Research Article
BibTex RIS Cite

YAPAY ZEKA KORKUSU: DİŞ HEKİMLERİ VE BİLİNMEYENİN KAYGISI

Year 2024, Volume: 7 Issue: 1, 55 - 60, 15.02.2024

Abstract

Amaç: Diş hekimliğinde Yapay Zeka (YZ), hasta bakımını ve tedavi sonuçlarını iyileştirme potansiyeline sahiptir, ancak aynı zamanda iş güvenliği, etik sorunlar ve sağlanan bakımın kalitesi üzerindeki etkisi hakkında endişeler doğurur. Bu nedenle, diş hekimlerinin endişelerini ele alırken aynı zamanda hasta güvenliğini ve bakım kalitesini sağlayan etkili stratejiler geliştirmek için diş hekimlerinin YZ’ye yönelik tutumlarını ve endişelerini araştırmak önemlidir. Bu çalışmanın amacı, çeşitli seçilmiş faktörlerin etkisini araştırırken aynı zamanda diş hekimlerinin yaşadığı YZ kaygı (YZK) düzeylerini araştırmaktı.

Gereç ve Yöntem: Bu çalışma için diş hekimlerinden yaş, cinsiyet, medeni durum, uzmanlık alanı ve mesleki deneyim yılına ilişkin veriler çevrimiçi olarak toplanmıştır. Katılımcıların YZK düzeyleri Yapay Zeka Kaygı Ölçeği (YZKÖ) kullanılarak değerlendirildi.

Bulgular: Ankete 116 erkek ve 212 kadın olmak üzere 328 diş hekimi katılmıştır ve orta düzeyde YZK (65,60±28,55) ortaya çıkmıştır. YZK düzeyleri kadınlarda erkeklerden anlamlı olarak yüksekti. (p<0,05). Protez uzmanları en yüksek YZK seviyelerini (75,63±34,86) sergilerken, restoratif diş hekimleri en düşük seviyeleri (44,63±12,50) gösterdi. YZK, yaş veya meslekte çalışma süresi ile anlamlı bir ilişki göstermedi (p>0,05). YZK ile tüm alt boyutlar arasında ve alt boyutların kendi aralarında da korelasyon vardı (p<0,01). Cronbach’s Alpha tüm maddeler için 0,96 idi.

Sonuç: Diş hekimleri yapay zekaya karşı orta düzeyde kaygı yaşasalar da, inovatif teknolojiyi kendi yararlarına etkili bir şekilde kullanmak için gerekli bilgi ve becerileri edinmeleri çok önemlidir

