Research Article
BibTex RIS Cite
Year 2024, Volume: 2 Issue: 3, 109 - 114, 30.12.2024
https://doi.org/10.62425/rtpharma.1535306

Abstract

References

  • Ahmed, T., et al. (2017). Resveratrol and Alzheimer’s disease: mechanistic insights. Molecular Neurobiology, 54(4), 2622–2635. doi: 10.1007/s12035-016-9839-9.
  • Bordoloi, S., et al. (2024). Some promising medicinal plants used in Alzheimer’s disease: an ethnopharmacological perspective. Discover Applied Sciences, 6(5), 1-20. https://doi.org/10.1007/s42452-024-05811-7.
  • Bui, T. T., & Nguyen, T. H. (2017). Natural product for the treatment of Alzheimer’s disease. Journal of Basic and Clinical Physiology and Pharmacology, 2017, 28(5), 413–423. doi: 10.1515/jbcpp-2016-0147.
  • Cao, Y., Xu, W., Huang, Y., & Zeng X. (2020). Licochalcone B, a chalcone derivative from Glycyrrhiza inflata, as a multifunctional agent for the treatment of Alzheimer’s disease. Natural Product Research, 34(5), 736–739. doi: 10.1080/14786419.2018.1496429.
  • Celik Topkara, K., Kilinc, E., Cetinkaya, A., Saylan, A., & Demir, S. (2022). Therapeutic effects of carvacrol on beta‐amyloid‐induced impairments in in vitro and in vivo models of Alzheimer's disease. European Journal of Neuroscience, 56(9), 5714-5726. doi: 10.1111/ejn.15565.
  • Cheignon, C., Tomas, M., Bonnefont-Rousselot, D., Faller, P., Hureau, C., & Collin, F. (2018). Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox biology, 14, 450-464. doi: 10.1016/j.redox.2017.10.014.
  • Cipriani, G., Danti, S., Picchi, L., Nuti, A., & Fiorino, M. D. (2020). Daily functioning and dementia. Dementia & neuropsychologia, 14(2), 93-102. doi: 10.1590/1980-57642020dn14-020001
  • Dhapola, R., Beura, S. K., Sharma, P., Singh, S. K., & HariKrishnaReddy, D. (2024). Oxidative stress in Alzheimer’s disease: current knowledge of signaling pathways and therapeutics.Molecular Biology Reports, 51(1), 48. doi: 10.1007/s11033-023-09021-z.
  • Erel, O. (2004). A novel automated method to measure total antioxidant response against potent free radical reactions. Clinical Biochemistry, 37:112–119. doi: 10.1016/j.clinbiochem.2003.10.014.
  • Erel, O. (2005). A new automated colorimetric method for measuring total oxidant status. Clinical Biochemistry, 38:1103–1111. doi: 10.1016/j.clinbiochem.2005.08.008.
  • Esmaeili, Y., et al. (2022). Targeting autophagy, oxidative stress, and ER stress for neurodegenerative disease treatment. Journal of Controlled Release, 345, 147-175. doi: 10.1016/j.jconrel.2022.03.001.
  • Gella, A., & Durany, N. (2009). Oxidative stress in Alzheimer disease. Cell adhesion & migration, 3(1), 88-93. doi: 10.1007/s12264-013-1423-y.
  • Góngora, L., Máñez, S., Giner, R.M., Recio Mdel, C., Schinella, G., & Ríos, J.L. (2003). Inhibition of xanthine oxidase by phenolic conjugates of methylated quinic acid. Planta Medica, 69(5), 396-401. doi: 10.1055/s-2003-39715.
  • González, J. F., Alcántara, A. R., Doadrio A. L., & Sánchez-Montero, J. M. (2019). Developments with multi-target drugs for Alzheimer’s disease: an overview of the current discovery approaches. Expert Opinion on Drug Discovery, 14(9), 879–891. doi: 10.1080/17460441.2019.1623201.
  • He, M., Park, C., Shin, Y., Kim, J., & Cho, E. (2023). N-Feruloyl serotonin attenuates neuronal oxidative stress and apoptosis in Aβ25–35-treated human neuroblastoma SH-SY5Y Cells. Molecules, 28(4), 1610. doi: 10.3390/molecules28041610.
  • Hwang, Y.P. (2009). Protective mechanisms of 3-caffeoyl, 4-dihydrocaffeoyl quinic acid from Salicornia herbacea against tert-butyl hydroperoxide-induced oxidative damage. Chemico-biological interactions, 181(3):366-76. doi: 10.1016/j.cbi.2009.07.017.
  • Ji, S., et al. (2019). Protective role of phenylethanoid glycosides, Torenoside B and Savatiside A, in Alzheimer's disease. Experimental and Therapeutic Medicine, 17(5), 3755-3767. doi: 10.3892/etm.2019.7355.
  • Kim, S.S., Park, R.Y., Jeon, H.J., Kwon, Y.S, & Chun, W. (2005). Neuroprotective effects of 3,5-dicaffeoylquinic acid on hydrogen peroxide-induced cell death in SHSY5Y cells. Phytotherapy Research, 19(3), 243–245. doi: 10.1002/ptr.1652.
  • Kim Thu, D., Vui, D. T., Ngoc Huyen, N. T., & Duyen, D. K., Thanh Tung, B. (2019). The use of Huperzia species for the treatment of Alzheimer’s disease. Journal of Basic and Clinical Physiology and Pharmacology, 31(3). doi: 10.1515/jbcpp-2019-0159.
  • Kovalevich, J., & Langford, D. (2013). Considerations for the use of SH-SY5Y neuroblastoma cells in neurobiology. Neuronal cell culture: methods and protocols, 9-21. doi: 10.1007/978-1-62703-640-5_2.
