Review
BibTex RIS Cite

Year 2025, Volume: 8 Issue: 2, 99 - 112, 31.08.2025
https://doi.org/10.54803/sauhsd.1728842

Abstract

References

  • Kim J, Harper A, McCormack V, et al. Global patterns and trends in breast cancer incidence and mortality across 185 countries. Nat Med. 2025. doi:10.1038/s41591-025-03502-3
  • Tarantino P, Corti C, Schmid P, et al. Immunotherapy for early triple negative breast cancer: research agenda for the next decade. NPJ Breast Cancer. 2022;8(23). doi:10.1038/s41523-022-00386-1
  • Kumar H, Gupta NV, Jain R, et al. A review of biological targets and therapeutic approaches in the management of triple-negative breast cancer. J Adv Res. 2023;54:271–292. doi:10.1016/j.jare.2023.02.005
  • Bianchini G, De Angelis C, Licata L, Gianni L. Treatment landscape of triple-negative breast cancer: expanded options, evolving needs. Nat Rev Clin Oncol. 2022;19:91–113. doi:10.1038/s41571-021-00565-2
  • Zagami P, Carey LA. Triple negative breast cancer: Pitfalls and progress. NPJ Breast Cancer. 2022;8(95). doi:10.1038/s41523-022-00468-0
  • Liu J, Xiao Q, Xiao J, et al. Wnt/β-catenin signalling: Function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther. 2022;7(3). doi:10.1038/s41392-021-00762-6
  • Liao M, Zhang J, Wang G, et al. Small-molecule drug discovery in triple negative breast cancer: Current situation and future directions. J Med Chem. 2021;64:2382–2418. doi:10.1021/acs.jmedchem.0c01180
  • Fidan Y, Stela M, Selin Seda T, Gürsoy RN. Recent advances in liposome-based targeted cancer therapy. J Liposome Res. 2024;34:316–334. doi:10.1080/08982104.2023.2268710
  • Morales-Cruz M, Delgado Y, Castillo B, et al. Smart targeting to improve cancer therapeutics. Drug Des Devel Ther. 2019;13:3753–3772. doi:10.2147/DDDT.S219489
  • da Silva JL, Cardoso Nunes NC, Izetti P, et al. Triple negative breast cancer: A thorough review of biomarkers. Crit Rev Oncol Hematol. 2020;145:102855. doi:10.1016/j.critrevonc.2019.102855
  • Coussy F, Lavigne M, de Koning L, et al. Response to mTOR and PI3K inhibitors in enzalutamide-resistant luminal androgen receptor triple-negative breast cancer patient-derived xenografts. Theranostics. 2020;10:1531–1543. doi:10.7150/thno.36182
  • Linares RL, Benítez JGS, Reynoso MO, et al. Modulation of the leptin receptors expression in breast cancer cell lines exposed to leptin and tamoxifen. Sci Rep. 2019;9:19189. doi:10.1038/s41598-019-55674-x
  • Chen X, Feng L, Huang Y, et al. Mechanisms and strategies to overcome PD-1/PD-L1 blockade resistance in triple-negative breast cancer. Cancers (Basel). 2022;15. doi:10.3390/cancers15010104
  • Zhai B, Chen P, Wang W, et al. An ATF(24) peptide-functionalized β-elemene-nanostructured lipid carrier combined with cisplatin for bladder cancer treatment. Cancer Biol Med. 2020;17:676–692. doi:10.20892/j.issn.2095-3941.2020.0454
  • Guo RC, Zhang XH, Ji L, et al. Recent progress of therapeutic peptide-based nanomaterials: From synthesis and self-assembly to cancer treatment. Biomater Sci. 2020;8:6175–6189. doi:10.1039/D0BM01358G
  • Zhu Y, Meng Y, Zhao Y, et al. Toxicological exploration of peptide-based cationic liposomes in siRNA delivery. Colloids Surf B Biointerfaces. 2019;179:66–76. doi:10.1016/j.colsurfb.2019.03.052
