Research Article
BibTex RIS Cite

The Effects of Artificial Intelligence on Logo Design in Terms of Innovation, Originality and Functionality in Graphic Design

Year 2025, Issue: 45, 53 - 61, 21.03.2025
https://doi.org/10.47571/sanatyorum.1476104

Abstract

The subject of the research is to examine the effects of artificial intelligence technologies on logo design in graphic design. The study was conducted using comparative analysis, literature review and logical reasoning techniques within the scope of qualitative research methods.
These approaches have been selected to examine the effects of artificial intelligence on graphic design and the effects of technological developments on artistic expression and the role of designers and have been limited within the scope of literature and studies analyzed based on the obtained data and theoretical frameworks. The aim of the research is to conceptually discuss the interaction between artificial intelligence and graphic design and to provide insights on the effects of this interaction on designer identity and artistic expression. The findings of the research reveal that artificial intelligence technologies create multifaceted effects on both creative processes and the quality of outputs in the field of graphic design. These effects have been comprehensively evaluated in terms of their positive and negative aspects. The results showed that artificial intelligence technologies affect graphic design processes and reshape the creative and technical approaches of designers. This shaping has led to significant changes both in the professional practices of designers and in the general functioning of the graphic design sector. These changes include enabling designers to work faster and more efficiently in their creative processes, providing more focus and innovation through the automation of repetitive tasks, having wider creative opportunities with the development of design tools, and meeting customer expectations more quickly and effectively.

