Review
BibTex RIS Cite

İleri Glikasyon Son Ürünlerinin Gebelik Üzerine Etkisi

Year 2022, Volume: 5 Issue: 1, 39 - 55, 15.04.2022
https://doi.org/10.54803/sauhsd.1000948

Abstract

İleri glikasyon son ürünleri, çok çeşitli yapısal ve fonksiyonel özelliklere sahip, herhangi bir canlı organizmada oluşan ve enzimatik olmayan bileşiklerdir. İleri glikasyon son ürünleri reseptöre veya doğrudan hücre dışı matrikse bağlanır ve hücre dışı moleküllerin istenilen şekilde çalışmamasına yol açar. İleri glikasyon son ürünleri ve reseptör etkileşimleri inflamasyon, oksidatif stres, vasküler hiperpermeabilite ile sonuçlanarak vaskülatürde homeostatik bozulmaya neden olur. Oksidatif bozukluklar ve inflamasyon; gestasyonel diyabet, preeklemsi, erken doğum, erken membran rüptürü ve tekrarlayan gebelik kaybı gibi olumsuz gebelik sonuçları ile ilişkilidir. Literatüre bakıldığında inflamasyon fetal membranları zayıflatarak erken rüptüre ve erken doğuma sebep olabilmektedir. İleri glikasyon son ürünleri düzeyinin yüksek olması ve bozulmuş metabolik durumun gebelikte preeklemsinin fizyopatolojisine etki ettiği gestasyonel diabetes mellitus ve tekrarlayan gebelik kayıpları ile ilişkilendirildiği belirtilmektedir. Çalışmalar, gebelik ve AGE’lerin düzeyi arasında güçlü bir ilişki olduğunu göstermektedir. AGE’ler ve gebelik arasındaki nedensel ilişkiyi bulmak için daha iyi tasarlanmış çalışmalar yapılması literatür açısından önem taşımaktadır.

