Review Article
BibTex RIS Cite
Year 2022, Volume: 2 Issue: 2, 102 - 127, 30.12.2022
https://doi.org/10.14744/seatific.2022.0009

Abstract

References

  • Almasian, A., Chizari Fard, G., Mirjalili, M., & Parvinzadeh Gashti, M. (2018). Fluorinated-PAN nanofibers: Preparation, optimization, characterization and fog harvesting property. Journal of Industrial and Engineering Chemistry, 62, 146–155.
  • Almasian, A., Chizari Fard, G., Mirjalili, M., & Parvinzadeh Gashti, M. (2018). Fluorinated-PAN nanofibers: Preparation, optimization, characterization and fog harvesting property. Journal of Industrial and Engineering Chemistry, 62, 146–155.
  • Bai, H., Wang, L., Ju, J., Sun, R., Zheng, Y., & Jiang, L. (2014). Efficient water collection on integrative bioinspired surfaces with star-shaped wettability patterns. Advanced Materials, 26(29), 5025–5030.
  • Bai, H., Wang, L., Ju, J., Sun, R., Zheng, Y., & Jiang, L. (2014). Efficient water collection on integrative bioinspired surfaces with star-shaped wettability patterns. Advanced Materials, 26(29), 5025–5030.
  • Batisha, A. F. (2015). Feasibility and sustainability of fog harvesting. Sustainability of Water Quality and Ecology, 6, 1–10.
  • Batisha, A. F. (2015). Feasibility and sustainability of fog harvesting. Sustainability of Water Quality and Ecology, 6, 1–10.
  • Bertule, M., Appelquist, L. R., Spensley, J., Traerup, S. L. M., & Naswa, P. (2018). Climate change adaptation technologies for water : a practitioner’s guide to adaptation technologies for increased water sector resilience. (pp. 1–56). UN Environment-DHI Centre.
  • Bertule, M., Appelquist, L. R., Spensley, J., Traerup, S. L. M., & Naswa, P. (2018). Climate change adaptation technologies for water : a practitioner’s guide to adaptation technologies for increased water sector resilience. (pp. 1–56). UN Environment-DHI Centre.
  • Bhushan, B. (2013). Introduction to Tribology. In Introduction to Tribology (2nd ed.). Wiley Online Library.
  • Bhushan, B. (2013). Introduction to Tribology. In Introduction to Tribology (2nd ed.). Wiley Online Library.
  • Bhushan, B. (2020). Design of water harvesting towers and projections for water collection from fog and condensation. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 378(2167), 1–37.
  • Bhushan, B. (2020). Design of water harvesting towers and projections for water collection from fog and condensation. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 378(2167), 1–37.
  • Brown, P. S., & Bhushan, B. (2016). Durable superoleophobic polypropylene surfaces. Philosophical Transactions of the Royal Society A, 374(2073), 1–9.
  • Brown, P. S., & Bhushan, B. (2016). Durable superoleophobic polypropylene surfaces. Philosophical Transactions of the Royal Society A, 374(2073), 1–9.
  • Brown, P. S., & Bhushan, B. (2016). Durable, superoleophobic polymer-nanoparticle composite surfaces with re-entrant geometry via solvent-induced phase transformation. Scientific Reports, 6, Article 2148.
  • Brown, P. S., & Bhushan, B. (2016). Durable, superoleophobic polymer-nanoparticle composite surfaces with re-entrant geometry via solvent-induced phase transformation. Scientific Reports, 6, Article 2148.
  • Cengel, Y. A., & Boles, M. A. (2002). Thermodyamics an engineering approach. Energy, 1, Article 51.
  • Cengel, Y. A., & Boles, M. A. (2002). Thermodyamics an engineering approach. Energy, 1, Article 51.
  • Chen, D., Li, J., Zhao, J., Guo, J., Zhang, S., Sherazi, T. A., Ambreen, & Li, S. (2018). Bioinspired superhydrophilic-hydrophobic integrated surface with conical pattern-shape for self-driven fog collection. Journal of Colloid and Interface Science, 530, 274–281.
  • Chen, D., Li, J., Zhao, J., Guo, J., Zhang, S., Sherazi, T. A., Ambreen, & Li, S. (2018). Bioinspired superhydrophilic-hydrophobic integrated surface with conical pattern-shape for self-driven fog collection. Journal of Colloid and Interface Science, 530, 274–281.