  • Laurent, C., et al. (2014). Beneficial effects of caffeine in a transgenic model of Alzheimer’s disease-like tau pathology. Neurobiology of Aging, 2014;35(9):2079–2090. doi: 10.1016/j.neurobiolaging.2014.03.027.
  • Lee, M., McGeer, E., & McGeer, P. L. (2015). Activated human microglia stimulate neuroblastoma cells to upregulate production of beta amyloid protein and tau: implications for Alzheimer's disease pathogenesis. Neurobiology of aging, 36(1), 42-52. doi: 10.1016/j.neurobiolaging.2014.07.024.
  • Lee, W-H., Loo, C-Y., Bebawy, M., Luk, F., Mason, R. S., & Rohanizadeh, R. (2013). Curcumin and its derivatives: their application in neuropharmacology and neuroscience in the 21st century. Current Neuropharmacology, 11(4), 338–378. doi: 10.2174/1570159x11311040002.
  • Li, S., et al. (2024). Quinic acid alleviates high-fat diet-induced neuroinflammation by inhibiting DR3/IKK/NF-κB signaling via gut microbial tryptophan metabolites. Gut Microbes, 16(1), 2374608. doi: 10.1080/19490976.2024.2374608.
  • Liu, L., Liu, Y., Zhao, J., Xing, X., Zhang, C., & Meng, H. (2020). Neuroprotective Effects of D‐(‐)‐Quinic Acid on Aluminum Chloride‐Induced Dementia in Rats. Evidence‐Based Complementary and Alternative Medicine, 2020(1), 5602597. doi: 10.1155/2020/5602597.
  • Mecocci, P., Boccardi, V., Cecchetti, R., Bastiani, P., Scamosci, M., Ruggiero, C., & Baroni, M. (2018). A long journey into aging, brain aging, and Alzheimer’s disease following the oxidative stress tracks. Journal of Alzheimer's Disease, 62(3), 1319-1335. doi: 10.3233/JAD-170732.
  • Murugesan, A., et al. (2020). Design and synthesis of novel quinic acid derivatives: in vitro cytotoxicity and anticancer effect on glioblastoma. Future medicinal chemistry. 12(21), 1891-1910. doi: 10.4155/fmc-2020-0194.
  • Na, J-Y., Song, K., Lee, J-W., Kim, S., Kwon, J. (2017). Sortilin-related receptor 1 interacts with amyloid precursor protein and is activated by 6-shogaol, leading to inhibition of the amyloidogenic pathway. Biochemical and Biophysical Research Communications, 484(4), 890–895. doi: 10.1016/j.bbrc.2017.02.029.
  • Nelson, L., & Tabet, N. (2015). Slowing the progression of Alzheimer’s disease; what works?. Ageing research reviews, 23, 193-209. doi: 10.1016/j.arr.2015.07.002.
  • Ono, K., et al. (2020). Pine bark polyphenolic extract attenuates amyloid-β and tau misfolding in a model system of Alzheimer’s disease neuropathology. Journal of Alzheimer’s Disease, 15, 1–10. doi: 10.3233/JAD-190543.
  • Park, Y., Paing, Y. M. M., Cho, N., Kim, C., Yoo, J., Choi, J. W., & Lee, S. H. (2024). Quinic Acid Alleviates Behavior Impairment by Reducing Neuroinflammation and MAPK Activation in LPS-Treated Mice. Biomolecules & Therapeutics, 32(3), 309. doi: 10.4062/biomolther.2023.184.
  • Peng, Y., Jin, H., Xue, Y. H., Chen, Q., Yao, S. Y., Du, M. Q., & Liu, S. (2023). Current and future therapeutic strategies for Alzheimer’s disease: An overview of drug development bottlenecks. Frontiers in aging neuroscience, 15, 1206572. doi: 10.3389/fnagi.2023.1206572.
  • Pero, R. W., Lund, H., & Leanderson, T. (2009). Antioxidant metabolism induced by quinic acid. Increased urinary excretion of tryptophan and nicotinamide. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 23(3), 335-346. doi: 10.1002/ptr.2628.
  • Rajmohan, R., & Reddy, P. H. (2017). Amyloid-beta and phosphorylated tau accumulations cause abnormalities at synapses of Alzheimer’s disease neurons. Journal of Alzheimer's Disease, 57(4), 975-999. doi: 10.3233/JAD-160612.
  • Soh, Y., Kim, J., Sohn, N.W., Lee, K.R., & Kim, S.Y. (2003). Protective Effects of Quinic Acid Derivatives on Tetrahydropapaveroline-Induced Cell Death in C6 Glioma Cells. Biological & Pharmaceutical Bulletin, 26(6):803-7. doi: 10.1248/bpb.26.803.
  • Squitti, R., Rongioletti, M. C. A., & Liguri, G. (2023). Copper, oxidative stress, Alzheimer's disease, and dementia. Vitamins and Minerals in Neurological Disorders, 65-85. https://doi.org/10.1016/B978-0-323-89835-5.00030-2.
  • Zafeer, M. F., et al. (2018). Perillyl alcohol alleviates amyloid-β peptides-induced mitochondrial dysfunction and cytotoxicity in SH-SY5Y cells. International journal of biological macromolecules, 109, 1029-1038. doi: 10.1016/j.ijbiomac.2017.11.082.
  • Zhang, L., et al. (2019). Edaravone reduces Aβ-induced oxidative damage in SH-SY5Y cells by activating the Nrf2/ARE signaling pathway. Life sciences, 221, 259-266. doi: 10.1016/j.lfs.2019.02.025.