References

  • 1. Zhu JL, Cai YQ, Long SL, Chen Z, Mo ZC. The role of advanced glycation end products in human infertility. Life Science. 2020;255:117830. doi:10.1016/j.lfs.2020.117830
  • 2. Peyroux J, Sternberg M. Advanced glycation endproducts (AGEs): Pharmacological inhibition in diabetes. Pathologie Biologie (Paris). 2006;54:405-419.
  • 3. Uribarri J, Woodruff S, Goodman S, et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. Journal of the American Dietetic Association. 2010;110(6):911-16.e12. doi:10.1016/j.jada.2010.03.018
  • 4. Sisay M, Edessa D, Ali T, Mekuria AN, Gebrie A. The relationship between advanced glycation end products and gestational diabetes: A systematic review and meta-analysis. PLoS One. 2020;15(10):e0240382. doi:10.1371/journal.pone.0240382
  • 5. Jud P, Sourij H. Therapeutic options to reduce advanced glycation end products in patients with diabetes mellitus: A review. Diabetes Research and Clinical Practice. 2019;148:54-63. doi:10.1016/j.diabres.2018.11.016
  • 6. Yılmaz B, Karabudak E. Besinlerdeki ileri glikasyon son ürünleri ve azaltma yöntemleri. Beslenme ve Diyet Dergisi. 2016;44(3):280-288.
  • 7. Sharma R, Agarwal A, Rohra VK, Assidi M, Abu-Elmagd M, Turki RF. Effects of increased paternal age on sperm quality, reproductive outcome and associated epigenetic risks to offspring. Reproductive Biology and Endocrinology. 2015;13:35. doi:10.1186/s12958-015-0028-x
  • 8. Mericq V, Piccardo C, Cai W, et al. Maternally transmitted and food-derived glycotoxins: a factor preconditioning the young to diabetes? Diabetes Care. 2010;33(10):2232-2237. doi:10.2337/dc10-1058
  • 9. Palanissami G, Paul SFD. RAGE and its ligands: Molecular interplay between glycation, ınflammation, and hallmarks of cancer-a review. Horm Cancer. 2018;9(5):295-325. doi:10.1007/s12672-018-0342-9
  • 10. Chekir C, Nakatsuka M, Noguchi S, et al. Accumulation of advanced glycation end products in women with preeclampsia: possible involvement of placental oxidative and nitrative stress. Placenta. 2006;27(2-3): 225-233. doi:10.1016/j.placenta.2005.02.016
  • 11. Germanová A, Koucký M, Hájek Z, Parízek A, Zima T, Kalousová M. Soluble receptor for advanced glycation end products in physiological and pathological pregnancy. Clin Biochem. 2010;43(4-5):442-446. doi:10.1016/j.clinbiochem.2009.11.002
  • 12. Verma N, Manna SK. Advanced glycation end products (AGE) potently induce autophagy through activation of RAF protein kinase and nuclear factor κB (NF-κB). Journal of Biological Chemistry. 2016;291(3):1481-1491. doi:10.1074/jbc.M115.667576
  • 13. Parmaksız İ. Diyabet komplikasyonlarında ileri glikasyon son ürünleri. Marmara Medical Journal. 2011; 24(3). doi:10.5472/MMJ.2011.0.2037.1
  • 14. Harsem NK, Braekke K, Torjussen T, Hanssen K, Staff AC. Advanced glycation end products in pregnancies complicated with diabetes mellitus or preeclampsia. Hypertens Pregnancy. 2008;27(4):374-386. doi:10.1080/10641950802000968
  • 15. Aziz ZNE, Baban RS, Al-Habib MFM. Advanced Glycation End Products (AGEs) level and insulin resistance in women with gestational diabetes. International Journal of Advance Research. 2015;3(4):416-23.
  • 16. Belfiore A, Malaguarnera R, Vella V, et al. Insulin receptor ısoforms in physiology and disease: An updated view. Endocr Rev. 2017;38(5):379-431. doi:10.1210/er.2017-00073
  • 17. Luevano-Contreras C, Chapman-Novakofski K. Dietary advanced glycation end products and aging. Nutrients. 2010;2(12):1247–1265. doi:10.3390/nu2121247
  • 18. Edeas M, Attaf D, Mailfert AS, Joubet R. Maillard reaction, mitochondria and oxidative stress: Potential role of antioxidants. Pathologie Biologie (Paris). 2010;58(3):220–225. doi:10.1016/j.patbio.2009.09.011
  • 19. Hachiya H, Miura Y, Inoue K, Park KH, Takeuchi M, Kubota K. Advanced glycation end products impair glucose-induced insulin secretion from rat pancreatic beta-cells. J Hepatobiliary Pancreat Sci. 2014;21(2):134–141. doi:10.1002/jhbp.12
  • 20. Orr SK, Dachner N, Frank L, Tarasuk V. Relation between household food insecurity and breastfeeding in Canada. CMAJ. 2018;190(11):E312-E319. doi:10.1503/cmaj.170880
  • 21. Challis JR, Lockwood CJ, Myatt L, Norman JE, Strauss JF, Petraglia F. Inflammation and pregnancy. Reproductive Sciences. 2009;16(2):206–215. doi:10.1177/1933719108329095
  • 22. Cuffe JS, Xu ZC, Perkins AV. Biomarkers of oxidative stress in pregnancy complications. Biomarkers in Medicine. 2017;11(3):295-306. doi:10.2217/bmm-2016-0250
  • 23. Li S, Yang H. Relationship between advanced glycation end products and gestational diabetes mellitus. J Matern Fetal Neonatal Med. 2019;32(17):2783-2789. doi:10.1080/14767058.2018.1449201
  • 24. American Diabetes Association. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes. Diabetes car. 2018;41(1):S13-S27
  • 25. Perinatoloji Uzmanları Derneği. (2019) (PUDER). http://puder.org.tr/kilavuzlar/