References

  • Al Harbi, S. H., Tidjon, L. N., & Khomh, F. (2023). Responsible design patterns for machine learning pipelines. arXiv preprint arXiv:2306.01788v3.
  • AlDahoul, N., Hong, J., Varvello, M., & Zaki, Y. (2023). Exploring the potential of generative aI for the world wide web. arXiv preprint arXiv:2310.17370.
  • Andreyev, S. (2007). Design of moveable and resizable graphics. arXiv preprint arXiv:0709.3553.
  • Berkli, Y. (2018). Uygur resim sanatının üslup özellikleri / Uighur painting style features. Atatürk Üniversitesi Sosyal Bilimler Dergisi, 10(45), 155-166.
  • Bostrom, N., & Yudkowsky, E. (2018). The ethics of artificial intelligence. In Artificial intelligence safety and security (pp. 57-69). Chapman and Hall/CRC.
  • Chen, M., Jiang, Y., Cao, Y., & Zomaya, A. Y. (2019). CreativeBioMan: Brain and body wearable computing based creative gaming system. arXiv preprint arXiv:1906.01801.
  • Cheng, R., Wang, R., Zimmermann, T., & Ford, D. (2023). “It would work for me too”: How Online Communities Shape Software Developers’ Trust in AIPowered Code Generation Tools. arXiv preprint arXiv:2212.03491v2.
  • Cetinic, E., & She, J. (2021). Understanding and Creating Art with AI: Review and Outlook. arXiv preprint arXiv:2102.09109.
  • Crimaldi, F., & Leonelli, M. (2023). AI and the creative realm: A short review of current and future applications. arXiv preprint arXiv:2306.01795.
  • Denli, S. (2016). Görsel İletişimde İnfografik. Journal of International Social Research, 9(42).
  • Derner, E., Kučera, D., Oliver, N., & Zahálka, J. (2023). Can ChatGPT Read Who You Are? arXiv preprint arXiv:2312.16070.
  • Ding, Z., & Chan, J. (2024). Intelligent canvas: Enabling designlike exploratory visual data analysis with generative aI through rapid prototyping, iteration and curation. arXiv preprint arXiv:2402.08812.
  • Dobrev, D. (2012). Formal Definition of AI. İnternational Journal “Information Theories & Applications”, 12(3), 277285.
  • Desai, D. R., & Riedl, M. (2024). Between copyright and computer science: The law and ethics of generative aI. Available at SSRN.
  • Dobrev, D. (2013). Comparison between the two definitions of AI. [No publisher information available].
  • Elgammal, A., Liu, B., Elhoseiny, M., & Mazzone, M. (2017). Can: Creative adversarial networks, generating” art” by learning about styles and deviating from style norms. arXiv preprint arXiv:1706.07068.
  • Frey, C. B., & Osborne, M. A. (2017). The future of employment: How susceptible are jobs to computerisation? Technological forecasting and social change, 114, 254-280.
  • Gmeiner, F., Holstein, K., & Martelaro, N. (2022). Team Learning as a Lens for Designing HumanAI CoCreative Systems. arXiv preprint arXiv:2207.02996.
  • Gülpınar, Ş., & Boyraz, B. (2024). Sanatın dijital çağda yeniden tanımlanması: Yapay zekâ perspektifinden bir inceleme. Yıldız Sosyal Bilimler Enstitüsü Dergisi, 8(1), 1-14.
  • Halina, E., & Guzdial, M. (2022). Threshold designer adaptation: Improved adaptation for designers in cocreative systems. arXiv preprint arXiv:2205.09269.
  • Hertzmann, A. (2018, May). Can computers create art? In Arts (Vol. 7, No. 2, p. 18). MDPI.
  • Huang, D., Guo, J., Sun, S., Tian, H., Lin, J., Hu, Z., Lin, C. Y., Lou, J. G., & Zhang, D. (2023). A survey for graphic design intelligence. arXiv preprint arXiv:2309.01371.
  • Kuang, C., & Fabricant, R. (2019). User friendly: How the hidden rules of design are changing the way we live, work & play. Random House.
  • Lee, J., Kim, T.H., Jeon, S.H., Park, S.H., Kim, S.H., Lee, E.H., & Lee, J.H. (2023). Automation of trimming die design inspection by zigzag process between aI and CAD domains. arXiv preprint arXiv:2305.16866.
  • Legg, S., & Hutter, M. (2007). A Collection of Definitions of Intelligence. Frontiers in Artificial Intelligence and Applications, 157, 1724.
  • Li, G., & Yang, X. (2023). Intelligent Parsing: An Automated Parsing Framework for Extracting Design Semantics from Ecommerce Creatives. arXiv preprint arXiv:2312.17283.
  • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436-444.
  • Liu, R., Chen, B., Guo, X., Dai, Y., Chen, M., & Qiu, Z. (2019). From Knowledge Map to Mind Map: Artificial Imagination. arXiv preprint arXiv:1903.01080.
  • Liu, S., Miao, H., Li, Z., Olson, M., Pascucci, V., & Bremer, P.T. (2023). AVA: Towards Autonomous Visualization Agents through Visual PerceptionDriven DecisionMaking. arXiv preprint arXiv:2312.04494.