  • Allen TM. Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer. 2002;2:750–763. doi:10.1038/nrc903
  • Buyuk B, Jin S, Ye K. Epithelial-to-mesenchymal transition signaling pathways responsible for breast cancer metastasis. Cell Mol Bioeng. 2022;15:1–13. doi:10.1007/s12195-021-00694-9
  • Liu D, Guo P, McCarthy C, et al. Peptide density targets and impedes triple-negative breast cancer metastasis. Nat Commun. 2018;9:2612. doi:10.1038/s41467-018-05035-5
  • Large DE, Abdelmessih RG, Fink EA, Auguste DT. Liposome composition in drug delivery design, synthesis, characterization, and clinical application. Adv Drug DelivRev. 2021;176:113851. doi:10.1016/j.addr.2021.113851
  • Medina MA, Oza G, Sharma A, et al. Triple-negative breast cancer: A review of conventional and advanced therapeutic strategies. Int J Environ Res Public Health. 2020;17. doi:10.3390/ijerph17062078
  • Danaei M, Dehghankhold M, Ataei S, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018;10. doi:10.3390/pharmaceutics10020057
  • Izadiyan Z, Misran M, Kalantari K, et al. Advancements in liposomal nanomedicines: Innovative formulations, therapeutic applications, and future directions in precision medicine. Int J Nanomedicine. 2025;20:1213–1262. doi:10.2147/IJN.S488961
  • Guimarães D, Cavaco-Paulo A, Nogueira E. Design of liposomes as drug delivery system for therapeutic applications. Int J Pharm. 2021;601:120571. doi:10.1016/j.ijpharm.2021.120571
  • Sercombe L, Veerati T, Moheimani F, et al. Advances and challenges of liposome-assisted drug delivery. Front Pharmacol. 2015;6:286. doi:10.3389/fphar.2015.00286
  • Liu Y, Castro Bravo KM, Liu J. Targeted liposomal drug delivery: A nanoscience and biophysical perspective. Nanoscale Horizons. 2021;6:78–94. doi:10.1039/D0NH00605J
  • Yan W, Leung SS, To KK. Updates on the use of liposomes for active tumor targeting in cancer therapy. Nanomedicine (Lond). 2020;15:303–318. doi:10.2217/nnm-2019-0308
  • Eroğlu İ, İbrahim M. Liposome-ligand conjugates: A review on the current state of art. J Drug Target. 2020;28:225–244. doi:10.1080/1061186X.2019.1648479
  • Ren H, He Y, Liang J, et al. Role of liposome size, surface charge, and PEGylation on rheumatoid arthritis targeting therapy. ACS Appl Mater Interfaces. 2019;11:20304–20315. doi:10.1021/acsami.8b22693
  • Zamani P, Teymouri M, Nikpoor AR, et al. Nanoliposomal vaccine containing long multi-epitope peptide E75-AE36 pulsed PADRE-induced effective immune response in mice TUBO model of breast cancer. Eur J Cancer. 2020;129:80–96. doi:10.1016/j.ejca.2020.01.010
  • Fatima M, Abourehab MAS, Aggarwal G, et al. Advancement of cell-penetrating peptides in combating triple-negative breast cancer. Drug Discov Today. 2022;27:103353. doi:10.1016/j.drudis.2022.103353
  • Lai WF, Wong WT, Rogach AL. Molecular design of layer-by-layer functionalized liposomes for oral drug delivery. ACS Appl Mater Interfaces. 2020;12:43341–43351. doi:10.1021/acsami.0c13504
  • Juan A, Cimas FJ, Bravo I, et al. An overview of antibody-conjugated polymeric nanoparticles for breast cancer therapy. Pharmaceutics. 2020;12. doi:10.3390/pharmaceutics12090802