Quinic Acid Protects Human SH-SY5Y Neuroblastoma Cells Against Amyloid-β Cytotoxicity

Year 2024, Volume: 2 Issue: 3, 109 - 114, 30.12.2024
https://doi.org/10.62425/rtpharma.1535306

Abstract

Amaç: Alzheimer hastalığı progresifi, yaygın nörodejeneratif bir hastalık olup demansın en sık görülen türüdür. Bu hastalığın mekanizması kesin olarak bilinmemekle birlikte en önemli etmenlerden biri amiloid beta (Aβ) hücreler arası plakların oluşumudur. Kinik asit (QA) antioksidan özellikleri sayesinde nöroprotektif etki sağlayan bir polifenoldür. Çalışmamızın amacı QA'nın Aβ peptidi kaynaklı oksidatif nörotoksisiteye karşı in vitro koruyucu etkisini araştırmaktır. Yöntemler: QA'nın nöroprotektif etkisini belirlemek için 3-4,5-dimetil-tiyazolil-2,5-difeniltetrazolyum bromür (MTT), antioksidan-oksidan etkilerini belirlemek için Total antioksidan kapasite (TAC)- Total oksidan seviye (TOS) analizleri yapıldı. Bulgular: Aβ, MTT analizinde SH-SY5Y'nin hücre canlılığını belirgin şekilde azalttı. Buna karşılık, QA hücre canlılığını önemli ölçüde artırdı ve QA'nın hücre çoğalmasını indüklediğini gösterdi. Aβ'ye maruz kalma, kontrolle karşılaştırıldığında TOS seviyelerini belirgin şekilde artırdı. Ayrıca, Aβ, SH-SY5Y hücrelerinde TAC aktivitesini azalttı. QA, Aβ'nin indüklediği TOS oluşumunu belirgin şekilde dengeledi. Aynı zamanda, QA, Aβ'ye maruz kalan SH-SY5Y hücrelerinde TAC aktivitesini artırdı. Sonuç: Bulgularımız QA’in Aβ kaynaklı nörotoksisiteyi ve oksidatif stresi önleyerek nöroprotektif etkisini ortaya çıkardı.
Anahtar Kelimeler: Alzheimer hastalığı, Antioksidan, Nöroblastom, Kinik asit

