Research Article
BibTex RIS Cite

A Domestic Waste Heat Recovery System: Mathematical Model of a Green Kitchen Module

Year 2023, , 51 - 70, 10.01.2024
https://doi.org/10.14744/seatific.2023.0007

Abstract

A lumped parameter model of a domestic heat storage/recovery system is described. This is a typical green kitchen application, where the heat dissipated by kitchen appliances is stored in suitable materials by temperature rise and/or phase transitions. To this aim, sensible heat materials and phase change materials are considered. Based on the model, a number of design solutions are proposed, making use of fixed beds or shell-and-tube heat exchangers, where heat is stored in spheres or cylinders made up of (or encapsulating) suitable materials. The best solution (a PCM-based shell-and-tube exchanger) corresponds to ~50×50×25 cm, ~30 kg modules.

References

  • Ahmed, A., & Lebedev, V.A. (2018). Thermal energy storage by using latent heat storage materials. International Journal of Scientific & Engineering Research, 9(5), 1442–1447.
  • BDF Industries (2017). Regenerative and Recuperative Furnace. www.bdfindustriesgroup.com/products/melting-furnace-rigen.
  • Bejan, A. (1978). Two thermodynamic optima in the design of sensible heat units for energy storage. ASME Journal of Heat Transfer, 100(4), 708–712.
  • Biyikoglu, A. (2002). Optimization of a sensible heat cascade energy storage by lumped model. Energy Conversion and Management, 43(5), 617–637.
  • Bjurström, H., & Carlsson, B. (1985). An exergy analysis of sensible and latent heat storage. Heat Recovery Systems, 5(3), 233–250.
  • Caillat, T., Fleurial, J.- P., Snyder, G. J., Zoltan, A., Zoltan, D., & Borshchevsky, A. (1999). A new high efficiency segmented thermoelectric unicouple. 34th Intersociety Energy Conversion Engineering Conference, 2567–2570.
  • Carvill, J. (2003). Mechanical Engineer's Data Handbook. Butterworth Heinemann.
  • Chauk, S. S., & Fan, L. S. (1998). Heat Transfer in Packed and Fluidized Beds. In: Rohsenow, W.M., Hartnett, J.R., & Cho, Y.I. (Eds.), Handbook of Heat Transfer (pp. 13.1-13.45). McGraw-Hill.
  • Dincer, I., & Cengel, Y. A. (2001). Energy, entropy and exergy concepts and their roles in thermal engineering. Entropy, 3(3), 116–149.
  • Dincer, I., Dost, S., & Li, X. (1997). Performance analysis of sensible heat storage systems for thermal applications. International Journal of Energy Research, 21(12), 1157–1171.
  • Fernandez, A. I., Martínez M., Segarra M., Martorell I., & Cabeza L. F. (2010). Selection of materials with potential in sensible thermal energy storage. Solar Energy Materials and Solar Cells, 94(10), 1723–1729.
  • Ganapathy, V. (2015). Steam Generators and Waste Heat Boilers for Process and Plant Engineers. www. brazedplate.com.
  • Hales, T. C., & Ferguson, S. P. (2006). A formulation of the Kepler conjecture. Discrete & Computational Geometry, 36(1), 21–69.
  • Holdich, R. G. (2002). Fundamentals of particle technology. Midland Information Technology and Publishing.
  • Hussam, J., Khordehgah, N., Almahmoud, S., Delpech, B., Chauhan, A., & Tassou, S. A. (2018). Waste heat recovery technologies and applications. Thermal Science and Engineering Progress, 6, 268–289.
  • Institute for Industrial Productivity (2017). Regenerative Burners for Reheating Furnaces. www.ietd. iipnetwork.org/content/regenerative-burners- reheating-furnaces.
  • IPIECA (2022). Heat Exchangers. www.ipieca.org/resources/ energy-efficiency-solutions/heat-exchangers-2022.
  • JHCSS (2017). Heat Pipes. www.jhcss.com.au/products-1/ thermal-management/heat-pipes-heat-exchangers.
  • Mardiana-Idayua, A., & Riffat, S. B. (2012). Review on heat recovery technologies for building applications. Renewable and Sustainable Energy Reviews, 16(2), 1241–1255.
  • Mehrer, A., & Stolwijk, A. (2009). Heroes and Highlights in the History of Diffusion. Diffusion Fundamentals, 11(1), 1–32.
  • MOXOFF (2012a). Accumulo delle potenze perse: studio delle tecnologie adatte a un immagazzinamento delle potenze dagli elettrodomestici [unpublished technical report 4.1.3]. MOXOFF.