  • 26. Damm P, Houshmand-Oeregaard A, Kelstrup L, Lauenborg J, Mathiesen ER, Clausen TD. Gestational diabetes mellitus and long-term consequences for mother and offspring: a view from Denmark. Diabetologia. 2016;59(7):1396-1399. doi:10.1007/s00125-016-3985-5
  • 27. Plows JF, Stanley JL, Baker PN, Reynolds CM, Vickers MH. The pathophysiology of gestational diabetes mellitus. International Journal of Molecular Sciences. 2018;19(11):3342. doi:10.3390/ijms19113342
  • 28. Vargas-Terrones M, Nagpal TS, Barakat R. Impact of exercise during pregnancy on gestational weight gain and birth weight: An overview. Braz J Phys Ther. 2019;23(2):164–169. doi:10.1016/j.bjpt.2018.11.012
  • 29. Poprawski G, Pietryga M, Zawiejska A, Iciek R, Wender-Ozegowska E, Brazert J. Wpływ wyrównania metabolicznego na parametry krazenia maciczno-łozyskowego w ciazy powikłanej nadciśnieniem ciazowym i stanem przedrzucawkowym u ciezarnych z cukrzyca przedciazowa [The impact of metabolic control on uteroplacental circulation parameters in pregnancies complicated by gestational hypertension and/or preeclampsia in pregnant women with pregestational diabetes]. Ginekol Pol. 2015;86(11):811-820. doi:10.17772/gp/59271
  • 30. Guosheng L, Hongmei S, Chuan N, Haiying L, Xiaopeng Z, Xianqiong L. The relationship of serum AGE levels in diabetic mothers with adverse fetal outcome. J Perinatol. 2009;29(7):483-488. doi:10.1038/jp.2009.12
  • 31. Bernea EG, Antohe F, Mıhaı A, Ionescu-Tirgovıste C. Oxidative stress and gestational diabetes mellitus. The effects of supplements on oxidative stress. Proc Rom Acad Ser B. 2018;20(2):121-131.
  • 32. Perrone A, Giovino A, Benny J, Martinelli F. Advanced glycation end products (AGEs): Biochemistry, signaling, analytical methods, and epigenetic effects. Oxidative Medicine and Cellular Longevity. 2020;3818196:18. doi:10.1155/2020/3818196
  • 33. Wells JCK, Figueiroa JN, Alves JG. Maternal pelvic dimensions and neonatal size: Implications for growth plasticity in early life as adaptation. Evol Med Public Health. 2018;2017(1):191-200. doi: 10.1093/emph/eox016
  • 34. Bartakova V, Kollarova R, Kuricova K, Sebekova K, Belobradkova J, Kankova K. Serum carboxymethyl-lysine, a dominant advanced glycation end product, is increased in women with gestational diabetes mellitus. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2016;160(1):70–75. doi:10.5507/bp.2015.045
  • 35. Boutzios G, Livadas S, Piperi C, et al. Polycystic ovary syndrome offspring display increased oxidative stress markers comparable to gestational diabetes offspring. Fertil Steril. 2013;99(3):943–950. doi:10.1016/j.fertnstert.2012.10.050
  • 36. Tang X, Qin Q, Xie X, He P. Protective effect of sRAGE on fetal development in pregnant rats with gestational diabetes mellitus. Cell Biochem Biophys. 2015;71(2):549–556. doi:10.1007/s12013-014-0233-9
  • 37. Assefa NE, Berhe H, Girma F, et al. Risk factors of premature rupture of membranes in public hospitals at Mekele city, Tigray, a case control study. BMC Pregnancy and Childbirth. 2018;18(1):1-7. doi:10.1186/s12884-018-2016-6
  • 38. Bouvier D, Forest JC, Blachon L, et al. Risk factors and outcomes of preterm premature rupture of membranes in a cohort of 6968 pregnant women prospectively recruited. Journal of Clinical Medicine. 2019;8(11):1987. doi:10.3390/jcm8111987
  • 39. Forde B, Mounira H. Unique considerations: Preterm prelabor rupture of membranes in the setting of fetal surgery and higher order pregnancies. Obstet Gynecol Clin North Am. 2020;47(4):653-669. doi:10.1016/j.ogc.2020.08.008
  • 40. Modi BP, Teves ME, Pearson LN, et al. Mutations in fetal genes involved in innate immunity and host defense against microbes increase risk of preterm premature rupture of membranes (PPROM). Molecular Genetics & Genomic Medicine. 2017;5(6):720-729. doi: 10.1002/mgg3.330
  • 41. Mishra S, Joshi M. Premature rupture of membrane-risk factors: A clinical study. Intrnational Journal of Contemporary Medical Research. 2017;4(1),146-148.
  • 42. Ramasamy R, Vannucci SJ, Yan SS, Herold K, Yan SF, Schmidt AM. Advanced glycation end products and RAGE: A common thread in aging, diabetes, neurodegeneration, and inflammation. Glycobiology. 2005;15(7):16R–28R. doi:10.1093/glycob/cwi053
  • 43. Schmidt AM, Yan SD, Yan SF, Stern DM. The biology of the receptor for advanced glycation end products and its ligands. Biochim Biophsy Acta. 2000;1498(2–3):99–111. doi:10.1016/s0167-4889(00)00087-2
  • 44. Dutta EH, Behnia F, Boldogh I, et al. Oxidative stress damage-associated molecular signaling pathways differentiate spontaneous preterm birth and preterm premature rupture of the membranes. Mol Hum Reprod. 2016;22(2):143-157. doi:10.1093/molehr/gav074
  • 45. Menon R, Richardson LS. Preterm prelabor rupture of the membranes: A disease of the fetal membranes. Seminars in Perinatology. 2017;41(7):409-419. doi:10.1053/j.semperi.2017.07.012