References

  • Ahmed, T., et al. (2017). Resveratrol and Alzheimer’s disease: mechanistic insights. Molecular Neurobiology, 54(4), 2622–2635. doi: 10.1007/s12035-016-9839-9.
  • Bordoloi, S., et al. (2024). Some promising medicinal plants used in Alzheimer’s disease: an ethnopharmacological perspective. Discover Applied Sciences, 6(5), 1-20. https://doi.org/10.1007/s42452-024-05811-7.
  • Bui, T. T., & Nguyen, T. H. (2017). Natural product for the treatment of Alzheimer’s disease. Journal of Basic and Clinical Physiology and Pharmacology, 2017, 28(5), 413–423. doi: 10.1515/jbcpp-2016-0147.
  • Cao, Y., Xu, W., Huang, Y., & Zeng X. (2020). Licochalcone B, a chalcone derivative from Glycyrrhiza inflata, as a multifunctional agent for the treatment of Alzheimer’s disease. Natural Product Research, 34(5), 736–739. doi: 10.1080/14786419.2018.1496429.
  • Celik Topkara, K., Kilinc, E., Cetinkaya, A., Saylan, A., & Demir, S. (2022). Therapeutic effects of carvacrol on beta‐amyloid‐induced impairments in in vitro and in vivo models of Alzheimer's disease. European Journal of Neuroscience, 56(9), 5714-5726. doi: 10.1111/ejn.15565.
  • Cheignon, C., Tomas, M., Bonnefont-Rousselot, D., Faller, P., Hureau, C., & Collin, F. (2018). Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox biology, 14, 450-464. doi: 10.1016/j.redox.2017.10.014.
  • Cipriani, G., Danti, S., Picchi, L., Nuti, A., & Fiorino, M. D. (2020). Daily functioning and dementia. Dementia & neuropsychologia, 14(2), 93-102. doi: 10.1590/1980-57642020dn14-020001
  • Dhapola, R., Beura, S. K., Sharma, P., Singh, S. K., & HariKrishnaReddy, D. (2024). Oxidative stress in Alzheimer’s disease: current knowledge of signaling pathways and therapeutics.Molecular Biology Reports, 51(1), 48. doi: 10.1007/s11033-023-09021-z.
  • Erel, O. (2004). A novel automated method to measure total antioxidant response against potent free radical reactions. Clinical Biochemistry, 37:112–119. doi: 10.1016/j.clinbiochem.2003.10.014.
  • Erel, O. (2005). A new automated colorimetric method for measuring total oxidant status. Clinical Biochemistry, 38:1103–1111. doi: 10.1016/j.clinbiochem.2005.08.008.
  • Esmaeili, Y., et al. (2022). Targeting autophagy, oxidative stress, and ER stress for neurodegenerative disease treatment. Journal of Controlled Release, 345, 147-175. doi: 10.1016/j.jconrel.2022.03.001.
  • Gella, A., & Durany, N. (2009). Oxidative stress in Alzheimer disease. Cell adhesion & migration, 3(1), 88-93. doi: 10.1007/s12264-013-1423-y.
  • Góngora, L., Máñez, S., Giner, R.M., Recio Mdel, C., Schinella, G., & Ríos, J.L. (2003). Inhibition of xanthine oxidase by phenolic conjugates of methylated quinic acid. Planta Medica, 69(5), 396-401. doi: 10.1055/s-2003-39715.
  • González, J. F., Alcántara, A. R., Doadrio A. L., & Sánchez-Montero, J. M. (2019). Developments with multi-target drugs for Alzheimer’s disease: an overview of the current discovery approaches. Expert Opinion on Drug Discovery, 14(9), 879–891. doi: 10.1080/17460441.2019.1623201.
  • He, M., Park, C., Shin, Y., Kim, J., & Cho, E. (2023). N-Feruloyl serotonin attenuates neuronal oxidative stress and apoptosis in Aβ25–35-treated human neuroblastoma SH-SY5Y Cells. Molecules, 28(4), 1610. doi: 10.3390/molecules28041610.
