Research Article
BibTex RIS Cite

MYC MEME KANSERI HÜCRELERINDE tRNA’LARIN IFADESINI REGÜLE EDER

Year 2023, Volume: 6 Issue: 1, 88 - 95, 28.02.2023
https://doi.org/10.26650/JARHS2023-1199491

Abstract

Amaç: Protein sentezi süreci, DNA’nın çekirdekte mRNA’ya kopyalanmasıyla başlar, ardından mRNA, bir proteine çevrilmek üzere sitoplazmaya taşınır ve ribozoma bağlanır. Protein sentezi sadece sitoplazmada gerçekleşmez. Mitokondri de kendi genetik sistemine sahiptir. Bu nedenle mtDNA’da replikasyon, transkripsiyon ve translasyon gerçekleşir. MYC onkogeni, birçok kanser türünün gelişimine neden olur. MYC ayrıca ribozom biyogenezi ve protein sentezi ile ilgili bazı hedef genleri kontrol eder. tRNA sentetazlarının artan ifadelerinin, çeşitli insan kanseri türlerinde tümör büyümesini desteklemede önemli rolü olduğu bulunmuştur. Bu çalışmada, nükleus ve mitokondride görev yapan tRNA‘ların MYC’e bağımlı ifadelerini belirlemeyi amaçladık. Gereç ve Yöntem: Hücreler lentiviral MYC overekspresyon/shRNA vektörleri ile infekte edildi. RNA izolasyonu için TRIZOL reaktifi kullanıldı ve yeni nesil dizileme için kütüphaneler hazırlandı. RNA örneklerinin ve kütüphanelerin kalitesi, Agilent BioAnalyzer kullanılarak değerlendirildi. Dizileme, Illumina HT2500 platformunda yapıldı. Bulgular: Meme kanseri hücrelerinde MYC ifade değişimine bağlı olarak 65 nuklear tRNA ve 6 nükleer kodlanmış mitokondriyal tRNA saptadık. Sonuç: Bu çalışma, meme kanserinde tRNA‘ların MYC‘e bağlı regülasyonunu ortaya koymaktadır. Moleküler mekanizmaların aydınlatılması için daha ileri fonksiyonel çalışmalar gereklidir.