  • Liao WS, Ho Y, Lin YW, et al. Targeting EGFR of triple-negative breast cancer enhances the therapeutic efficacy of paclitaxel- and cetuximab-conjugated nanodiamond nanocomposite. Acta Biomater. 2019;86:395–405. doi:10.1016/j.actbio.2019.01.025
  • Yin L, Duan JJ, Bian XW, Yu SC. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 2020;22:61. doi:10.1186/s13058-020-01296-5
  • Brouckaert O, Wildiers H, Floris G, Neven P. Update on triple-negative breast cancer: Prognosis and management strategies. Int J Womens Health. 2012;4:511–520. doi:10.2147/IJWH.S18541
  • Guo P, Yang J, Liu D, et al. Dual complementary liposomes inhibit triple-negative breast tumor progression and metastasis. Sci Adv. 2019;5:eaav5010. doi:10.1126/sciadv.aav5010
  • Naik H, Sonju JJ, Singh S, et al. Lipidated peptidomimetic ligand-functionalized HER2 targeted liposome as nano-carrier designed for doxorubicin delivery in cancer therapy. Pharmaceuticals (Basel). 2021;14. doi:10.3390/ph14030221
  • Ghosh B, Biswas S. Polymeric micelles in cancer therapy: State of the art. J Control Release. 2021;332:127–147. doi:10.1016/j.jconrel.2021.02.016
  • Dong S, Bi Y, Sun X, et al. Dual-loaded liposomes tagged with hyaluronic acid have synergistic effects in triple-negative breast cancer. Small. 2022;18:e2107690.
  • Cadinoiu AN, Rata DM, Atanase LI, et al. Aptamer-functionalized liposomes as a potential treatment for basal cell carcinoma. Polymers (Basel). 2019;11.
  • Kim M, Lee JS, Kim W, et al. Aptamer-conjugated nano-liposome for immunogenic chemotherapy with reversal of immunosuppression. J Control Release. 2022;348:893–910. doi:10.1016/j.jconrel.2022.06.039
  • Zeng Y, Zhao L, Li K, et al. Aptamer-functionalized nanoplatforms overcoming temozolomide resistance in synergistic chemo/photothermal therapy through alleviating tumor hypoxia. Nano Res. 2023;16:9859–9872. doi:10.1007/s12274-023-5742-7
  • Sheikh A, Md S, Kesharwani P. Aptamer grafted nanoparticle as targeted therapeutic tool for the treatment of breast cancer. Biomed Pharmacother. 2022;146:112530.
  • Alshaer W, Hillaireau H, Vergnaud J, et al. Aptamer-guided siRNA-loaded nanomedicines for systemic gene silencing in CD-44 expressing murine triple-negative breast cancer model. J Control Release. 2018;271:98–106. doi:10.1016/j.jconrel.2017.12.022
  • Tang B, Peng Y, Yue Q, et al. Design, preparation and evaluation of different branched biotin modified liposomes for targeting breast cancer. Eur J Med Chem. 2020;193:112204. doi:10.1016/j.ejmech.2020.112204
  • Belfiore L, Saunders DN, Ranson M, Vine KL. N-Alkylisatin-loaded liposomes target the urokinase plasminogen activator system in breast cancer. Pharmaceutics. 2020;12. doi:10.3390/pharmaceutics12070641
  • Barbosa MV, Monteiro LOF, Carneiro G, et al. Experimental design of a liposomal lipid system: A potential strategy for paclitaxel-based breast cancer treatment. Colloids Surf B Biointerfaces. 2015;136:553–561. doi:10.1016/j.colsurfb.2015.09.055
  • Lin M, Teng L, Wang Y, et al. Curcumin-guided nanotherapy: A lipid-based nanomedicine for targeted drug delivery in breast cancer therapy. Drug Deliv. 2016;23:1420–1425.
  • Guo P, Yang J, Jia D, et al. ICAM-1-targeted, Lcn2 siRNA-encapsulating liposomes are potent anti-angiogenic agents for triple negative breast cancer. Theranostics. 2016;6:1–13.