  • 46. Park JW, Park KH, Jung EY. Clinical significance of histologic chorioamnionitis with a negative amniotic fluid culture in patients with preterm labor and premature membrane rupture. PloS One. 2017;12(3);e0173312. doi:10.1371/journal.pone.0173312
  • 47. Romero R, Miranda J, Chaemsaithong P, et al. Sterile and microbial-associated intra-amniotic inflammation in preterm prelabor rupture of membranes. J Matern Fetal Neonatal Med. 2015;28(12):1394-1409. doi:10.3109/14767058.2014.958463
  • 48. Romero R, Miranda J, Chaiworapongsa T, et al. Prevalence and clinical significance of sterile intra-amniotic inflammation in patients with preterm labor and intact membranes. Am J Reprod Immunol. 2014;72(5):458-474. doi:10.1111/aji.12296.
  • 49. D’Angelo G, Marseglia L, Granese R, et al. Different concentration of human cord blood HMGB1 according to delivery and labour: A pilot study. Cytokine. 2018;108:53-56. doi:10.1016/j.cyto.2018.03.019
  • 50. Naruse K, Sado T, Noguchi T, et al. Peripheral RAGE (receptor for advanced glycation endproducts)-ligands in normal pregnancy and preeclampsia: Novel markers of inflammatory response. J Reprod Immunol. 2012;93(2):69-74. doi:10.1016/j.jri.2011.12.003
  • 51. Rzepka R, Dołegowska B, Rajewska A, et al. Soluble and endogenous secretory receptors for advanced glycation end products in threatened preterm labor and preterm premature rupture of fetal membranes. Biomed Res Int. 2015;568042. doi:10.1155/2015/568042
  • 52. Bouvier D, Giguère Y, Blanchon L, et al. Study of sRAGE, HMGB1, AGE, and S100A8/A9 concentrations in plasma and in serum-extracted extracellular vesicles of pregnant women with preterm premature rupture of membranes. Front Physiol. 2020;11:609. doi:10.3389/fphys.2020.00609
  • 53. Kansu-Celik H, Tasci Y, Karakaya BK, Cinar M, Candar T, Caglar GS. Maternal serum advanced glycation end products level as an early marker for predicting preterm labor/PPROM: A prospective preliminary study. J Matern Fetal Neonatal Med. 2019;32(16):2758-2762. doi:10.1080/14767058.2018.1449202
  • 54. Warrington JP, George EM, Palei AC, Spradley FT, Granger JP. Recent advances in the understanding of the pathophysiology of preeclampsia. Hypertension. 2013;62:666‐673. doi:10.1161/HYPERTENSIONAHA.113.00588
  • 55. Freeman DJ, McManus F, Brown EA, et al. Short- and long-term changes in plasma inflammatory markers associated with preeclampsia. Hypertension. 2004;44(5):708-714. doi:10.1161/01.HYP.0000143849.67254.ca
  • 56. Von Versen-Hoeynck FM, Powers RW. Maternal-fetal metabolism in normal pregnancy and preeclampsia. Front Biosci. 2007;12:2457-2470. doi:10.2741/2247
  • 57. Guedes-Martins L, Matos L, Soares A, Silva E, Almeida H. AGEs, contributors to placental bed vascular changes leading to preeclampsia. Free Radic Res. 2013;47(1):70-80. doi:10.3109/10715762.2013.815347
  • 58. Chen W, Zhang Y, Yue C, et al. Accumulation of advanced glycation end products involved in inflammation and contributing to severe preeclampsia, in maternal blood, umbilical blood and placental tissues. Gynecol Obstet Invest. 2017;82(4):388–397. doi:10.1159/000448141
  • 59. García-Gómez E, Bobadilla-Bravo M, Díaz-Díaz E, et al. High plasmatic levels of advanced glycation end products are associated with metabolic alterations and ınsulin resistance in preeclamptic women. Curr Mol Med. 2020;20(9):751-759. doi:10.2174/1566524020666200220141414
  • 60. Xian N, Chen W, Zhang Y, Li J, Zhang N, Ye Y. Correlation of the expressions of advanced glycation end products and its receptor in serum and placenta with the pathogenesis of preeclampsia. Zhonghua Fu Chan Ke Za Zhi. 2015;50(7):493-499.
  • 61. Cooke CL, Brockelsby JC, Baker PN, Davidge ST. The receptor for advanced glycation end products (RAGE) is elevated in women with preeclampsia. Hypertens Pregnancy 2003;22:173–84. doi:10.1081/PRG-120021068.
  • 62. Royal College of Obstetricians and Gynaecologists. The investigation and treatment of couples with recurrent first-trimester and second-trimester miscarriage. 2011. https://www.rcog.org.uk/globalassets/documents/guidelines/gtg_17.pdf (Erişim tarihi: 23 Ağustos 2021).
  • 63. Shahine L, Lathi R. Recurrent pregnancy loss: Evaluation and treatment. Obstet Gynecol Clin North Am. 2015;42(1):117–34. doi:10.1016/j.ogc.2014.10.002
  • 64. Agarwal A, Aponte-Mellado A, Premkumar BJ, Shaman A, Gupta S. The effects of oxidative stress on female reproduction: A review. Reprod Biol Endocrinol. 2012;10:49. doi:10.1186/1477-7827-10-49
  • 65. Kwak-Kim J, Yang KM, Gilman-Sachs A. Recurrent pregnancy loss: A disease of inflammation and coagulation. Journal of Obstetrics and Gynaecology Research. 2009;35(4):609–622. doi:10.1111/j.1447-0756.2009.01079.x
  • 66. Ota K, Yamagishi S, Kim M, et al. Elevation of soluble form of receptor for advanced glycation end products (sRAGE) in recurrent pregnancy losses (RPL): Possible participation of RAGE in RPL. Fertility and Sterility. 2014;102(3):782-789. doi:10.1016/j.fertnstert.2014.06.010