Supporting Institution

Pamukkale Üniversitesi BAP

Project Number

2016HZDP006

References

  • 1. Gupta T, Malkin MG, Huang S. tRNA function and dysregulation in cancer. Front Cell Dev Biol 2022;1;10:886642. google scholar
  • 2. Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, et al. Sequence and organization of the human mitochondrial genome. Nature 1981;290(5806):457-65. google scholar
  • 3. Montoya J, Christianson T, Levens D, Rabinowitz M, Attardi G. Identification of initiation sites for heavy-strand and light-strand transcription in human mitochondrial DNA. Proc Natl Acad Sci USA 1982;79(23):7195-9; google scholar
  • 4. Ojala D, Montoya J, Attardi G. tRNA punctuation model of RNA processing in human mitochondria. Nature 1981;290(5806):470-4. google scholar
  • 5. Takaku H, Minagawa A, Takagi M, Nashimoto M. A candidate prostate cancer susceptibility gene encodes tRNA 3’ processing endoribonuclease. Nucleic Acids Res 2003;31(9):2272-8 google scholar
  • 6. Gagliardi D, Stepien PP, Temperley RJ, Lightowlers RN, Chrzanowska-Lightowlers ZM. Messenger RNA stability in mitochondria: different means to an end. Trends Genet 2004;20(6):260-7. google scholar
  • 7. Holzmann J, Frank P, Loffler E, Bennett KL, Gerner C, Rossmanith W. RNase P without RNA: identification and functional reconstitution of the human mitochondrial tRNA processing enzyme. Cell 2008;135(3):462-74 google scholar
  • 8. Koripella RK, Sharma M, Risteff P, Keshavan P, Agrawal RK. Structural insights into unique features of the human mitochondrial ribosome recycling. Proc Natl Acad Sci U.S.A. 2019;116(17):8283-8 google scholar
  • 9. De Silva D, Tu YT, Amunts A, Fontanesi F, Barrientos A. Mitochondrial ribosome assembly in health and disease. Cell Cycle 2015;14(14):2226—50 google scholar
  • 10. Kwon NH, Lee JY, Kim S. Role of tRNAs in Breast Cancer Regulation. Adv Exp Med Biol 2021;1187:121-45 google scholar
  • 11. Pavon-Eternod M, Gomes S, Geslain R, Dai Q, Rosner MR, Pan T. tRNA over-expression in breast cancer and functional consequences. Nucleic Acids Res 2009;37(21):7268-80. google scholar
  • 12. Ferrari A, Del’olio S, Barrientos A. The diseased mitoribosome. FEBS Lett 2020;595(8):1025-61. google scholar
  • 13. Kummer E, Ban N. Mechanisms and regulation of protein synthesis in mitochondria. Nat Rev Mol Cell Biol 2021;22(5):307-25. google scholar
  • 14. Cheung EC, Vousden KH. The role of ROS in tumour development and progression. Nat Rev Cancer 2022;22(5):280-97. google scholar
  • 15. Park SG, Schimmel P, Kim S. Aminoacyl tRNA synthetases and their connections to disease. Proc Natl Acad Sci U S A 2008;105(32):11043-9. google scholar
  • 16. Hyeon DY, Kim JH, Ahn TJ, Cho Y, Hwang D, Kim S. Evolution of the multi-tRNA synthetase complex and its role in cancer. J Biol Chem 2019;294(14):5340-51. google scholar
  • 17. Green AR, Aleskandarany MA, Agarwal D, Elsheikh S, Nolan CC, Diez-Rodriguez M, et al. MYC functions are specific in biological subtypes of breast cancer and confers resistance to endocrine therapy in luminal tumours. Br J Cancer 2016;114(8):917-28. google scholar
  • 18. Tokgun O, Tokgun PE, Inci K, Akca H. lncRNAs as potential targets in small cell lung cancer: MYC -dependent regulation. Anticancer Agents Med Chem 2020;20(17):2074-81. google scholar
  • 19. Dardenne E, Beltran H, Benelli M, Gayvert K, Berger A, Puca L, et al. N-Myc Induces an EZH2-Mediated Transcriptional Program Driving Neuroendocrine Prostate Cancer. Cancer Cell 2016;30(4):563-77. google scholar
  • 20. Xu J, Chen Y, Olopade OI. MYC and Breast Cancer. Genes Cancer 2010;1(6):629-40. google scholar
  • 21. Dang CV. MYC, metabolism, cell growth, and tumorigenesis. Cold Spring Harb Perspect Med 2013;3(8):a014217. google scholar
  • 22. Kim J, Lee JH, Iyer VR. Global identification of Myc target genes reveals its direct role in mitochondrial biogenesis and its E-box usage in vivo. PLoS One 2008;3(3):e1798. google scholar
  • 23. Seitz V, Butzhammer P, Hirsch B, Hecht J, Gütgemann I, Ehlers A, Lenze D, Oker E, Sommerfeld A, von der Wall E, König C, Zinser C, Spang R, Hummel M. Deep sequencing of MYC DNA-binding sites in Burkitt lymphoma. PLoS One 2011;6(11):e26837. google scholar
  • 24. Dang CV. MYC, microRNAs and glutamine addiction in cancers. Cell Cycle 2009;8(20):3243-5. google scholar
  • 25. Zirin J, Ni X, Sack LM, Yang-Zhou D, Hu Y, Brathwaite R, Bulyk ML, Elledge SJ, Perrimon N. Interspecies analysis of MYC targets identifies tRNA synthetases as mediators of growth and survival in MYC-overexpressing cells. PNAS 2019;116(29):14614-9. google scholar
  • 26. Tokgun O, Fiorentino FP, Tokgun PE, Yokota J, Akca H. Design of a Lentiviral Vector for the Inducible Expression of MYC: A New Strategy for Construction Approach. Mol Biotechnol 2017;59(6):200-6. google scholar
  • 27. Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, Szczesniak MW, Gaffney DJ, Elo LL, Zhang X, Mortazavi A. A survey of best practices for RNA-seq data analysis. Genome Biol 2016;17(13):2-19. google scholar
  • 28. Goodenbour JM, Pan T. Diversity of tRNA genes in eukaryotes. Nucleic Acids Res 2006;34(21):6137-46. google scholar
  • 29. Goodarzi H, Nguyen HC, Zhang S, Dill BD, Molina H, Tavazoie SF. Modulated expression of specific tRNAs drives gene expression and cancer progression. Cell 2016;165(6):1416-27 google scholar
  • 30. Sangha AK, Kantidakis T. The aminoacyl-tRNA synthetase and tRNA expression levels are deregulated in cancer and correlate independently with patient survival. Curr Issues Mol Biol 2022;44(7):3001-17. google scholar
  • 31. Santos M, Fidalgo A, Varanda AS, Soares AR, Almeida GM, Martins D, et al. upregulation of tRNA-Ser-AGA-2-1 promotes malignant behavior in normal bronchial cells. Front Mol Biosci 2022;9:809985. google scholar
  • 32. Passarelli MC, Pinzaru AM, Asgharian H, Liberti MV, Heissel S, Molina H, Goodarzi H, Tavazoie SF. Leucyl-tRNA synthetase is a tumour suppressor in breast cancer and regulates codondependent translation dynamics. Nat Cell Biol 2022;24(3):307-15. google scholar
  • 33. Hoffmann A, Fallmann J, Vilardo E, Morl M, Stadler PF, Amman F. Accurate mapping of tRNA reads. Bioinformatics 2018;34(7):1116-24. google scholar
  • 34. Torres AG, Reina O, Stephan-Otto Attolini C, Ribas de Pouplana L. Differential expression of human tRNA genes drives the abundance of tRNA-derived fragments. Proc Natl Acad Sci U S A 2019;116(17):8451-6. google scholar