The Role of Liposomal Delivery Systems in the Treatment of Triple Negative Breast Cancer

Year 2025, Volume: 8 Issue: 2, 99 - 112, 31.08.2025
https://doi.org/10.54803/sauhsd.1728842

Abstract

This study aims to highlight the potential of liposomal nanocarrier systems in addressing the challenges associated with the treatment of triple-negative breast cancer (TNBC) and to provide a literature-based foundation for their use in targeted therapeutic approaches. This study evaluating the efficacy of liposomal drug delivery systems in TNBC treatment, along with current developments reported in the literature. Particular emphasis is placed on surface modifications involving PEGylation, antibodies, aptamers, and small molecules, and their impact on therapeutic success. TNBC accounts for approximately 20% of all breast cancer cases and represents a highly aggressive subtype characterized by treatment resistance and high metastatic potential. Conventional treatment methods often fall short, with recurrence observed in about 40% of cases and mortality reaching 80–90% due to therapy-resistant tumors. Liposomes have garnered attention due to their ability to enhance drug bioavailability, reduce systemic toxicity, and provide tumor site-specific targeting. Numerous formulations have been developed, ranging from PEGylated liposomes to antibody- and aptamer-conjugated systems, demonstrating therapeutic efficacy in various TNBC cell lines and animal models. Given the aggressive nature of TNBC and the limited treatment options, liposomal nanocarrier systems offer a promising alternative. The integration of these systems with specific targeting modifications may lay the groundwork for future personalized and more effective TNBC therapies. To facilitate clinical translation, it is essential to establish standardized production protocols, streamline regulatory processes, and strengthen interdisciplinary collaborations.

