects the mitochondria from oxidative damage reducing oxygen consumption, membrane potential, and superoxide anion production. Journal of Pineal Research, 46(2), 188–198. https://doi.org/10.1111/j.1600-079X.2008.00647.x
  • Lu, S. C. (2013). Glutathione synthesis. Biochimica et Biophysica Acta, 1830(5), 3143–3153. https://doi.org/10.1016/j.bbagen.2012.09.008
  • Martín, M., Macías, M., León, J., Escames, G., Khaldy, H., & Acuña-Castroviejo, D. (2002). Melatonin increases the activity of the oxidative phosphorylation enzymes and the production of ATP in rat brain and liver mitochondria. The International Journal of Biochemistry & Cell Biology, 34(4), 348–357. https://doi.org/10.1016/s1357-2725(01)00138-8
  • Nanji, A. A., & Hiller-Sturmhöfel, S. (1997). Apoptosis and necrosis: Two types of cell death in alcoholic liver disease. Alcohol Health & Research World, 21(4), 325–330.
  • Paramanya, A., & Ahmad, A. L. I. (2019). Role of oxidative stress in biological systems. Middle East Journal of Science, 5(2), 155–162. https://doi.org/10.23884/mejs.2019.5.2.07
  • Pisoschi, A. M., & Pop, A. (2015). The role of antioxidants in the chemistry of oxidative stress: A review. European Journal of Medicinal Chemistry, 97, 55–74. https://doi.org/10.1016/j.ejmech.2015.04.040
  • Prauchner, C. A. (2017). Oxidative stress in sepsis: Pathophysiological implications justifying antioxidant co-therapy. Burns: Journal of the International Society for Burn Injuries, 43(3), 471–485. https://doi.org/10.1016/j.burns.2016.09.023
  • Schütt, F., Aretz, S., Auffarth, G. U., & Kopitz, J. (2012). Moderately reduced ATP levels promote oxidative stress and debilitate autophagic and phagocytic capacities in human RPE cells. Investigative Ophthalmology & Visual Science, 53(9), 5354–5361. https://doi.org/10.1167/iovs.12-9845
  • Sies, H. (2018). On the history of oxidative stress: Concept and some aspects of current development. Current Opinion in Toxicology, 7, 122–126. https://doi.org/10.1016/j.cotox.2018.01.002
  • Sthijns, M. M. J. P. E., van Blitterswijk, C. A., & LaPointe, V. L. S. (2018). Redox regulation in regenerative medicine and tissue engineering: The paradox of oxygen. Journal of Tissue Engineering and Regenerative Medicine, 12(10), 2013–2020. https://doi.org/10.1002/term.2730
  • Van Remmen, H., & Richardson, A. (2001). Oxidative damage to mitochondria and aging. Experimental Gerontology, 36(7), 957–968. https://doi.org/10.1016/s0531-5565(01)00093-6
  • Wang, X., Simpkins, J. W., Dykens, J. A., & Cammarata, P. R. (2003). Oxidative damage to human lens epithelial cells in culture: Estrogen protection of mitochondrial potential, ATP, and cell viability. Investigative Ophthalmology & Visual Science, 44(5), 2067–2075. https://doi.org/10.1167/iovs.02-0841

Relationship between Oxidative Stress and Cellular Adenosine Triphosphate Levels

Year 2024, Volume: 2 Issue: 2, 79 - 82, 29.08.2024
https://doi.org/10.62425/rtpharma.1467636

Abstract

Oxidative stress (OS) refers to the deterioration of the balance between oxidants and antioxidants in favor of oxidants, and this may lead to disruptions in redox signaling and control and/or damage at the molecular level. The presence of low levels of reactive oxygen species (ROS) plays a physiological role in intracellular signaling pathways. However, damage may occur in cells and tissues as a result of excessive increase in ROS production. Because ROS have the potential to damage almost all structures in the cell, including lipid, protein, deoxyribo nucleicacid (DNA). The main source of free radicals in the cell is mitochondria. ROS formation is a natural consequence of oxidative phosphorylation resulting in adenosine triphosphate (ATP) production in mitochondria. The attack of these radicals results in damage to the mitochondria, a decrease in the activity of oxidative phosphorylation enzymes and consequently a decrease in ATP synthesis. On the other hand, ATP is needed for antioxidant synthesis, which is necessary for cell defence against increasing ROS. Therefore, a decrease in ATP levels makes tissues vulnerable to OS. In this case, it is likely that tissues exposed to OS will also have problems in ATP production and the decrease in ATP synthesis will further increase oxidative damage.