  • Main, A., & Grierson, M. (2020). Guru, Partner, or Pencil Sharpener? Understanding Designers’ Attitudes Towards Intelligent Creativity Support Tools. arXiv preprint arXiv:2007.04848.
  • McCormack, J., Gifford, T., & Hutchings, P. (2019). Autonomy, Authenticity, Authorship, and Intention in computer generated art. arXiv preprint arXiv:1903.02166.
  • MeyerVitali, A., Mulder, W., & de Boer, M. H. T. (2021). Modular Design Patterns for Hybrid Actors. arXiv preprint arXiv:2109.09331v2.
  • Mikalonytė, E., & Kneer, M. (2021). Can Artificial Intelligence Make Art? arXiv preprint arXiv:2104.07598.
  • Nghiem, K., Nguyen, A. M., Bui, N. D. Q. (2024). Envisioning the NextGeneration AI Coding Assistants: Insights & Proposals. arXiv preprint arXiv:2403.14592v1.
  • Oleksy, E. M. (2023). That Thing Ain’t Human: The Artificiality of’Human Authorship’and the Intelligence in Expanding Copyright Authorship to Fully Autonomous AI. Clev. St. L. Rev., 72, 263.
  • Özdal, M. A. (2024). Teknolojik Yeniliklerin Tasarim Alanlari Üzerine Etkisi. Baçini Sanat Dergisi, 2(4), 82-100.
  • Pandey, A., Zhang, Y., GuerraGomez, J. A., Parker, A. G., & Borkin, M. A. (2020). Digital Collaborator: Augmenting Task Abstraction in Visualization Design with Artificial Intelligence. arXiv preprint arXiv:2003.01304.
  • Rezwana, J., & Maher, M. L. (2022). Designing Creative AI Partners with COFI: A Framework for Modeling Interaction in HumanAI CoCreative Systems. arXiv preprint arXiv:2204.07666.
  • Russell, S. J., & Norvig, P. (2016). Artificial intelligence: a modern approach. Pearson.
  • Rezwana, J., & Maher, M. L. (2022). Understanding user perceptions, collaborative experience and user engagement in different HumanAI interaction designs for CoCreative Systems. arXiv preprint arXiv:2204.13217.
  • Rožanec, J. M., Montini, E., Cutrona, V., Papamartzivanos, D., Klemenčič, T., Fortuna, B., Mladenić, D., Veliou, E., Giannetsos, T., & Emmanouilidis, C. (2023). Human in the aI loop via xAI and active learning for visual inspection. arXiv preprint arXiv:2307.05508.
  • Russo, D. (2023). Navigating the complexity of generative aI adoption in software engineering. arXiv preprint arXiv:2307.06081v2.
  • Shi, L., Bhattacharya, N., Das, A., Lease, M., & Gwidzka, J. (2022). The effects of interactive aI design on user behavior: An eyetracking study of factchecking COVID19 claims. arXiv preprint arXiv:2202.08901.
  • Shin, D., Wang, L. L., & Hsieh, G. (2024). From paper to card: Transforming fesign implications with generative aI. [No publisher information available].
  • Son, K., Choi, D., Kim, T. S., & Kim, J. (2024). Demystifying tacit knowledge in graphic design: Characteristics, instances, approaches, and guidelines. arXiv preprint arXiv:2403.06252v1.
  • Srinivasan, R., & Uchino, K. (2021). Biases in generative art a causal look from the lens of art history. arXiv preprint arXiv:2010.13266.
  • Tepecik, A., & Kayabekir, T. (2017). Resim-metin ilişkisinde yapısal ve bilişsel kavramların tasarım sürecine etkisi. Atatürk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 21(4), 1641-1653.
  • Xing, B., & Marwala, T. (2018). Creativity and artificial intelligence: A digital art perspective. arXiv preprint arXiv:1807.08195.
  • Xu, H. (2017). On the intervalbased dosefinding designs. arXiv preprint arXiv:1706.03277v2.
  • Xu, W. (2023). AI in HCI design and user experience. arXiv preprint arXiv:2301.00987.
  • Yampolskiy, R. V. (2020). Human ≠ AGI. arXiv preprint arXiv:2007.07710.
  • Görsel Kaynakça Görsel 1. LogoMaker. (2024). “Logo Oluşturma 1. Aşama”. Erişim 28 Mart 2024, https://www.logomaker.com/tr
  • Görsel 2 LogoMaker. (2024). “Logo Oluşturma 2. Aşama”. Erişim 28 Mart 2024, https://www.logomaker.com/tr
  • Görsel 3. LogoMaker. (2024). “Logo Oluşturma 3. Aşama”. Erişim 28 Mart 2024, https://www.logomaker.com/tr
  • Görsel 4. LogoMaker. (2024). “Logo Oluşturma 4. Aşama”. Erişim 28 Mart 2024, https://www.logomaker.com/tr
  • Görsel 5. LogoMaker. (2024). ‘’24 Logo tasarımı 5. Aşama’’. Erişim 28 Mart 2024, https://www.logomaker.com/tr
  • Görsel 6. Apple Logo. Erişim 31 Temmuz 2024 https://tr.wikipedia.org/wiki/Apple
  • Görsel 7. NIKE Logo. Erişim 31 Temmuz 2024 https://about.nike.com/en/newsroom/collections/nike-inc-logos
  • Görsel 8. McDonald’s Logo. Erişim 31 Temmuz 2024 https://tr.wikipedia.org/wiki/McDonald%27s