The Effect of Advanced Glycation End Products on Pregnancy

Year 2022, Volume: 5 Issue: 1, 39 - 55, 15.04.2022
https://doi.org/10.54803/sauhsd.1000948

Abstract

Advanced glycation end products are non-enzymatic compounds which have a wide variety of structural and functional properties and which occur in any living organism. Advanced glycation end products bind to the receptor or directly to the extracellular matrix and cause the extracellular molecules to malfunction. Advanced glycation end products and receptor interactions result in inflammation, oxidative stress, and vascular hyper permeability, causing homeostatic deterioration in the vasculature. Oxidative disorders and inflammation; gestational diabetes is associated with adverse pregnancy outcomes such as preeclampsia, preterm birth, premature rupture of membranes, and recurrent pregnancy loss. Looking at the literature, inflammation may weaken fetal membranes and cause premature rupture and preterm delivery. It is stated that high levels of advanced glycation end products and impaired metabolic status affect the physiopathology of preeclampsia during pregnancy and are associated with gestational diabetes mellitus and recurrent pregnancy losses. Studies show a strong correlation between pregnancy and the level of AGEs. It is important for the literature to conduct better designed studies to find the causal relationship between AGEs and pregnancy.

References

  • 1. Zhu JL, Cai YQ, Long SL, Chen Z, Mo ZC. The role of advanced glycation end products in human infertility. Life Science. 2020;255:117830. doi:10.1016/j.lfs.2020.117830
  • 2. Peyroux J, Sternberg M. Advanced glycation endproducts (AGEs): Pharmacological inhibition in diabetes. Pathologie Biologie (Paris). 2006;54:405-419.
  • 3. Uribarri J, Woodruff S, Goodman S, et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. Journal of the American Dietetic Association. 2010;110(6):911-16.e12. doi:10.1016/j.jada.2010.03.018
  • 4. Sisay M, Edessa D, Ali T, Mekuria AN, Gebrie A. The relationship between advanced glycation end products and gestational diabetes: A systematic review and meta-analysis. PLoS One. 2020;15(10):e0240382. doi:10.1371/journal.pone.0240382
  • 5. Jud P, Sourij H. Therapeutic options to reduce advanced glycation end products in patients with diabetes mellitus: A review. Diabetes Research and Clinical Practice. 2019;148:54-63. doi:10.1016/j.diabres.2018.11.016
  • 6. Yılmaz B, Karabudak E. Besinlerdeki ileri glikasyon son ürünleri ve azaltma yöntemleri. Beslenme ve Diyet Dergisi. 2016;44(3):280-288.
  • 7. Sharma R, Agarwal A, Rohra VK, Assidi M, Abu-Elmagd M, Turki RF. Effects of increased paternal age on sperm quality, reproductive outcome and associated epigenetic risks to offspring. Reproductive Biology and Endocrinology. 2015;13:35. doi:10.1186/s12958-015-0028-x
  • 8. Mericq V, Piccardo C, Cai W, et al. Maternally transmitted and food-derived glycotoxins: a factor preconditioning the young to diabetes? Diabetes Care. 2010;33(10):2232-2237. doi:10.2337/dc10-1058
  • 9. Palanissami G, Paul SFD. RAGE and its ligands: Molecular interplay between glycation, ınflammation, and hallmarks of cancer-a review. Horm Cancer. 2018;9(5):295-325. doi:10.1007/s12672-018-0342-9
  • 10. Chekir C, Nakatsuka M, Noguchi S, et al. Accumulation of advanced glycation end products in women with preeclampsia: possible involvement of placental oxidative and nitrative stress. Placenta. 2006;27(2-3): 225-233. doi:10.1016/j.placenta.2005.02.016
  • 11. Germanová A, Koucký M, Hájek Z, Parízek A, Zima T, Kalousová M. Soluble receptor for advanced glycation end products in physiological and pathological pregnancy. Clin Biochem. 2010;43(4-5):442-446. doi:10.1016/j.clinbiochem.2009.11.002
  • 12. Verma N, Manna SK. Advanced glycation end products (AGE) potently induce autophagy through activation of RAF protein kinase and nuclear factor κB (NF-κB). Journal of Biological Chemistry. 2016;291(3):1481-1491. doi:10.1074/jbc.M115.667576
  • 13. Parmaksız İ. Diyabet komplikasyonlarında ileri glikasyon son ürünleri. Marmara Medical Journal. 2011; 24(3). doi:10.5472/MMJ.2011.0.2037.1