  • Hwang, Y.P. (2009). Protective mechanisms of 3-caffeoyl, 4-dihydrocaffeoyl quinic acid from Salicornia herbacea against tert-butyl hydroperoxide-induced oxidative damage. Chemico-biological interactions, 181(3):366-76. doi: 10.1016/j.cbi.2009.07.017.
  • Ji, S., et al. (2019). Protective role of phenylethanoid glycosides, Torenoside B and Savatiside A, in Alzheimer's disease. Experimental and Therapeutic Medicine, 17(5), 3755-3767. doi: 10.3892/etm.2019.7355.
  • Kim, S.S., Park, R.Y., Jeon, H.J., Kwon, Y.S, & Chun, W. (2005). Neuroprotective effects of 3,5-dicaffeoylquinic acid on hydrogen peroxide-induced cell death in SHSY5Y cells. Phytotherapy Research, 19(3), 243–245. doi: 10.1002/ptr.1652.
  • Kim Thu, D., Vui, D. T., Ngoc Huyen, N. T., & Duyen, D. K., Thanh Tung, B. (2019). The use of Huperzia species for the treatment of Alzheimer’s disease. Journal of Basic and Clinical Physiology and Pharmacology, 31(3). doi: 10.1515/jbcpp-2019-0159.
  • Kovalevich, J., & Langford, D. (2013). Considerations for the use of SH-SY5Y neuroblastoma cells in neurobiology. Neuronal cell culture: methods and protocols, 9-21. doi: 10.1007/978-1-62703-640-5_2.
  • Laurent, C., et al. (2014). Beneficial effects of caffeine in a transgenic model of Alzheimer’s disease-like tau pathology. Neurobiology of Aging, 2014;35(9):2079–2090. doi: 10.1016/j.neurobiolaging.2014.03.027.
  • Lee, M., McGeer, E., & McGeer, P. L. (2015). Activated human microglia stimulate neuroblastoma cells to upregulate production of beta amyloid protein and tau: implications for Alzheimer's disease pathogenesis. Neurobiology of aging, 36(1), 42-52. doi: 10.1016/j.neurobiolaging.2014.07.024.
  • Lee, W-H., Loo, C-Y., Bebawy, M., Luk, F., Mason, R. S., & Rohanizadeh, R. (2013). Curcumin and its derivatives: their application in neuropharmacology and neuroscience in the 21st century. Current Neuropharmacology, 11(4), 338–378. doi: 10.2174/1570159x11311040002.
  • Li, S., et al. (2024). Quinic acid alleviates high-fat diet-induced neuroinflammation by inhibiting DR3/IKK/NF-κB signaling via gut microbial tryptophan metabolites. Gut Microbes, 16(1), 2374608. doi: 10.1080/19490976.2024.2374608.
  • Liu, L., Liu, Y., Zhao, J., Xing, X., Zhang, C., & Meng, H. (2020). Neuroprotective Effects of D‐(‐)‐Quinic Acid on Aluminum Chloride‐Induced Dementia in Rats. Evidence‐Based Complementary and Alternative Medicine, 2020(1), 5602597. doi: 10.1155/2020/5602597.
  • Mecocci, P., Boccardi, V., Cecchetti, R., Bastiani, P., Scamosci, M., Ruggiero, C., & Baroni, M. (2018). A long journey into aging, brain aging, and Alzheimer’s disease following the oxidative stress tracks. Journal of Alzheimer's Disease, 62(3), 1319-1335. doi: 10.3233/JAD-170732.
  • Murugesan, A., et al. (2020). Design and synthesis of novel quinic acid derivatives: in vitro cytotoxicity and anticancer effect on glioblastoma. Future medicinal chemistry. 12(21), 1891-1910. doi: 10.4155/fmc-2020-0194.