DEREGULATED EXPRESSIONS OF MYC ALTER THE EXPRESSIONS OF tRNAS IN BREAST CANCER CELLS

Year 2023, Volume: 6 Issue: 1, 88 - 95, 28.02.2023
https://doi.org/10.26650/JARHS2023-1199491

Abstract

Objective: The protein synthesis process is started with DNA being transcribed into mRNA in the nucleus, then mRNA is transported to the cytoplasm and attaches to a ribosome in order to be translated into a protein. Protein synthesis not only occurs in the cytoplasm. Mitochondria by itself also has its own genetic system. Therefore mtDNA can be replicated, transcribed, and translated. MYC oncogene drives the generation of many cancer types. MYC also controls some target genes related to ribosome biogenesis and protein synthesis. Increased expressions of tRNA synthetases have been found to be important players in promoting tumor growth in various types of human cancers. In this study we aimed to identify deregulated expressions of tRNAs that are players both in the nucleus and mitochondria in a MYC-dependent manner in breast cancer cells. Material and Methods: Cells were infected with lentiviral MYC shRNA/ overexpression vectors in order to manipulate MYC expressions. TRIZOL reagent was used for RNA isolation and libraries were generated for sequencing. The quality of the RNA samples and libraries was assessed using Agilent BioAnalyzer. Sequencing was performed on the Illumina HT2500 platform. Results: We obtained 6 nuclear-encoded mitochondrial tRNAs and 65 nuclear tRNAs as a result of deregulated expression of MYC. Conclusion: This study reveals MYC-dependent regulation of tRNAs in breast cancer. Further functional studies are required for underlying molecular mechanisms.