  • 14. Harsem NK, Braekke K, Torjussen T, Hanssen K, Staff AC. Advanced glycation end products in pregnancies complicated with diabetes mellitus or preeclampsia. Hypertens Pregnancy. 2008;27(4):374-386. doi:10.1080/10641950802000968
  • 15. Aziz ZNE, Baban RS, Al-Habib MFM. Advanced Glycation End Products (AGEs) level and insulin resistance in women with gestational diabetes. International Journal of Advance Research. 2015;3(4):416-23.
  • 16. Belfiore A, Malaguarnera R, Vella V, et al. Insulin receptor ısoforms in physiology and disease: An updated view. Endocr Rev. 2017;38(5):379-431. doi:10.1210/er.2017-00073
  • 17. Luevano-Contreras C, Chapman-Novakofski K. Dietary advanced glycation end products and aging. Nutrients. 2010;2(12):1247–1265. doi:10.3390/nu2121247
  • 18. Edeas M, Attaf D, Mailfert AS, Joubet R. Maillard reaction, mitochondria and oxidative stress: Potential role of antioxidants. Pathologie Biologie (Paris). 2010;58(3):220–225. doi:10.1016/j.patbio.2009.09.011
  • 19. Hachiya H, Miura Y, Inoue K, Park KH, Takeuchi M, Kubota K. Advanced glycation end products impair glucose-induced insulin secretion from rat pancreatic beta-cells. J Hepatobiliary Pancreat Sci. 2014;21(2):134–141. doi:10.1002/jhbp.12
  • 20. Orr SK, Dachner N, Frank L, Tarasuk V. Relation between household food insecurity and breastfeeding in Canada. CMAJ. 2018;190(11):E312-E319. doi:10.1503/cmaj.170880
  • 21. Challis JR, Lockwood CJ, Myatt L, Norman JE, Strauss JF, Petraglia F. Inflammation and pregnancy. Reproductive Sciences. 2009;16(2):206–215. doi:10.1177/1933719108329095
  • 22. Cuffe JS, Xu ZC, Perkins AV. Biomarkers of oxidative stress in pregnancy complications. Biomarkers in Medicine. 2017;11(3):295-306. doi:10.2217/bmm-2016-0250
  • 23. Li S, Yang H. Relationship between advanced glycation end products and gestational diabetes mellitus. J Matern Fetal Neonatal Med. 2019;32(17):2783-2789. doi:10.1080/14767058.2018.1449201
  • 24. American Diabetes Association. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes. Diabetes car. 2018;41(1):S13-S27
  • 25. Perinatoloji Uzmanları Derneği. (2019) (PUDER). http://puder.org.tr/kilavuzlar/
  • 26. Damm P, Houshmand-Oeregaard A, Kelstrup L, Lauenborg J, Mathiesen ER, Clausen TD. Gestational diabetes mellitus and long-term consequences for mother and offspring: a view from Denmark. Diabetologia. 2016;59(7):1396-1399. doi:10.1007/s00125-016-3985-5
  • 27. Plows JF, Stanley JL, Baker PN, Reynolds CM, Vickers MH. The pathophysiology of gestational diabetes mellitus. International Journal of Molecular Sciences. 2018;19(11):3342. doi:10.3390/ijms19113342
  • 28. Vargas-Terrones M, Nagpal TS, Barakat R. Impact of exercise during pregnancy on gestational weight gain and birth weight: An overview. Braz J Phys Ther. 2019;23(2):164–169. doi:10.1016/j.bjpt.2018.11.012
  • 29. Poprawski G, Pietryga M, Zawiejska A, Iciek R, Wender-Ozegowska E, Brazert J. Wpływ wyrównania metabolicznego na parametry krazenia maciczno-łozyskowego w ciazy powikłanej nadciśnieniem ciazowym i stanem przedrzucawkowym u ciezarnych z cukrzyca przedciazowa [The impact of metabolic control on uteroplacental circulation parameters in pregnancies complicated by gestational hypertension and/or preeclampsia in pregnant women with pregestational diabetes]. Ginekol Pol. 2015;86(11):811-820. doi:10.17772/gp/59271
  • 30. Guosheng L, Hongmei S, Chuan N, Haiying L, Xiaopeng Z, Xianqiong L. The relationship of serum AGE levels in diabetic mothers with adverse fetal outcome. J Perinatol. 2009;29(7):483-488. doi:10.1038/jp.2009.12
  • 31. Bernea EG, Antohe F, Mıhaı A, Ionescu-Tirgovıste C. Oxidative stress and gestational diabetes mellitus. The effects of supplements on oxidative stress. Proc Rom Acad Ser B. 2018;20(2):121-131.
  • 32. Perrone A, Giovino A, Benny J, Martinelli F. Advanced glycation end products (AGEs): Biochemistry, signaling, analytical methods, and epigenetic effects. Oxidative Medicine and Cellular Longevity. 2020;3818196:18. doi:10.1155/2020/3818196
  • 33. Wells JCK, Figueiroa JN, Alves JG. Maternal pelvic dimensions and neonatal size: Implications for growth plasticity in early life as adaptation. Evol Med Public Health. 2018;2017(1):191-200. doi: 10.1093/emph/eox016