Yapay Zekânın Grafik Tasarımda Yenilik, Özgünlük ve İşlevsellik Açısından Logo Tasarımı Üzerindeki Etkileri

Year 2025, Issue: 45, 53 - 61, 21.03.2025
https://doi.org/10.47571/sanatyorum.1476104

Abstract

Araştırmanın konusu yapay zekâ teknolojilerinin grafik tasarımda logo tasarımı üzerindeki etkilerini inceleme üzerinedir. Çalışma nitel araştırma yöntemleri kapsamında karşılaştırmalı analiz, literatür taraması ve mantıksal akıl yürütme teknikleri kullanılarak gerçekleştirilmiştir.
Bu yaklaşımlar yapay zekânın grafik tasarım üzerindeki etkilerini ve teknolojik gelişmelerin sanatsal ifade ile tasarımcı rolü üzerindeki etkilerini incelemek için seçilmiş olup elde edilen verilere ve teorik çerçevelere dayanarak analiz edilen literatür ve çalışmalar kapsamında sınırlandırılmıştır. Araştırmanın amacı yapay zekâ ve grafik tasarım arasındaki etkileşimi kavramsal olarak tartışmak ve bu etkileşimin tasarımcı kimliği ile sanatsal ifade üzerindeki etkilerine dair içgörüler sunmaktır. Araştırmanın bulguları, yapay zekâ teknolojilerinin grafik tasarım alanında hem yaratıcı süreçlere hem de çıktıların niteliğine yönelik çok yönlü etkiler yarattığını ortaya koymaktadır. Bu etkiler, olumlu ve olumsuz yönleriyle kapsamlı bir şekilde değerlendirilmiştir. Sonuçları ise yapay zekâ teknolojilerinin grafik tasarım süreçlerini etkileyerek tasarımcıların yaratıcı ve teknik yaklaşımlarını yeniden şekillendirdiğini göstermiştir. Bu şekillendirme hem tasarımcıların mesleki pratiklerinde hem de grafik tasarım sektörünün genel işleyişinde önemli değişimlere yol açmıştır. Bu değişimler arasında tasarımcıların yaratıcı süreçlerinde daha hızlı ve verimli çalışabilmeleri, tekrarlayan görevlerin otomasyonu sayesinde daha fazla odaklanma ve yenilikçilik sağlanması, tasarım araçlarının gelişmesiyle birlikte daha geniş yaratıcı imkanlara sahip olunması ve müşteri beklentilerinin daha hızlı ve etkili bir şekilde karşılanabilmesi yer almaktadır.