References

  • Mörch CM, Atsu S, Cai W, Li X, Madathil SA, Liu X, et al. Artificial Intelligence and Ethics in Dentistry: A Scoping Review. J Dent Res 2021;100(13):1452-60. google scholar
  • Shan T, Tay FR, Gu L. Application of Artificial Intelligence in Dentistry. J Dent Res 2021;100(3):232-44. google scholar
  • Schwendicke F, Samek W, Krois J. Artificial Intelligence in Dentistry: Chances and Challenges. J Dent Res 2020;99(7):769-74. google scholar
  • Chen YW, Stanley K, Att W. Artificial intelligence in dentistry: current applications and future perspectives. Quintessence Int 2022;51(3):248-57. google scholar
  • Grischke J, Johannsmeier L, Eich L, Griga L, Haddadin S. Dentronics: Towards robotics and artificial intelligence in dentistry. Dent Mater 2020;36(6):765-78. google scholar
  • Montemayor C, Halpern J, Fairweather A. In principle obstacles for empathic AI: why we can’t replace human empathy in healthcare. AI Soc 2022;37(4):1353-9. google scholar
  • Carrillo-Perez F, Pecho OE, Morales JC, Paravina RD, Della Bona A, Ghinea R, et al. Applications of artificial intelligence in dentistry: A comprehensive review. J Esthet Restor Dent 2022;(34):259-80. google scholar
  • Ahmed N, Abbasi MS, Zuberi F, Qamar W, Halim MSB, Maqsood A, et al. Artificial Intelligence Techniques: Analysis, Application, and Outcome in Dentistry-A Systematic Review. Biomed Res Int 2021;9751564:15. google scholar Khanagar SB, Al-Ehaideb A, Maganur PC, Vishwanathaiah S, Patil S, Baeshen HA, et al. Developments, application, and performance of artificial intelligence in dentistry - A systematic review. J Dent Sci 2021;16(1):508-22. google scholar
  • Revilla-Leon M, Gomez-Polo M, Barmak AB, Inam W, Kan JYK, Kois JC, et al. Artificial intelligence models for diagnosing gingivitis and periodontal disease: A systematic review. J Prosthet Dent 2022 Mar 14. doi: 10.1016/j.prosdent.2022.01.026. google scholar
  • Başer A, Altuntaş SB, Kolcu G, Özceylan G. Artificial Intelligence Anxiety of Family Physicians in Turkey, Prog Nutr 2021;23(2):1-7. google scholar
  • Terzi, R. An Adaptation of Artificial Intelligence Anxiety Scale into Turkish: Reliability and Validity Study. IOJET 2020;7(4):1501-15. google scholar
  • Wang, YY, Wang, YS. Development and validation of an artificial intelligence anxiety scale: An initial application in predicting motivated learning behavior. Interact Learn Environ 2022;30(4):619-34. google scholar
  • Kaya F, Aydin F, Schepman A, Rodway P, Yetişensoy O, Demir Kaya M. The roles of personality traits, AI anxiety, and demographic factors in attitudes toward artificial intelligence. Int J Hum-Comput Int 2022;38:1-18. google scholar
  • Nasreldin Othman W, Mohamed Zanaty M, Mohamed Elghareeb, S. Nurses’ Anxiety level toward Partnering with Artificial Intelligence in Providing Nursing Care: Pre&Post Training Session. Egypt J Health Care 2021;12(4):1386-96. google scholar
  • Johnson DG, Verdicchio M. AI anxiety. J Assoc Inf Sci Technol 2017;68(9):2267-70. google scholar
  • Menekli T, Şentürk S. The Relationship Between Artificial Intelligence Concerns And Perceived Spiritual Care in Internal Medicine Nurses. YOBU J Health Sci 2022;3(2):210-8. google scholar
  • European Commission, & Directorate-General for Communications Networks, Content and Technology. Attitudes towards the impact of digitisation and automation on daily life: Report. 2017. https:// data.europa.eu/doi/10.2759/835661 google scholar
  • Fietta V, Zecchinato, F, Di Stasi B, Polato M, Monaro M. Dissociation between Users’ Explicit and Implicit Attitudes towards Artificial Intelligence: An Experimental Study. IEEE Trans Hum Mach Syst 2021;52(3):481-9. google scholar
  • Schepman A, Rodway P. Initial validation of the general attitudes towards Artificial Intelligence Scale. Comput Hum Behav Reports 2020;1:1-13. google scholar
  • Singi SR, Sathe S, Reche AR, Sibal A, Mantri N. Extended Arm of Precision in Prosthodontics: Artificial Intelligence. Cureus 2022;14(11):1-9. e30962. google scholar
  • Bernauer SA, Zitzmann NU, Joda T. The Use and Performance of Artificial Intelligence in Prosthodontics: A Systematic Review. Sensors 2021;21(19):6628. google scholar
  • Hedderich DM, Keicher M, Wiestler B, Gruber MJ, Burwinkel H, Hinterwimmer F, et al. AI for Doctors-A Course to Educate Medical Professionals in Artificial Intelligence for Medical Imaging. Healthcare (Basel) 2021;9(10):1278. google scholar
  • Lindqwister AL, Hassanpour S, Levy J, Sin JM. AI-RADS: Successes and challenges of a novel artificial intelligence curriculum for radiologists across different delivery formats. Front Med Technol 2023;4:1007708. google scholar
  • Yüzbaşıoğlu E. Attitudes and perceptions of dental students towards artificial intelligence. J Dent Educ 2021;85(1):60-8. google scholar
  • Grunhut J, Wyatt AT, Marques O. Educating Future Physicians in Artificial Intelligence (AI): An Integrative Review and Proposed Changes. J Med Educ Curric Dev 2021;8:23821205211036836. google scholar