  • Na, J-Y., Song, K., Lee, J-W., Kim, S., Kwon, J. (2017). Sortilin-related receptor 1 interacts with amyloid precursor protein and is activated by 6-shogaol, leading to inhibition of the amyloidogenic pathway. Biochemical and Biophysical Research Communications, 484(4), 890–895. doi: 10.1016/j.bbrc.2017.02.029.
  • Nelson, L., & Tabet, N. (2015). Slowing the progression of Alzheimer’s disease; what works?. Ageing research reviews, 23, 193-209. doi: 10.1016/j.arr.2015.07.002.
  • Ono, K., et al. (2020). Pine bark polyphenolic extract attenuates amyloid-β and tau misfolding in a model system of Alzheimer’s disease neuropathology. Journal of Alzheimer’s Disease, 15, 1–10. doi: 10.3233/JAD-190543.
  • Park, Y., Paing, Y. M. M., Cho, N., Kim, C., Yoo, J., Choi, J. W., & Lee, S. H. (2024). Quinic Acid Alleviates Behavior Impairment by Reducing Neuroinflammation and MAPK Activation in LPS-Treated Mice. Biomolecules & Therapeutics, 32(3), 309. doi: 10.4062/biomolther.2023.184.
  • Peng, Y., Jin, H., Xue, Y. H., Chen, Q., Yao, S. Y., Du, M. Q., & Liu, S. (2023). Current and future therapeutic strategies for Alzheimer’s disease: An overview of drug development bottlenecks. Frontiers in aging neuroscience, 15, 1206572. doi: 10.3389/fnagi.2023.1206572.
  • Pero, R. W., Lund, H., & Leanderson, T. (2009). Antioxidant metabolism induced by quinic acid. Increased urinary excretion of tryptophan and nicotinamide. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 23(3), 335-346. doi: 10.1002/ptr.2628.
  • Rajmohan, R., & Reddy, P. H. (2017). Amyloid-beta and phosphorylated tau accumulations cause abnormalities at synapses of Alzheimer’s disease neurons. Journal of Alzheimer's Disease, 57(4), 975-999. doi: 10.3233/JAD-160612.
  • Soh, Y., Kim, J., Sohn, N.W., Lee, K.R., & Kim, S.Y. (2003). Protective Effects of Quinic Acid Derivatives on Tetrahydropapaveroline-Induced Cell Death in C6 Glioma Cells. Biological & Pharmaceutical Bulletin, 26(6):803-7. doi: 10.1248/bpb.26.803.
  • Squitti, R., Rongioletti, M. C. A., & Liguri, G. (2023). Copper, oxidative stress, Alzheimer's disease, and dementia. Vitamins and Minerals in Neurological Disorders, 65-85. https://doi.org/10.1016/B978-0-323-89835-5.00030-2.
  • Zafeer, M. F., et al. (2018). Perillyl alcohol alleviates amyloid-β peptides-induced mitochondrial dysfunction and cytotoxicity in SH-SY5Y cells. International journal of biological macromolecules, 109, 1029-1038. doi: 10.1016/j.ijbiomac.2017.11.082.
  • Zhang, L., et al. (2019). Edaravone reduces Aβ-induced oxidative damage in SH-SY5Y cells by activating the Nrf2/ARE signaling pathway. Life sciences, 221, 259-266. doi: 10.1016/j.lfs.2019.02.025.
There are 38 citations in total.

Details

Primary Language English
Subjects Medical Pharmacology
Journal Section Research Articles
Authors

Betul Cicek 0000-0003-1395-1326

Yeşim Yeni 0000-0002-6719-7077

Publication Date December 30, 2024
Submission Date August 18, 2024
Acceptance Date November 21, 2024
Published in Issue Year 2024 Volume: 2 Issue: 3

Cite

APA Cicek, B., & Yeni, Y. (2024). Quinic Acid Protects Human SH-SY5Y Neuroblastoma Cells Against Amyloid-β Cytotoxicity. Recent Trends in Pharmacology, 2(3), 109-114. https://doi.org/10.62425/rtpharma.1535306