References

  • Al Harbi, S. H., Tidjon, L. N., & Khomh, F. (2023). Responsible design patterns for machine learning pipelines. arXiv preprint arXiv:2306.01788v3.
  • AlDahoul, N., Hong, J., Varvello, M., & Zaki, Y. (2023). Exploring the potential of generative aI for the world wide web. arXiv preprint arXiv:2310.17370.
  • Andreyev, S. (2007). Design of moveable and resizable graphics. arXiv preprint arXiv:0709.3553.
  • Berkli, Y. (2018). Uygur resim sanatının üslup özellikleri / Uighur painting style features. Atatürk Üniversitesi Sosyal Bilimler Dergisi, 10(45), 155-166.
  • Bostrom, N., & Yudkowsky, E. (2018). The ethics of artificial intelligence. In Artificial intelligence safety and security (pp. 57-69). Chapman and Hall/CRC.
  • Chen, M., Jiang, Y., Cao, Y., & Zomaya, A. Y. (2019). CreativeBioMan: Brain and body wearable computing based creative gaming system. arXiv preprint arXiv:1906.01801.
  • Cheng, R., Wang, R., Zimmermann, T., & Ford, D. (2023). “It would work for me too”: How Online Communities Shape Software Developers’ Trust in AIPowered Code Generation Tools. arXiv preprint arXiv:2212.03491v2.
  • Cetinic, E., & She, J. (2021). Understanding and Creating Art with AI: Review and Outlook. arXiv preprint arXiv:2102.09109.
  • Crimaldi, F., & Leonelli, M. (2023). AI and the creative realm: A short review of current and future applications. arXiv preprint arXiv:2306.01795.
  • Denli, S. (2016). Görsel İletişimde İnfografik. Journal of International Social Research, 9(42).
  • Derner, E., Kučera, D., Oliver, N., & Zahálka, J. (2023). Can ChatGPT Read Who You Are? arXiv preprint arXiv:2312.16070.
  • Ding, Z., & Chan, J. (2024). Intelligent canvas: Enabling designlike exploratory visual data analysis with generative aI through rapid prototyping, iteration and curation. arXiv preprint arXiv:2402.08812.
  • Dobrev, D. (2012). Formal Definition of AI. İnternational Journal “Information Theories & Applications”, 12(3), 277285.
  • Desai, D. R., & Riedl, M. (2024). Between copyright and computer science: The law and ethics of generative aI. Available at SSRN.
  • Dobrev, D. (2013). Comparison between the two definitions of AI. [No publisher information available].
  • Elgammal, A., Liu, B., Elhoseiny, M., & Mazzone, M. (2017). Can: Creative adversarial networks, generating” art” by learning about styles and deviating from style norms. arXiv preprint arXiv:1706.07068.
  • Frey, C. B., & Osborne, M. A. (2017). The future of employment: How susceptible are jobs to computerisation? Technological forecasting and social change, 114, 254-280.
  • Gmeiner, F., Holstein, K., & Martelaro, N. (2022). Team Learning as a Lens for Designing HumanAI CoCreative Systems. arXiv preprint arXiv:2207.02996.
  • Gülpınar, Ş., & Boyraz, B. (2024). Sanatın dijital çağda yeniden tanımlanması: Yapay zekâ perspektifinden bir inceleme. Yıldız Sosyal Bilimler Enstitüsü Dergisi, 8(1), 1-14.
  • Halina, E., & Guzdial, M. (2022). Threshold designer adaptation: Improved adaptation for designers in cocreative systems. arXiv preprint arXiv:2205.09269.
  • Hertzmann, A. (2018, May). Can computers create art? In Arts (Vol. 7, No. 2, p. 18). MDPI.
  • Huang, D., Guo, J., Sun, S., Tian, H., Lin, J., Hu, Z., Lin, C. Y., Lou, J. G., & Zhang, D. (2023). A survey for graphic design intelligence. arXiv preprint arXiv:2309.01371.
  • Kuang, C., & Fabricant, R. (2019). User friendly: How the hidden rules of design are changing the way we live, work & play. Random House.
  • Lee, J., Kim, T.H., Jeon, S.H., Park, S.H., Kim, S.H., Lee, E.H., & Lee, J.H. (2023). Automation of trimming die design inspection by zigzag process between aI and CAD domains. arXiv preprint arXiv:2305.16866.
  • Legg, S., & Hutter, M. (2007). A Collection of Definitions of Intelligence. Frontiers in Artificial Intelligence and Applications, 157, 1724.
  • Li, G., & Yang, X. (2023). Intelligent Parsing: An Automated Parsing Framework for Extracting Design Semantics from Ecommerce Creatives. arXiv preprint arXiv:2312.17283.
  • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436-444.
  • Liu, R., Chen, B., Guo, X., Dai, Y., Chen, M., & Qiu, Z. (2019). From Knowledge Map to Mind Map: Artificial Imagination. arXiv preprint arXiv:1903.01080.
  • Liu, S., Miao, H., Li, Z., Olson, M., Pascucci, V., & Bremer, P.T. (2023). AVA: Towards Autonomous Visualization Agents through Visual PerceptionDriven DecisionMaking. arXiv preprint arXiv:2312.04494.
  • Main, A., & Grierson, M. (2020). Guru, Partner, or Pencil Sharpener? Understanding Designers’ Attitudes Towards Intelligent Creativity Support Tools. arXiv preprint arXiv:2007.04848.
  • McCormack, J., Gifford, T., & Hutchings, P. (2019). Autonomy, Authenticity, Authorship, and Intention in computer generated art. arXiv preprint arXiv:1903.02166.