  • MOXOFF (2012b). Accumulo termico: evidenza del suo funzionamento attraverso la modellizzazione e la prototipazione virtuale [unpublished technical report 4.1.4]. MOXOFF.
  • MOXOFF (2013a). Riutilizzo della potenza termica in eccesso: analisi di letteratura e selezione delle tecnologie più promettenti [unpublished technical report 4.1.5]. MOXOFF.
  • MOXOFF (2013b). Riutilizzo della potenza termica in eccesso: selezione del sistema migliore e analisi dell'efficienza [unpublished technical report 4.1.6]. MOXOFF.
  • Mukherjee, R. (1998). Effectively design shell-and-tube heat exchangers. Chemical Engineering Progress, 94(2), 21–37.
  • Mukherjee, R., Singh, D., Grewal, R., Ranjan, S., Olivani, A., Alshourbagy, M., & Pannock, J. (2011). Assembly of domestic appliances with a system for utilizing waste heat from refrigerator in a washing appliance [unpublished European patent application 11189489.5]. European Patent Office.
  • Oguzhan, D., Marengo, M., & Bertola, V. (2019). Thermal performance of pulsating heat stripes built with plastic materials. Journal of Heat Transfer, 141(9), 1–8.
  • Rosen, M. A., Hooper, F.C., & Barbaris, L. N. (1988). Exergy analysis for the evaluation of the performance of closed thermal energy storage systems. Journal of Solar Energy Engineering, 110(4), 255–261.
  • Sarbu, I., & Sebarchievici, C. (2018). A comprehensive review of thermal energy storage. Sustainability, 10(191), 1–32.
  • Shah, R. K., & Sekulic, D. P. (1998). Heat Exchangers. In: Rohsenow, W.M., Hartnett, J.R., Cho, Y.I. (Eds.), Handbook of Heat Transfer (pp. 17.1–17.169), McGraw-Hill.
  • Sharma, A., Tyagi, V. V., Chen, C. R., & Buddhi, D. (2009). Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews, 13(2), 318–345.
  • Sharma, S. D., & Sagara, K. (2005). Latent heat storage materials and systems: A review. International Journal of Green Energy, 2(1), 1–56.
  • Song, C., Wang, P., & Makse, H. A. (2008). A phase diagram for jammed matter. Nature, 453(7195), 629–632.
  • Spirax Sarco (2011). Miscellaneous Boiler Types, Economizers and Superheaters. www.spiraxsarco.com/learn- about-steam/the-boiler-house/miscellaneous- boiler-types-economisers-and-superheaters.
  • Stefanou, M. R. (2017). Performance evaluation of an ORC unit integrated to a waste heat recovery system in a steel mill. IV International Seminar on ORC Power Systems, 535–542.
  • Taylor, M. J., Krane, R. J., & Parsons, J. R. (1991a). Second law optimization of a sensible heat thermal energy storage system with a distributed storage element - Part I. ASME Journal of Energy Resources Technology, 113(1), 20–26.
  • Taylor, M. J., Krane, R. J., & Parsons, J. R. (1991b). Second law optimization of a sensible heat thermal energy storage system with a distributed storage element - Part II. ASME Journal of Energy Resources Technology, 113(1), 27–32.
  • Thermtech (2014). Reducing energy costs with economizers, www.thermtech.co.uk/reducing-energy-costs-with- economisers.
  • Wall, G. (1977). Exergy - A Useful Concept within Resource Accounting [unpublished technical report 77-42]. Chalmers University of Technology.
  • Yodrak, L., Rittidech, S., Poomsa-ad, N., & Meena, P. (2010). Waste heat recovery by heat pipe air-preheater to energy thrift from the furnace in a hot forging process. American Journal of Applied Sciences, 7(5), 675–681.
  • Yovanovich, M.M. (1998). Conduction and Thermal Contact Resistances. In: Rohsenow, W.M., Hartnett, J.R., Cho, Y.I. (Eds.), Handbook of Heat Transfer (pp. 3.1–3.73), McGraw-Hill.
  • Zavattoni, S. (2012). Household Appliances: Waste Heat Assessment and Thermal Energy Storage Options [unpublished technical report]. SUPSI.
  • Zavattoni, S., Garcia-Polanco, N., Capablo, J., & Doyle, J. P. (2014). Packed bed latent heat TES for home appliance waste heat storage - System dimensioning and CFD analysis. International Conference on Home Appliance Technologies. Available from: www.iapp-greenkitchen.eu.
Year 2023, , 51 - 70, 10.01.2024
https://doi.org/10.14744/seatific.2023.0007