References

  • Kim J, Harper A, McCormack V, et al. Global patterns and trends in breast cancer incidence and mortality across 185 countries. Nat Med. 2025. doi:10.1038/s41591-025-03502-3
  • Tarantino P, Corti C, Schmid P, et al. Immunotherapy for early triple negative breast cancer: research agenda for the next decade. NPJ Breast Cancer. 2022;8(23). doi:10.1038/s41523-022-00386-1
  • Kumar H, Gupta NV, Jain R, et al. A review of biological targets and therapeutic approaches in the management of triple-negative breast cancer. J Adv Res. 2023;54:271–292. doi:10.1016/j.jare.2023.02.005
  • Bianchini G, De Angelis C, Licata L, Gianni L. Treatment landscape of triple-negative breast cancer: expanded options, evolving needs. Nat Rev Clin Oncol. 2022;19:91–113. doi:10.1038/s41571-021-00565-2
  • Zagami P, Carey LA. Triple negative breast cancer: Pitfalls and progress. NPJ Breast Cancer. 2022;8(95). doi:10.1038/s41523-022-00468-0
  • Liu J, Xiao Q, Xiao J, et al. Wnt/β-catenin signalling: Function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther. 2022;7(3). doi:10.1038/s41392-021-00762-6
  • Liao M, Zhang J, Wang G, et al. Small-molecule drug discovery in triple negative breast cancer: Current situation and future directions. J Med Chem. 2021;64:2382–2418. doi:10.1021/acs.jmedchem.0c01180
  • Fidan Y, Stela M, Selin Seda T, Gürsoy RN. Recent advances in liposome-based targeted cancer therapy. J Liposome Res. 2024;34:316–334. doi:10.1080/08982104.2023.2268710
  • Morales-Cruz M, Delgado Y, Castillo B, et al. Smart targeting to improve cancer therapeutics. Drug Des Devel Ther. 2019;13:3753–3772. doi:10.2147/DDDT.S219489
  • da Silva JL, Cardoso Nunes NC, Izetti P, et al. Triple negative breast cancer: A thorough review of biomarkers. Crit Rev Oncol Hematol. 2020;145:102855. doi:10.1016/j.critrevonc.2019.102855
  • Coussy F, Lavigne M, de Koning L, et al. Response to mTOR and PI3K inhibitors in enzalutamide-resistant luminal androgen receptor triple-negative breast cancer patient-derived xenografts. Theranostics. 2020;10:1531–1543. doi:10.7150/thno.36182
  • Linares RL, Benítez JGS, Reynoso MO, et al. Modulation of the leptin receptors expression in breast cancer cell lines exposed to leptin and tamoxifen. Sci Rep. 2019;9:19189. doi:10.1038/s41598-019-55674-x
  • Chen X, Feng L, Huang Y, et al. Mechanisms and strategies to overcome PD-1/PD-L1 blockade resistance in triple-negative breast cancer. Cancers (Basel). 2022;15. doi:10.3390/cancers15010104
  • Zhai B, Chen P, Wang W, et al. An ATF(24) peptide-functionalized β-elemene-nanostructured lipid carrier combined with cisplatin for bladder cancer treatment. Cancer Biol Med. 2020;17:676–692. doi:10.20892/j.issn.2095-3941.2020.0454
  • Guo RC, Zhang XH, Ji L, et al. Recent progress of therapeutic peptide-based nanomaterials: From synthesis and self-assembly to cancer treatment. Biomater Sci. 2020;8:6175–6189. doi:10.1039/D0BM01358G
  • Zhu Y, Meng Y, Zhao Y, et al. Toxicological exploration of peptide-based cationic liposomes in siRNA delivery. Colloids Surf B Biointerfaces. 2019;179:66–76. doi:10.1016/j.colsurfb.2019.03.052
  • Allen TM. Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer. 2002;2:750–763. doi:10.1038/nrc903
  • Buyuk B, Jin S, Ye K. Epithelial-to-mesenchymal transition signaling pathways responsible for breast cancer metastasis. Cell Mol Bioeng. 2022;15:1–13. doi:10.1007/s12195-021-00694-9
  • Liu D, Guo P, McCarthy C, et al. Peptide density targets and impedes triple-negative breast cancer metastasis. Nat Commun. 2018;9:2612. doi:10.1038/s41467-018-05035-5
  • Large DE, Abdelmessih RG, Fink EA, Auguste DT. Liposome composition in drug delivery design, synthesis, characterization, and clinical application. Adv Drug DelivRev. 2021;176:113851. doi:10.1016/j.addr.2021.113851
  • Medina MA, Oza G, Sharma A, et al. Triple-negative breast cancer: A review of conventional and advanced therapeutic strategies. Int J Environ Res Public Health. 2020;17. doi:10.3390/ijerph17062078
  • Danaei M, Dehghankhold M, Ataei S, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018;10. doi:10.3390/pharmaceutics10020057
  • Izadiyan Z, Misran M, Kalantari K, et al. Advancements in liposomal nanomedicines: Innovative formulations, therapeutic applications, and future directions in precision medicine. Int J Nanomedicine. 2025;20:1213–1262. doi:10.2147/IJN.S488961
  • Guimarães D, Cavaco-Paulo A, Nogueira E. Design of liposomes as drug delivery system for therapeutic applications. Int J Pharm. 2021;601:120571. doi:10.1016/j.ijpharm.2021.120571
  • Sercombe L, Veerati T, Moheimani F, et al. Advances and challenges of liposome-assisted drug delivery. Front Pharmacol. 2015;6:286. doi:10.3389/fphar.2015.00286