THE FEAR OF ARTIFICIAL INTELLIGENCE: DENTISTS AND THE ANXIETY OF THE UNKNOWN

Year 2024, Volume: 7 Issue: 1, 55 - 60, 15.02.2024

Abstract

Objective: Artificial Intelligence (AI) has the potential to improve patient care and treatment outcomes; however, it also raises concerns about job security, ethical issues, and the impact on the quality of care provided. It is important to investigate the attitudes and concerns of dental professionals towards AI to develop effective strategies for its implementation that ensure patient safety and quality of care while also addressing the concerns of dental professionals. This study aimed to explore the levels of AI anxiety (AIA) experienced by dentists and to investigate the influence of various factors.

Materials and Methods: Data were collected online from 328 dentists (116 males, and 212 females) regarding their age, sex, marital status, field of specialization, and years of professional experience. The levels of AIA among the participants were assessed using the Artificial Intelligence Anxiety Scale (AIAS).

Results: The Dentists participated in the survey, revealing a moderate level of AIA (65.60±28.55). The AIA levels were significantly higher in females compared to males (p<0.05). Prosthodontists exhibited the highest levels of AIA (75.63±34.86), whereas restorative dentists showed the lowest levels (44.63±12.50). AIA did not show any significant correlations with age or length of work in the profession (p>0.05). There were correlations between AIA and all sub-dimensions, as well as among the sub-dimensions themselves (p<0.01).

Conclusion: Although dentists experience moderate levels of anxiety toward AI, they must acquire the knowledge and skills required to effectively utilize this innovative technology for their benefit.