  • 34. Bartakova V, Kollarova R, Kuricova K, Sebekova K, Belobradkova J, Kankova K. Serum carboxymethyl-lysine, a dominant advanced glycation end product, is increased in women with gestational diabetes mellitus. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2016;160(1):70–75. doi:10.5507/bp.2015.045
  • 35. Boutzios G, Livadas S, Piperi C, et al. Polycystic ovary syndrome offspring display increased oxidative stress markers comparable to gestational diabetes offspring. Fertil Steril. 2013;99(3):943–950. doi:10.1016/j.fertnstert.2012.10.050
  • 36. Tang X, Qin Q, Xie X, He P. Protective effect of sRAGE on fetal development in pregnant rats with gestational diabetes mellitus. Cell Biochem Biophys. 2015;71(2):549–556. doi:10.1007/s12013-014-0233-9
  • 37. Assefa NE, Berhe H, Girma F, et al. Risk factors of premature rupture of membranes in public hospitals at Mekele city, Tigray, a case control study. BMC Pregnancy and Childbirth. 2018;18(1):1-7. doi:10.1186/s12884-018-2016-6
  • 38. Bouvier D, Forest JC, Blachon L, et al. Risk factors and outcomes of preterm premature rupture of membranes in a cohort of 6968 pregnant women prospectively recruited. Journal of Clinical Medicine. 2019;8(11):1987. doi:10.3390/jcm8111987
  • 39. Forde B, Mounira H. Unique considerations: Preterm prelabor rupture of membranes in the setting of fetal surgery and higher order pregnancies. Obstet Gynecol Clin North Am. 2020;47(4):653-669. doi:10.1016/j.ogc.2020.08.008
  • 40. Modi BP, Teves ME, Pearson LN, et al. Mutations in fetal genes involved in innate immunity and host defense against microbes increase risk of preterm premature rupture of membranes (PPROM). Molecular Genetics & Genomic Medicine. 2017;5(6):720-729. doi: 10.1002/mgg3.330
  • 41. Mishra S, Joshi M. Premature rupture of membrane-risk factors: A clinical study. Intrnational Journal of Contemporary Medical Research. 2017;4(1),146-148.
  • 42. Ramasamy R, Vannucci SJ, Yan SS, Herold K, Yan SF, Schmidt AM. Advanced glycation end products and RAGE: A common thread in aging, diabetes, neurodegeneration, and inflammation. Glycobiology. 2005;15(7):16R–28R. doi:10.1093/glycob/cwi053
  • 43. Schmidt AM, Yan SD, Yan SF, Stern DM. The biology of the receptor for advanced glycation end products and its ligands. Biochim Biophsy Acta. 2000;1498(2–3):99–111. doi:10.1016/s0167-4889(00)00087-2
  • 44. Dutta EH, Behnia F, Boldogh I, et al. Oxidative stress damage-associated molecular signaling pathways differentiate spontaneous preterm birth and preterm premature rupture of the membranes. Mol Hum Reprod. 2016;22(2):143-157. doi:10.1093/molehr/gav074
  • 45. Menon R, Richardson LS. Preterm prelabor rupture of the membranes: A disease of the fetal membranes. Seminars in Perinatology. 2017;41(7):409-419. doi:10.1053/j.semperi.2017.07.012
  • 46. Park JW, Park KH, Jung EY. Clinical significance of histologic chorioamnionitis with a negative amniotic fluid culture in patients with preterm labor and premature membrane rupture. PloS One. 2017;12(3);e0173312. doi:10.1371/journal.pone.0173312
  • 47. Romero R, Miranda J, Chaemsaithong P, et al. Sterile and microbial-associated intra-amniotic inflammation in preterm prelabor rupture of membranes. J Matern Fetal Neonatal Med. 2015;28(12):1394-1409. doi:10.3109/14767058.2014.958463
  • 48. Romero R, Miranda J, Chaiworapongsa T, et al. Prevalence and clinical significance of sterile intra-amniotic inflammation in patients with preterm labor and intact membranes. Am J Reprod Immunol. 2014;72(5):458-474. doi:10.1111/aji.12296.
  • 49. D’Angelo G, Marseglia L, Granese R, et al. Different concentration of human cord blood HMGB1 according to delivery and labour: A pilot study. Cytokine. 2018;108:53-56. doi:10.1016/j.cyto.2018.03.019
  • 50. Naruse K, Sado T, Noguchi T, et al. Peripheral RAGE (receptor for advanced glycation endproducts)-ligands in normal pregnancy and preeclampsia: Novel markers of inflammatory response. J Reprod Immunol. 2012;93(2):69-74. doi:10.1016/j.jri.2011.12.003