  • Liu Y, Castro Bravo KM, Liu J. Targeted liposomal drug delivery: A nanoscience and biophysical perspective. Nanoscale Horizons. 2021;6:78–94. doi:10.1039/D0NH00605J
  • Yan W, Leung SS, To KK. Updates on the use of liposomes for active tumor targeting in cancer therapy. Nanomedicine (Lond). 2020;15:303–318. doi:10.2217/nnm-2019-0308
  • Eroğlu İ, İbrahim M. Liposome-ligand conjugates: A review on the current state of art. J Drug Target. 2020;28:225–244. doi:10.1080/1061186X.2019.1648479
  • Ren H, He Y, Liang J, et al. Role of liposome size, surface charge, and PEGylation on rheumatoid arthritis targeting therapy. ACS Appl Mater Interfaces. 2019;11:20304–20315. doi:10.1021/acsami.8b22693
  • Zamani P, Teymouri M, Nikpoor AR, et al. Nanoliposomal vaccine containing long multi-epitope peptide E75-AE36 pulsed PADRE-induced effective immune response in mice TUBO model of breast cancer. Eur J Cancer. 2020;129:80–96. doi:10.1016/j.ejca.2020.01.010
  • Fatima M, Abourehab MAS, Aggarwal G, et al. Advancement of cell-penetrating peptides in combating triple-negative breast cancer. Drug Discov Today. 2022;27:103353. doi:10.1016/j.drudis.2022.103353
  • Lai WF, Wong WT, Rogach AL. Molecular design of layer-by-layer functionalized liposomes for oral drug delivery. ACS Appl Mater Interfaces. 2020;12:43341–43351. doi:10.1021/acsami.0c13504
  • Juan A, Cimas FJ, Bravo I, et al. An overview of antibody-conjugated polymeric nanoparticles for breast cancer therapy. Pharmaceutics. 2020;12. doi:10.3390/pharmaceutics12090802
  • Liao WS, Ho Y, Lin YW, et al. Targeting EGFR of triple-negative breast cancer enhances the therapeutic efficacy of paclitaxel- and cetuximab-conjugated nanodiamond nanocomposite. Acta Biomater. 2019;86:395–405. doi:10.1016/j.actbio.2019.01.025
  • Yin L, Duan JJ, Bian XW, Yu SC. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 2020;22:61. doi:10.1186/s13058-020-01296-5
  • Brouckaert O, Wildiers H, Floris G, Neven P. Update on triple-negative breast cancer: Prognosis and management strategies. Int J Womens Health. 2012;4:511–520. doi:10.2147/IJWH.S18541
  • Guo P, Yang J, Liu D, et al. Dual complementary liposomes inhibit triple-negative breast tumor progression and metastasis. Sci Adv. 2019;5:eaav5010. doi:10.1126/sciadv.aav5010
  • Naik H, Sonju JJ, Singh S, et al. Lipidated peptidomimetic ligand-functionalized HER2 targeted liposome as nano-carrier designed for doxorubicin delivery in cancer therapy. Pharmaceuticals (Basel). 2021;14. doi:10.3390/ph14030221
  • Ghosh B, Biswas S. Polymeric micelles in cancer therapy: State of the art. J Control Release. 2021;332:127–147. doi:10.1016/j.jconrel.2021.02.016
  • Dong S, Bi Y, Sun X, et al. Dual-loaded liposomes tagged with hyaluronic acid have synergistic effects in triple-negative breast cancer. Small. 2022;18:e2107690.
  • Cadinoiu AN, Rata DM, Atanase LI, et al. Aptamer-functionalized liposomes as a potential treatment for basal cell carcinoma. Polymers (Basel). 2019;11.
  • Kim M, Lee JS, Kim W, et al. Aptamer-conjugated nano-liposome for immunogenic chemotherapy with reversal of immunosuppression. J Control Release. 2022;348:893–910. doi:10.1016/j.jconrel.2022.06.039
  • Zeng Y, Zhao L, Li K, et al. Aptamer-functionalized nanoplatforms overcoming temozolomide resistance in synergistic chemo/photothermal therapy through alleviating tumor hypoxia. Nano Res. 2023;16:9859–9872. doi:10.1007/s12274-023-5742-7
  • Sheikh A, Md S, Kesharwani P. Aptamer grafted nanoparticle as targeted therapeutic tool for the treatment of breast cancer. Biomed Pharmacother. 2022;146:112530.
  • Alshaer W, Hillaireau H, Vergnaud J, et al. Aptamer-guided siRNA-loaded nanomedicines for systemic gene silencing in CD-44 expressing murine triple-negative breast cancer model. J Control Release. 2018;271:98–106. doi:10.1016/j.jconrel.2017.12.022
  • Tang B, Peng Y, Yue Q, et al. Design, preparation and evaluation of different branched biotin modified liposomes for targeting breast cancer. Eur J Med Chem. 2020;193:112204. doi:10.1016/j.ejmech.2020.112204
  • Belfiore L, Saunders DN, Ranson M, Vine KL. N-Alkylisatin-loaded liposomes target the urokinase plasminogen activator system in breast cancer. Pharmaceutics. 2020;12. doi:10.3390/pharmaceutics12070641
  • Barbosa MV, Monteiro LOF, Carneiro G, et al. Experimental design of a liposomal lipid system: A potential strategy for paclitaxel-based breast cancer treatment. Colloids Surf B Biointerfaces. 2015;136:553–561. doi:10.1016/j.colsurfb.2015.09.055
  • Lin M, Teng L, Wang Y, et al. Curcumin-guided nanotherapy: A lipid-based nanomedicine for targeted drug delivery in breast cancer therapy. Drug Deliv. 2016;23:1420–1425.
  • Guo P, Yang J, Jia D, et al. ICAM-1-targeted, Lcn2 siRNA-encapsulating liposomes are potent anti-angiogenic agents for triple negative breast cancer. Theranostics. 2016;6:1–13.
There are 50 citations in total.