Project Number

2016HZDP006

References

  • 1. Gupta T, Malkin MG, Huang S. tRNA function and dysregulation in cancer. Front Cell Dev Biol 2022;1;10:886642. google scholar
  • 2. Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, et al. Sequence and organization of the human mitochondrial genome. Nature 1981;290(5806):457-65. google scholar
  • 3. Montoya J, Christianson T, Levens D, Rabinowitz M, Attardi G. Identification of initiation sites for heavy-strand and light-strand transcription in human mitochondrial DNA. Proc Natl Acad Sci USA 1982;79(23):7195-9; google scholar
  • 4. Ojala D, Montoya J, Attardi G. tRNA punctuation model of RNA processing in human mitochondria. Nature 1981;290(5806):470-4. google scholar
  • 5. Takaku H, Minagawa A, Takagi M, Nashimoto M. A candidate prostate cancer susceptibility gene encodes tRNA 3’ processing endoribonuclease. Nucleic Acids Res 2003;31(9):2272-8 google scholar
  • 6. Gagliardi D, Stepien PP, Temperley RJ, Lightowlers RN, Chrzanowska-Lightowlers ZM. Messenger RNA stability in mitochondria: different means to an end. Trends Genet 2004;20(6):260-7. google scholar
  • 7. Holzmann J, Frank P, Loffler E, Bennett KL, Gerner C, Rossmanith W. RNase P without RNA: identification and functional reconstitution of the human mitochondrial tRNA processing enzyme. Cell 2008;135(3):462-74 google scholar
  • 8. Koripella RK, Sharma M, Risteff P, Keshavan P, Agrawal RK. Structural insights into unique features of the human mitochondrial ribosome recycling. Proc Natl Acad Sci U.S.A. 2019;116(17):8283-8 google scholar
  • 9. De Silva D, Tu YT, Amunts A, Fontanesi F, Barrientos A. Mitochondrial ribosome assembly in health and disease. Cell Cycle 2015;14(14):2226—50 google scholar
  • 10. Kwon NH, Lee JY, Kim S. Role of tRNAs in Breast Cancer Regulation. Adv Exp Med Biol 2021;1187:121-45 google scholar
  • 11. Pavon-Eternod M, Gomes S, Geslain R, Dai Q, Rosner MR, Pan T. tRNA over-expression in breast cancer and functional consequences. Nucleic Acids Res 2009;37(21):7268-80. google scholar
  • 12. Ferrari A, Del’olio S, Barrientos A. The diseased mitoribosome. FEBS Lett 2020;595(8):1025-61. google scholar
  • 13. Kummer E, Ban N. Mechanisms and regulation of protein synthesis in mitochondria. Nat Rev Mol Cell Biol 2021;22(5):307-25. google scholar
  • 14. Cheung EC, Vousden KH. The role of ROS in tumour development and progression. Nat Rev Cancer 2022;22(5):280-97. google scholar
  • 15. Park SG, Schimmel P, Kim S. Aminoacyl tRNA synthetases and their connections to disease. Proc Natl Acad Sci U S A 2008;105(32):11043-9. google scholar
  • 16. Hyeon DY, Kim JH, Ahn TJ, Cho Y, Hwang D, Kim S. Evolution of the multi-tRNA synthetase complex and its role in cancer. J Biol Chem 2019;294(14):5340-51. google scholar
  • 17. Green AR, Aleskandarany MA, Agarwal D, Elsheikh S, Nolan CC, Diez-Rodriguez M, et al. MYC functions are specific in biological subtypes of breast cancer and confers resistance to endocrine therapy in luminal tumours. Br J Cancer 2016;114(8):917-28. google scholar
  • 18. Tokgun O, Tokgun PE, Inci K, Akca H. lncRNAs as potential targets in small cell lung cancer: MYC -dependent regulation. Anticancer Agents Med Chem 2020;20(17):2074-81. google scholar
  • 19. Dardenne E, Beltran H, Benelli M, Gayvert K, Berger A, Puca L, et al. N-Myc Induces an EZH2-Mediated Transcriptional Program Driving Neuroendocrine Prostate Cancer. Cancer Cell 2016;30(4):563-77. google scholar