  • MeyerVitali, A., Mulder, W., & de Boer, M. H. T. (2021). Modular Design Patterns for Hybrid Actors. arXiv preprint arXiv:2109.09331v2.
  • Mikalonytė, E., & Kneer, M. (2021). Can Artificial Intelligence Make Art? arXiv preprint arXiv:2104.07598.
  • Nghiem, K., Nguyen, A. M., Bui, N. D. Q. (2024). Envisioning the NextGeneration AI Coding Assistants: Insights & Proposals. arXiv preprint arXiv:2403.14592v1.
  • Oleksy, E. M. (2023). That Thing Ain’t Human: The Artificiality of’Human Authorship’and the Intelligence in Expanding Copyright Authorship to Fully Autonomous AI. Clev. St. L. Rev., 72, 263.
  • Özdal, M. A. (2024). Teknolojik Yeniliklerin Tasarim Alanlari Üzerine Etkisi. Baçini Sanat Dergisi, 2(4), 82-100.
  • Pandey, A., Zhang, Y., GuerraGomez, J. A., Parker, A. G., & Borkin, M. A. (2020). Digital Collaborator: Augmenting Task Abstraction in Visualization Design with Artificial Intelligence. arXiv preprint arXiv:2003.01304.
  • Rezwana, J., & Maher, M. L. (2022). Designing Creative AI Partners with COFI: A Framework for Modeling Interaction in HumanAI CoCreative Systems. arXiv preprint arXiv:2204.07666.
  • Russell, S. J., & Norvig, P. (2016). Artificial intelligence: a modern approach. Pearson.
  • Rezwana, J., & Maher, M. L. (2022). Understanding user perceptions, collaborative experience and user engagement in different HumanAI interaction designs for CoCreative Systems. arXiv preprint arXiv:2204.13217.
  • Rožanec, J. M., Montini, E., Cutrona, V., Papamartzivanos, D., Klemenčič, T., Fortuna, B., Mladenić, D., Veliou, E., Giannetsos, T., & Emmanouilidis, C. (2023). Human in the aI loop via xAI and active learning for visual inspection. arXiv preprint arXiv:2307.05508.
  • Russo, D. (2023). Navigating the complexity of generative aI adoption in software engineering. arXiv preprint arXiv:2307.06081v2.
  • Shi, L., Bhattacharya, N., Das, A., Lease, M., & Gwidzka, J. (2022). The effects of interactive aI design on user behavior: An eyetracking study of factchecking COVID19 claims. arXiv preprint arXiv:2202.08901.
  • Shin, D., Wang, L. L., & Hsieh, G. (2024). From paper to card: Transforming fesign implications with generative aI. [No publisher information available].
  • Son, K., Choi, D., Kim, T. S., & Kim, J. (2024). Demystifying tacit knowledge in graphic design: Characteristics, instances, approaches, and guidelines. arXiv preprint arXiv:2403.06252v1.
  • Srinivasan, R., & Uchino, K. (2021). Biases in generative art a causal look from the lens of art history. arXiv preprint arXiv:2010.13266.
  • Tepecik, A., & Kayabekir, T. (2017). Resim-metin ilişkisinde yapısal ve bilişsel kavramların tasarım sürecine etkisi. Atatürk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 21(4), 1641-1653.
  • Xing, B., & Marwala, T. (2018). Creativity and artificial intelligence: A digital art perspective. arXiv preprint arXiv:1807.08195.
  • Xu, H. (2017). On the intervalbased dosefinding designs. arXiv preprint arXiv:1706.03277v2.
  • Xu, W. (2023). AI in HCI design and user experience. arXiv preprint arXiv:2301.00987.
  • Yampolskiy, R. V. (2020). Human ≠ AGI. arXiv preprint arXiv:2007.07710.
  • Görsel Kaynakça Görsel 1. LogoMaker. (2024). “Logo Oluşturma 1. Aşama”. Erişim 28 Mart 2024, https://www.logomaker.com/tr
  • Görsel 2 LogoMaker. (2024). “Logo Oluşturma 2. Aşama”. Erişim 28 Mart 2024, https://www.logomaker.com/tr
  • Görsel 3. LogoMaker. (2024). “Logo Oluşturma 3. Aşama”. Erişim 28 Mart 2024, https://www.logomaker.com/tr
  • Görsel 4. LogoMaker. (2024). “Logo Oluşturma 4. Aşama”. Erişim 28 Mart 2024, https://www.logomaker.com/tr
  • Görsel 5. LogoMaker. (2024). ‘’24 Logo tasarımı 5. Aşama’’. Erişim 28 Mart 2024, https://www.logomaker.com/tr
  • Görsel 6. Apple Logo. Erişim 31 Temmuz 2024 https://tr.wikipedia.org/wiki/Apple
  • Görsel 7. NIKE Logo. Erişim 31 Temmuz 2024 https://about.nike.com/en/newsroom/collections/nike-inc-logos
  • Görsel 8. McDonald’s Logo. Erişim 31 Temmuz 2024 https://tr.wikipedia.org/wiki/McDonald%27s
There are 59 citations in total.

Details

Primary Language Turkish
Subjects Visual Arts (Other)
Journal Section Research Articles
Authors

Şükran Bulut 0000-0001-8220-686X

Mehmet Akif Özdal 0000-0003-3148-8988

Early Pub Date March 21, 2025
Publication Date March 21, 2025
Submission Date April 30, 2024
Acceptance Date February 25, 2025
Published in Issue Year 2025 Issue: 45

Cite

APA Bulut, Ş., & Özdal, M. A. (2025). Yapay Zekânın Grafik Tasarımda Yenilik, Özgünlük ve İşlevsellik Açısından Logo Tasarımı Üzerindeki Etkileri. Sanat Ve Yorum(45), 53-61. https://doi.org/10.47571/sanatyorum.1476104

Content of this journal is licensed under a Creative Commons Attribution NonCommercial 4.0 International License

29929

32023320242687726878297422687927381