Details

Primary Language English
Subjects Clinical Sciences (Other)
Journal Section Research Article
Authors

Hava Taslak 0000-0003-2974-7178

Burhanettin Yalçınkaya 0000-0002-3744-6634

Zeliha Eskin 0009-0007-5142-665X

Hülya Yılmaz Aydoğan 0000-0002-8837-6664

Oğuz Öztürk 0000-0002-2439-9269

Early Pub Date August 31, 2025
Publication Date August 31, 2025
Submission Date June 30, 2025
Acceptance Date August 13, 2025
Published in Issue Year 2025 Volume: 8 Issue: 2

Cite

APA Taslak, H., Yalçınkaya, B., Eskin, Z., … Yılmaz Aydoğan, H. (2025). The Role of Liposomal Delivery Systems in the Treatment of Triple Negative Breast Cancer. Sakarya University Journal of Holistic Health, 8(2), 99-112. https://doi.org/10.54803/sauhsd.1728842
AMA Taslak H, Yalçınkaya B, Eskin Z, Yılmaz Aydoğan H, Öztürk O. The Role of Liposomal Delivery Systems in the Treatment of Triple Negative Breast Cancer. SAUSHD. August 2025;8(2):99-112. doi:10.54803/sauhsd.1728842
Chicago Taslak, Hava, Burhanettin Yalçınkaya, Zeliha Eskin, Hülya Yılmaz Aydoğan, and Oğuz Öztürk. “The Role of Liposomal Delivery Systems in the Treatment of Triple Negative Breast Cancer”. Sakarya University Journal of Holistic Health 8, no. 2 (August 2025): 99-112. https://doi.org/10.54803/sauhsd.1728842.
EndNote Taslak H, Yalçınkaya B, Eskin Z, Yılmaz Aydoğan H, Öztürk O (August 1, 2025) The Role of Liposomal Delivery Systems in the Treatment of Triple Negative Breast Cancer. Sakarya University Journal of Holistic Health 8 2 99–112.
IEEE H. Taslak, B. Yalçınkaya, Z. Eskin, H. Yılmaz Aydoğan, and O. Öztürk, “The Role of Liposomal Delivery Systems in the Treatment of Triple Negative Breast Cancer”, SAUSHD, vol. 8, no. 2, pp. 99–112, 2025, doi: 10.54803/sauhsd.1728842.
ISNAD Taslak, Hava et al. “The Role of Liposomal Delivery Systems in the Treatment of Triple Negative Breast Cancer”. Sakarya University Journal of Holistic Health 8/2 (August2025), 99-112. https://doi.org/10.54803/sauhsd.1728842.
JAMA Taslak H, Yalçınkaya B, Eskin Z, Yılmaz Aydoğan H, Öztürk O. The Role of Liposomal Delivery Systems in the Treatment of Triple Negative Breast Cancer. SAUSHD. 2025;8:99–112.
MLA Taslak, Hava et al. “The Role of Liposomal Delivery Systems in the Treatment of Triple Negative Breast Cancer”. Sakarya University Journal of Holistic Health, vol. 8, no. 2, 2025, pp. 99-112, doi:10.54803/sauhsd.1728842.
Vancouver Taslak H, Yalçınkaya B, Eskin Z, Yılmaz Aydoğan H, Öztürk O. The Role of Liposomal Delivery Systems in the Treatment of Triple Negative Breast Cancer. SAUSHD. 2025;8(2):99-112.