  • 20. Xu J, Chen Y, Olopade OI. MYC and Breast Cancer. Genes Cancer 2010;1(6):629-40. google scholar
  • 21. Dang CV. MYC, metabolism, cell growth, and tumorigenesis. Cold Spring Harb Perspect Med 2013;3(8):a014217. google scholar
  • 22. Kim J, Lee JH, Iyer VR. Global identification of Myc target genes reveals its direct role in mitochondrial biogenesis and its E-box usage in vivo. PLoS One 2008;3(3):e1798. google scholar
  • 23. Seitz V, Butzhammer P, Hirsch B, Hecht J, Gütgemann I, Ehlers A, Lenze D, Oker E, Sommerfeld A, von der Wall E, König C, Zinser C, Spang R, Hummel M. Deep sequencing of MYC DNA-binding sites in Burkitt lymphoma. PLoS One 2011;6(11):e26837. google scholar
  • 24. Dang CV. MYC, microRNAs and glutamine addiction in cancers. Cell Cycle 2009;8(20):3243-5. google scholar
  • 25. Zirin J, Ni X, Sack LM, Yang-Zhou D, Hu Y, Brathwaite R, Bulyk ML, Elledge SJ, Perrimon N. Interspecies analysis of MYC targets identifies tRNA synthetases as mediators of growth and survival in MYC-overexpressing cells. PNAS 2019;116(29):14614-9. google scholar
  • 26. Tokgun O, Fiorentino FP, Tokgun PE, Yokota J, Akca H. Design of a Lentiviral Vector for the Inducible Expression of MYC: A New Strategy for Construction Approach. Mol Biotechnol 2017;59(6):200-6. google scholar
  • 27. Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, Szczesniak MW, Gaffney DJ, Elo LL, Zhang X, Mortazavi A. A survey of best practices for RNA-seq data analysis. Genome Biol 2016;17(13):2-19. google scholar
  • 28. Goodenbour JM, Pan T. Diversity of tRNA genes in eukaryotes. Nucleic Acids Res 2006;34(21):6137-46. google scholar
  • 29. Goodarzi H, Nguyen HC, Zhang S, Dill BD, Molina H, Tavazoie SF. Modulated expression of specific tRNAs drives gene expression and cancer progression. Cell 2016;165(6):1416-27 google scholar
  • 30. Sangha AK, Kantidakis T. The aminoacyl-tRNA synthetase and tRNA expression levels are deregulated in cancer and correlate independently with patient survival. Curr Issues Mol Biol 2022;44(7):3001-17. google scholar
  • 31. Santos M, Fidalgo A, Varanda AS, Soares AR, Almeida GM, Martins D, et al. upregulation of tRNA-Ser-AGA-2-1 promotes malignant behavior in normal bronchial cells. Front Mol Biosci 2022;9:809985. google scholar
  • 32. Passarelli MC, Pinzaru AM, Asgharian H, Liberti MV, Heissel S, Molina H, Goodarzi H, Tavazoie SF. Leucyl-tRNA synthetase is a tumour suppressor in breast cancer and regulates codondependent translation dynamics. Nat Cell Biol 2022;24(3):307-15. google scholar
  • 33. Hoffmann A, Fallmann J, Vilardo E, Morl M, Stadler PF, Amman F. Accurate mapping of tRNA reads. Bioinformatics 2018;34(7):1116-24. google scholar
  • 34. Torres AG, Reina O, Stephan-Otto Attolini C, Ribas de Pouplana L. Differential expression of human tRNA genes drives the abundance of tRNA-derived fragments. Proc Natl Acad Sci U S A 2019;116(17):8451-6. google scholar
There are 34 citations in total.

Details

Primary Language English
Subjects Clinical Sciences
Journal Section Research Articles
Authors

Pervin Elvan Tokgün 0000-0001-9025-4140

Onur Tokgün 0000-0003-0537-9032

Project Number 2016HZDP006
Publication Date February 28, 2023
Submission Date November 4, 2022
Published in Issue Year 2023 Volume: 6 Issue: 1

Cite

MLA Tokgün, Pervin Elvan and Onur Tokgün. “DEREGULATED EXPRESSIONS OF MYC ALTER THE EXPRESSIONS OF TRNAS IN BREAST CANCER CELLS”. Sağlık Bilimlerinde İleri Araştırmalar Dergisi, vol. 6, no. 1, 2023, pp. 88-95, doi:10.26650/JARHS2023-1199491.