References

  • Agalakova, N. I., & Gusev, G. P. (2012). Fluoride induces oxidative stress and ATP depletion in the rat erythrocytes in vitro. Environmental Toxicology and Pharmacology, 34(2), 334–337. https://doi.org/10.1016/j.etap.2012.05.006
  • Aldemir, M. N., Simsek, M., Kara, A. V., Ozcicek, F., Mammadov, R., Yazıcı, G. N., Sunar, M., Coskun, R., Gulaboglu, M., & Suleyman, H. (2020). The effect of adenosine triphosphate on sunitinib-induced cardiac injury in rats. Human & Experimental Toxicology, 39(8), 1046–1053. https://doi.org/10.1177/0960327120909874
  • Dagel, T., Altuner, D., Suleyman, B., Mammadov, R., Bulut, S., Bal Tastan, T., Gulaboglu, M., & Suleyman, H. (2024). Effects of adenosine triphosphate, Lacidipine, and Benidipine on 5-fluorouracil-induced kidney damage in rats. European Review for Medical and Pharmacological Sciences, 28(6), 2538–2549. https://doi.org/10.26355/eurrev_202403_35760
  • De Cristóbal, J., Madrigal, J. L., Lizasoain, I., Lorenzo, P., Leza, J. C., & Moro, M. A. (2002). Aspirin inhibits stress-induced increase in plasma glutamate, brain oxidative damage and ATP fall in rats. Neuroreport, 13(2), 217–221. https://doi.org/10.1097/00001756-200202110-00009
  • Dunn, J., & Grider, M. H. (2023). Physiology, adenosine triphosphate. In StatPearls. StatPearls Publishing. Gandhi, S., & Abramov, A. Y. (2012). Mechanism of oxidative stress in neurodegeneration. Oxidative Medicine and Cellular Longevity, 2012, 428010. https://doi.org/10.1155/2012/428010
  • Ghezzi, P., Jaquet, V., Marcucci, F., & Schmidt, H. H. H. W. (2017). The oxidative stress theory of disease: Levels of evidence and epistemological aspects. British Journal of Pharmacology, 174(12), 1784–1796. https://doi.org/10.1111/bph.13544
  • Kowalczyk, P., Sulejczak, D., Kleczkowska, P., Bukowska-Ośko, I., Kucia, M., Popiel, M., Wietrak, E., Kramkowski, K., Wrzosek, K., & Kaczyńska, K. (2021). Mitochondrial oxidative stress—a causative factor and therapeutic target in many diseases. International Journal of Molecular Sciences, 22(24), 13384. https://doi.org/10.3390/ijms222413384
  • Liang, H., Van Remmen, H., Frohlich, V., Lechleiter, J., Richardson, A., & Ran, Q. (2007). Gpx4 protects mitochondrial ATP generation against oxidative damage. Biochemical and Biophysical Research Communications, 356(4), 893–898. https://doi.org/10.1016/j.bbrc.2007.03.045
  • López, A., García, J. A., Escames, G., Venegas, C., Ortiz, F., López, L. C., & Acuña-Castroviejo, D. (2009). Melatonin protects the mitochondria from oxidative damage reducing oxygen consumption, membrane potential, and superoxide anion production. Journal of Pineal Research, 46(2), 188–198. https://doi.org/10.1111/j.1600-079X.2008.00647.x
  • Lu, S. C. (2013). Glutathione synthesis. Biochimica et Biophysica Acta, 1830(5), 3143–3153. https://doi.org/10.1016/j.bbagen.2012.09.008
  • Martín, M., Macías, M., León, J., Escames, G., Khaldy, H., & Acuña-Castroviejo, D. (2002). Melatonin increases the activity of the oxidative phosphorylation enzymes and the production of ATP in rat brain and liver mitochondria. The International Journal of Biochemistry & Cell Biology, 34(4), 348–357. https://doi.org/10.1016/s1357-2725(01)00138-8
  • Nanji, A. A., & Hiller-Sturmhöfel, S. (1997). Apoptosis and necrosis: Two types of cell death in alcoholic liver disease. Alcohol Health & Research World, 21(4), 325–330.
  • Paramanya, A., & Ahmad, A. L. I. (2019). Role of oxidative stress in biological systems. Middle East Journal of Science, 5(2), 155–162. https://doi.org/10.23884/mejs.2019.5.2.07
  • Pisoschi, A. M., & Pop, A. (2015). The role of antioxidants in the chemistry of oxidative stress: A review. European Journal of Medicinal Chemistry, 97, 55–74. https://doi.org/10.1016/j.ejmech.2015.04.040
  • Prauchner, C. A. (2017). Oxidative stress in sepsis: Pathophysiological implications justifying antioxidant co-therapy. Burns: Journal of the International Society for Burn Injuries, 43(3), 471–485. https://doi.org/10.1016/j.burns.2016.09.023
  • Schütt, F., Aretz, S., Auffarth, G. U., & Kopitz, J. (2012). Moderately reduced ATP levels promote oxidative stress and debilitate autophagic and phagocytic capacities in human RPE cells. Investigative Ophthalmology & Visual Science, 53(9), 5354–5361. https://doi.org/10.1167/iovs.12-9845
  • Sies, H. (2018). On the history of oxidative stress: Concept and some aspects of current development. Current Opinion in Toxicology, 7, 122–126. https://doi.org/10.1016/j.cotox.2018.01.002
  • Sthijns, M. M. J. P. E., van Blitterswijk, C. A., & LaPointe, V. L. S. (2018). Redox regulation in regenerative medicine and tissue engineering: The paradox of oxygen. Journal of Tissue Engineering and Regenerative Medicine, 12(10), 2013–2020. https://doi.org/10.1002/term.2730
  • Van Remmen, H., & Richardson, A. (2001). Oxidative damage to mitochondria and aging. Experimental Gerontology, 36(7), 957–968. https://doi.org/10.1016/s0531-5565(01)00093-6
  • Wang, X., Simpkins, J. W., Dykens, J. A., & Cammarata, P. R. (2003). Oxidative damage to human lens epithelial cells in culture: Estrogen protection of mitochondrial potential, ATP, and cell viability. Investigative Ophthalmology & Visual Science, 44(5), 2067–2075. https://doi.org/10.1167/iovs.02-0841
There are 20 citations in total.

Details

Primary Language English
Subjects Clinical Pharmacy and Pharmacy Practice
Journal Section Reviews
Authors

Seval Bulut This is me 0000-0003-4992-1241

Halis Süleyman 0000-0002-9239-4099

Publication Date August 29, 2024
Submission Date April 12, 2024
Acceptance Date August 6, 2024
Published in Issue Year 2024 Volume: 2 Issue: 2

Cite

APA Bulut, S., & Süleyman, H. (2024). Relationship between Oxidative Stress and Cellular Adenosine Triphosphate Levels. Recent Trends in Pharmacology, 2(2), 79-82. https://doi.org/10.62425/rtpharma.1467636