References

  • Mörch CM, Atsu S, Cai W, Li X, Madathil SA, Liu X, et al. Artificial Intelligence and Ethics in Dentistry: A Scoping Review. J Dent Res 2021;100(13):1452-60. google scholar
  • Shan T, Tay FR, Gu L. Application of Artificial Intelligence in Dentistry. J Dent Res 2021;100(3):232-44. google scholar
  • Schwendicke F, Samek W, Krois J. Artificial Intelligence in Dentistry: Chances and Challenges. J Dent Res 2020;99(7):769-74. google scholar
  • Chen YW, Stanley K, Att W. Artificial intelligence in dentistry: current applications and future perspectives. Quintessence Int 2022;51(3):248-57. google scholar
  • Grischke J, Johannsmeier L, Eich L, Griga L, Haddadin S. Dentronics: Towards robotics and artificial intelligence in dentistry. Dent Mater 2020;36(6):765-78. google scholar
  • Montemayor C, Halpern J, Fairweather A. In principle obstacles for empathic AI: why we can’t replace human empathy in healthcare. AI Soc 2022;37(4):1353-9. google scholar
  • Carrillo-Perez F, Pecho OE, Morales JC, Paravina RD, Della Bona A, Ghinea R, et al. Applications of artificial intelligence in dentistry: A comprehensive review. J Esthet Restor Dent 2022;(34):259-80. google scholar
  • Ahmed N, Abbasi MS, Zuberi F, Qamar W, Halim MSB, Maqsood A, et al. Artificial Intelligence Techniques: Analysis, Application, and Outcome in Dentistry-A Systematic Review. Biomed Res Int 2021;9751564:15. google scholar Khanagar SB, Al-Ehaideb A, Maganur PC, Vishwanathaiah S, Patil S, Baeshen HA, et al. Developments, application, and performance of artificial intelligence in dentistry - A systematic review. J Dent Sci 2021;16(1):508-22. google scholar
  • Revilla-Leon M, Gomez-Polo M, Barmak AB, Inam W, Kan JYK, Kois JC, et al. Artificial intelligence models for diagnosing gingivitis and periodontal disease: A systematic review. J Prosthet Dent 2022 Mar 14. doi: 10.1016/j.prosdent.2022.01.026. google scholar
  • Başer A, Altuntaş SB, Kolcu G, Özceylan G. Artificial Intelligence Anxiety of Family Physicians in Turkey, Prog Nutr 2021;23(2):1-7. google scholar
  • Terzi, R. An Adaptation of Artificial Intelligence Anxiety Scale into Turkish: Reliability and Validity Study. IOJET 2020;7(4):1501-15. google scholar
  • Wang, YY, Wang, YS. Development and validation of an artificial intelligence anxiety scale: An initial application in predicting motivated learning behavior. Interact Learn Environ 2022;30(4):619-34. google scholar
  • Kaya F, Aydin F, Schepman A, Rodway P, Yetişensoy O, Demir Kaya M. The roles of personality traits, AI anxiety, and demographic factors in attitudes toward artificial intelligence. Int J Hum-Comput Int 2022;38:1-18. google scholar
  • Nasreldin Othman W, Mohamed Zanaty M, Mohamed Elghareeb, S. Nurses’ Anxiety level toward Partnering with Artificial Intelligence in Providing Nursing Care: Pre&Post Training Session. Egypt J Health Care 2021;12(4):1386-96. google scholar
  • Johnson DG, Verdicchio M. AI anxiety. J Assoc Inf Sci Technol 2017;68(9):2267-70. google scholar
  • Menekli T, Şentürk S. The Relationship Between Artificial Intelligence Concerns And Perceived Spiritual Care in Internal Medicine Nurses. YOBU J Health Sci 2022;3(2):210-8. google scholar
  • European Commission, & Directorate-General for Communications Networks, Content and Technology. Attitudes towards the impact of digitisation and automation on daily life: Report. 2017. https:// data.europa.eu/doi/10.2759/835661 google scholar
  • Fietta V, Zecchinato, F, Di Stasi B, Polato M, Monaro M. Dissociation between Users’ Explicit and Implicit Attitudes towards Artificial Intelligence: An Experimental Study. IEEE Trans Hum Mach Syst 2021;52(3):481-9. google scholar
  • Schepman A, Rodway P. Initial validation of the general attitudes towards Artificial Intelligence Scale. Comput Hum Behav Reports 2020;1:1-13. google scholar
  • Singi SR, Sathe S, Reche AR, Sibal A, Mantri N. Extended Arm of Precision in Prosthodontics: Artificial Intelligence. Cureus 2022;14(11):1-9. e30962. google scholar
  • Bernauer SA, Zitzmann NU, Joda T. The Use and Performance of Artificial Intelligence in Prosthodontics: A Systematic Review. Sensors 2021;21(19):6628. google scholar
  • Hedderich DM, Keicher M, Wiestler B, Gruber MJ, Burwinkel H, Hinterwimmer F, et al. AI for Doctors-A Course to Educate Medical Professionals in Artificial Intelligence for Medical Imaging. Healthcare (Basel) 2021;9(10):1278. google scholar
  • Lindqwister AL, Hassanpour S, Levy J, Sin JM. AI-RADS: Successes and challenges of a novel artificial intelligence curriculum for radiologists across different delivery formats. Front Med Technol 2023;4:1007708. google scholar
  • Yüzbaşıoğlu E. Attitudes and perceptions of dental students towards artificial intelligence. J Dent Educ 2021;85(1):60-8. google scholar
  • Grunhut J, Wyatt AT, Marques O. Educating Future Physicians in Artificial Intelligence (AI): An Integrative Review and Proposed Changes. J Med Educ Curric Dev 2021;8:23821205211036836. google scholar
There are 25 citations in total.

Details

Primary Language English
Subjects Dentistry
Journal Section Research Articles
Authors

Hanne Bulut 0000-0003-2772-8096

Nazlı Gül Kınoğlu 0000-0002-8289-9093

Burcu Karaduman 0000-0002-8162-3896

Publication Date February 15, 2024
Submission Date May 26, 2023
Published in Issue Year 2024 Volume: 7 Issue: 1

Cite

MLA Bulut, Hanne et al. “THE FEAR OF ARTIFICIAL INTELLIGENCE: DENTISTS AND THE ANXIETY OF THE UNKNOWN”. Sağlık Bilimlerinde İleri Araştırmalar Dergisi, vol. 7, no. 1, 2024, pp. 55-60.