Abstract

References

  • Ahmed, A., & Lebedev, V.A. (2018). Thermal energy storage by using latent heat storage materials. International Journal of Scientific & Engineering Research, 9(5), 1442–1447.
  • BDF Industries (2017). Regenerative and Recuperative Furnace. www.bdfindustriesgroup.com/products/melting-furnace-rigen.
  • Bejan, A. (1978). Two thermodynamic optima in the design of sensible heat units for energy storage. ASME Journal of Heat Transfer, 100(4), 708–712.
  • Biyikoglu, A. (2002). Optimization of a sensible heat cascade energy storage by lumped model. Energy Conversion and Management, 43(5), 617–637.
  • Bjurström, H., & Carlsson, B. (1985). An exergy analysis of sensible and latent heat storage. Heat Recovery Systems, 5(3), 233–250.
  • Caillat, T., Fleurial, J.- P., Snyder, G. J., Zoltan, A., Zoltan, D., & Borshchevsky, A. (1999). A new high efficiency segmented thermoelectric unicouple. 34th Intersociety Energy Conversion Engineering Conference, 2567–2570.
  • Carvill, J. (2003). Mechanical Engineer's Data Handbook. Butterworth Heinemann.
  • Chauk, S. S., & Fan, L. S. (1998). Heat Transfer in Packed and Fluidized Beds. In: Rohsenow, W.M., Hartnett, J.R., & Cho, Y.I. (Eds.), Handbook of Heat Transfer (pp. 13.1-13.45). McGraw-Hill.
  • Dincer, I., & Cengel, Y. A. (2001). Energy, entropy and exergy concepts and their roles in thermal engineering. Entropy, 3(3), 116–149.
  • Dincer, I., Dost, S., & Li, X. (1997). Performance analysis of sensible heat storage systems for thermal applications. International Journal of Energy Research, 21(12), 1157–1171.
  • Fernandez, A. I., Martínez M., Segarra M., Martorell I., & Cabeza L. F. (2010). Selection of materials with potential in sensible thermal energy storage. Solar Energy Materials and Solar Cells, 94(10), 1723–1729.
  • Ganapathy, V. (2015). Steam Generators and Waste Heat Boilers for Process and Plant Engineers. www. brazedplate.com.
  • Hales, T. C., & Ferguson, S. P. (2006). A formulation of the Kepler conjecture. Discrete & Computational Geometry, 36(1), 21–69.
  • Holdich, R. G. (2002). Fundamentals of particle technology. Midland Information Technology and Publishing.
  • Hussam, J., Khordehgah, N., Almahmoud, S., Delpech, B., Chauhan, A., & Tassou, S. A. (2018). Waste heat recovery technologies and applications. Thermal Science and Engineering Progress, 6, 268–289.
  • Institute for Industrial Productivity (2017). Regenerative Burners for Reheating Furnaces. www.ietd. iipnetwork.org/content/regenerative-burners- reheating-furnaces.
  • IPIECA (2022). Heat Exchangers. www.ipieca.org/resources/ energy-efficiency-solutions/heat-exchangers-2022.
  • JHCSS (2017). Heat Pipes. www.jhcss.com.au/products-1/ thermal-management/heat-pipes-heat-exchangers.
  • Mardiana-Idayua, A., & Riffat, S. B. (2012). Review on heat recovery technologies for building applications. Renewable and Sustainable Energy Reviews, 16(2), 1241–1255.
  • Mehrer, A., & Stolwijk, A. (2009). Heroes and Highlights in the History of Diffusion. Diffusion Fundamentals, 11(1), 1–32.
  • MOXOFF (2012a). Accumulo delle potenze perse: studio delle tecnologie adatte a un immagazzinamento delle potenze dagli elettrodomestici [unpublished technical report 4.1.3]. MOXOFF.
  • MOXOFF (2012b). Accumulo termico: evidenza del suo funzionamento attraverso la modellizzazione e la prototipazione virtuale [unpublished technical report 4.1.4]. MOXOFF.
  • MOXOFF (2013a). Riutilizzo della potenza termica in eccesso: analisi di letteratura e selezione delle tecnologie più promettenti [unpublished technical report 4.1.5]. MOXOFF.
  • MOXOFF (2013b). Riutilizzo della potenza termica in eccesso: selezione del sistema migliore e analisi dell'efficienza [unpublished technical report 4.1.6]. MOXOFF.
  • Mukherjee, R. (1998). Effectively design shell-and-tube heat exchangers. Chemical Engineering Progress, 94(2), 21–37.