  • 51. Rzepka R, Dołegowska B, Rajewska A, et al. Soluble and endogenous secretory receptors for advanced glycation end products in threatened preterm labor and preterm premature rupture of fetal membranes. Biomed Res Int. 2015;568042. doi:10.1155/2015/568042
  • 52. Bouvier D, Giguère Y, Blanchon L, et al. Study of sRAGE, HMGB1, AGE, and S100A8/A9 concentrations in plasma and in serum-extracted extracellular vesicles of pregnant women with preterm premature rupture of membranes. Front Physiol. 2020;11:609. doi:10.3389/fphys.2020.00609
  • 53. Kansu-Celik H, Tasci Y, Karakaya BK, Cinar M, Candar T, Caglar GS. Maternal serum advanced glycation end products level as an early marker for predicting preterm labor/PPROM: A prospective preliminary study. J Matern Fetal Neonatal Med. 2019;32(16):2758-2762. doi:10.1080/14767058.2018.1449202
  • 54. Warrington JP, George EM, Palei AC, Spradley FT, Granger JP. Recent advances in the understanding of the pathophysiology of preeclampsia. Hypertension. 2013;62:666‐673. doi:10.1161/HYPERTENSIONAHA.113.00588
  • 55. Freeman DJ, McManus F, Brown EA, et al. Short- and long-term changes in plasma inflammatory markers associated with preeclampsia. Hypertension. 2004;44(5):708-714. doi:10.1161/01.HYP.0000143849.67254.ca
  • 56. Von Versen-Hoeynck FM, Powers RW. Maternal-fetal metabolism in normal pregnancy and preeclampsia. Front Biosci. 2007;12:2457-2470. doi:10.2741/2247
  • 57. Guedes-Martins L, Matos L, Soares A, Silva E, Almeida H. AGEs, contributors to placental bed vascular changes leading to preeclampsia. Free Radic Res. 2013;47(1):70-80. doi:10.3109/10715762.2013.815347
  • 58. Chen W, Zhang Y, Yue C, et al. Accumulation of advanced glycation end products involved in inflammation and contributing to severe preeclampsia, in maternal blood, umbilical blood and placental tissues. Gynecol Obstet Invest. 2017;82(4):388–397. doi:10.1159/000448141
  • 59. García-Gómez E, Bobadilla-Bravo M, Díaz-Díaz E, et al. High plasmatic levels of advanced glycation end products are associated with metabolic alterations and ınsulin resistance in preeclamptic women. Curr Mol Med. 2020;20(9):751-759. doi:10.2174/1566524020666200220141414
  • 60. Xian N, Chen W, Zhang Y, Li J, Zhang N, Ye Y. Correlation of the expressions of advanced glycation end products and its receptor in serum and placenta with the pathogenesis of preeclampsia. Zhonghua Fu Chan Ke Za Zhi. 2015;50(7):493-499.
  • 61. Cooke CL, Brockelsby JC, Baker PN, Davidge ST. The receptor for advanced glycation end products (RAGE) is elevated in women with preeclampsia. Hypertens Pregnancy 2003;22:173–84. doi:10.1081/PRG-120021068.
  • 62. Royal College of Obstetricians and Gynaecologists. The investigation and treatment of couples with recurrent first-trimester and second-trimester miscarriage. 2011. https://www.rcog.org.uk/globalassets/documents/guidelines/gtg_17.pdf (Erişim tarihi: 23 Ağustos 2021).
  • 63. Shahine L, Lathi R. Recurrent pregnancy loss: Evaluation and treatment. Obstet Gynecol Clin North Am. 2015;42(1):117–34. doi:10.1016/j.ogc.2014.10.002
  • 64. Agarwal A, Aponte-Mellado A, Premkumar BJ, Shaman A, Gupta S. The effects of oxidative stress on female reproduction: A review. Reprod Biol Endocrinol. 2012;10:49. doi:10.1186/1477-7827-10-49
  • 65. Kwak-Kim J, Yang KM, Gilman-Sachs A. Recurrent pregnancy loss: A disease of inflammation and coagulation. Journal of Obstetrics and Gynaecology Research. 2009;35(4):609–622. doi:10.1111/j.1447-0756.2009.01079.x
  • 66. Ota K, Yamagishi S, Kim M, et al. Elevation of soluble form of receptor for advanced glycation end products (sRAGE) in recurrent pregnancy losses (RPL): Possible participation of RAGE in RPL. Fertility and Sterility. 2014;102(3):782-789. doi:10.1016/j.fertnstert.2014.06.010
There are 66 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Journal Section Review Article
Authors

Özlem Akın 0000-0001-7210-8756

Yağmur Demirel Özbek 0000-0003-3877-3183

Publication Date April 15, 2022
Submission Date September 26, 2021
Published in Issue Year 2022 Volume: 5 Issue: 1

Cite

APA Akın, Ö., & Demirel Özbek, Y. (2022). İleri Glikasyon Son Ürünlerinin Gebelik Üzerine Etkisi. Sakarya University Journal of Holistic Health, 5(1), 39-55. https://doi.org/10.54803/sauhsd.1000948