  • Mukherjee, R., Singh, D., Grewal, R., Ranjan, S., Olivani, A., Alshourbagy, M., & Pannock, J. (2011). Assembly of domestic appliances with a system for utilizing waste heat from refrigerator in a washing appliance [unpublished European patent application 11189489.5]. European Patent Office.
  • Oguzhan, D., Marengo, M., & Bertola, V. (2019). Thermal performance of pulsating heat stripes built with plastic materials. Journal of Heat Transfer, 141(9), 1–8.
  • Rosen, M. A., Hooper, F.C., & Barbaris, L. N. (1988). Exergy analysis for the evaluation of the performance of closed thermal energy storage systems. Journal of Solar Energy Engineering, 110(4), 255–261.
  • Sarbu, I., & Sebarchievici, C. (2018). A comprehensive review of thermal energy storage. Sustainability, 10(191), 1–32.
  • Shah, R. K., & Sekulic, D. P. (1998). Heat Exchangers. In: Rohsenow, W.M., Hartnett, J.R., Cho, Y.I. (Eds.), Handbook of Heat Transfer (pp. 17.1–17.169), McGraw-Hill.
  • Sharma, A., Tyagi, V. V., Chen, C. R., & Buddhi, D. (2009). Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews, 13(2), 318–345.
  • Sharma, S. D., & Sagara, K. (2005). Latent heat storage materials and systems: A review. International Journal of Green Energy, 2(1), 1–56.
  • Song, C., Wang, P., & Makse, H. A. (2008). A phase diagram for jammed matter. Nature, 453(7195), 629–632.
  • Spirax Sarco (2011). Miscellaneous Boiler Types, Economizers and Superheaters. www.spiraxsarco.com/learn- about-steam/the-boiler-house/miscellaneous- boiler-types-economisers-and-superheaters.
  • Stefanou, M. R. (2017). Performance evaluation of an ORC unit integrated to a waste heat recovery system in a steel mill. IV International Seminar on ORC Power Systems, 535–542.
  • Taylor, M. J., Krane, R. J., & Parsons, J. R. (1991a). Second law optimization of a sensible heat thermal energy storage system with a distributed storage element - Part I. ASME Journal of Energy Resources Technology, 113(1), 20–26.
  • Taylor, M. J., Krane, R. J., & Parsons, J. R. (1991b). Second law optimization of a sensible heat thermal energy storage system with a distributed storage element - Part II. ASME Journal of Energy Resources Technology, 113(1), 27–32.
  • Thermtech (2014). Reducing energy costs with economizers, www.thermtech.co.uk/reducing-energy-costs-with- economisers.
  • Wall, G. (1977). Exergy - A Useful Concept within Resource Accounting [unpublished technical report 77-42]. Chalmers University of Technology.
  • Yodrak, L., Rittidech, S., Poomsa-ad, N., & Meena, P. (2010). Waste heat recovery by heat pipe air-preheater to energy thrift from the furnace in a hot forging process. American Journal of Applied Sciences, 7(5), 675–681.
  • Yovanovich, M.M. (1998). Conduction and Thermal Contact Resistances. In: Rohsenow, W.M., Hartnett, J.R., Cho, Y.I. (Eds.), Handbook of Heat Transfer (pp. 3.1–3.73), McGraw-Hill.
  • Zavattoni, S. (2012). Household Appliances: Waste Heat Assessment and Thermal Energy Storage Options [unpublished technical report]. SUPSI.
  • Zavattoni, S., Garcia-Polanco, N., Capablo, J., & Doyle, J. P. (2014). Packed bed latent heat TES for home appliance waste heat storage - System dimensioning and CFD analysis. International Conference on Home Appliance Technologies. Available from: www.iapp-greenkitchen.eu.
There are 43 citations in total.

Details

Primary Language English
Subjects Energy Systems Engineering (Other)
Journal Section Research Articles
Authors

Stefano Maria Spagocci 0009-0003-1658-4450

Early Pub Date November 13, 2023
Publication Date January 10, 2024
Submission Date March 20, 2023
Published in Issue Year 2023

Cite

APA Spagocci, S. M. (2024). A Domestic Waste Heat Recovery System: Mathematical Model of a Green Kitchen Module. Seatific Journal, 3(2), 51-70. https://doi.org/10.14744/seatific.2023.0007

Seatific Journal

Creative Commons Attribution-NonCommercial (CC BY-NC) 4.0 International License