  • Choo, S., Choi, H. J., & Lee, H. (2015). Water-collecting behavior of nanostructured surfaces with special wettability. Applied Surface Science, 324, 563–568.
  • Choo, S., Choi, H. J., & Lee, H. (2015). Water-collecting behavior of nanostructured surfaces with special wettability. Applied Surface Science, 324, 563–568.
  • Damak, M., & Varanasi, K. K. (2018). Electrostatically driven fog collection using space charge injection. Science Advances, 4(6), 1–8.
  • Damak, M., & Varanasi, K. K. (2018). Electrostatically driven fog collection using space charge injection. Science Advances, 4(6), 1–8.
  • Darmanin, T., & Guittard, F. (2015). Superhydrophobic and superoleophobic properties in nature. Materials Today, 18(5), 273–285.
  • Darmanin, T., & Guittard, F. (2015). Superhydrophobic and superoleophobic properties in nature. Materials Today, 18(5), 273–285.
  • De Gennes, P. G. (1992). Soft matter (nobel lecture). Angewandte Chemie International Edition, 31(7), 842–845.
  • De Gennes, P. G. (1992). Soft matter (nobel lecture). Angewandte Chemie International Edition, 31(7), 842–845.
  • Dodson, L. L., & Bargach, J. (2015). Harvesting fresh water from fog in rural Morocco: Research and impact Dar Si Hmad’s fogwater project in aït Baamrane. Procedia Engineering, 107, 186–193.
  • Dodson, L. L., & Bargach, J. (2015). Harvesting fresh water from fog in rural Morocco: Research and impact Dar Si Hmad’s fogwater project in aït Baamrane. Procedia Engineering, 107, 186–193.
  • Domen, J. K., Stringfellow, W. T., Camarillo, M. K., Gulati, S., Kay, M., & Shelly, C. (2014). Fog water as an alternative and sustainable water resource. Clean Technologies and Environmental Policy, 16, 235–249.
  • Domen, J. K., Stringfellow, W. T., Camarillo, M. K., Gulati, S., Kay, M., & Shelly, C. (2014). Fog water as an alternative and sustainable water resource. Clean Technologies and Environmental Policy, 16, 235–249.
  • Dunn, M. (1989). Exploring your world: The adventure of geography. Natl. Geogr. Soc.
  • Dunn, M. (1989). Exploring your world: The adventure of geography. Natl. Geogr. Soc.
  • El-Dessouky, H. T., & Ettouney, H. M. (2002). Fundamentals of salt water desalination. Elsevier Science B.V.
  • El-Dessouky, H. T., & Ettouney, H. M. (2002). Fundamentals of salt water desalination. Elsevier Science B.V.
  • Feng, J., Zhong, L., & Guo, Z. (2020). Sprayed hieratical biomimetic superhydrophilic-superhydrophobic surface for efficient fog harvesting. Chemical Engineering Journal, 388, Article 124283.
  • Feng, J., Zhong, L., & Guo, Z. (2020). Sprayed hieratical biomimetic superhydrophilic-superhydrophobic surface for efficient fog harvesting. Chemical Engineering Journal, 388, Article 124283.
  • Feng, L., Li, S., Li, Y., Li, H., Zhang, L., Zhai, J., Song, Y., Liu, B., Jiang, L., & Zhu, D. (2002). Super-hydrophobic surfaces: From natural to artificial. Advanced Materials, 14(24), 1857–1860.
  • Feng, L., Li, S., Li, Y., Li, H., Zhang, L., Zhai, J., Song, Y., Liu, B., Jiang, L., & Zhu, D. (2002). Super-hydrophobic surfaces: From natural to artificial. Advanced Materials, 14(24), 1857–1860.
  • Fernandez, D.M., Torregrosa, A., Weiss-Penzias, P.S., Zhang, B.J., Sorensen, D., Cohen, R.E., McKinley, G.H., Kleingartner, J., Oliphant, A., and Bowman, M. (2018). Fog water collection effectiveness: Mesh intercomparisons. Aerosol and Air Quality Research, 18(1), 270–283.
  • Fernandez, D.M., Torregrosa, A., Weiss-Penzias, P.S., Zhang, B.J., Sorensen, D., Cohen, R.E., McKinley, G.H., Kleingartner, J., Oliphant, A., and Bowman, M. (2018). Fog water collection effectiveness: Mesh intercomparisons. Aerosol and Air Quality Research, 18(1), 270–283.
  • Fessehaye, M., Abdul-Wahab, S. A., Savage, M. J., Kohler, T., Gherezghiher, T., & Hurni, H. (2014). Fog-water collection for community use. Renewable and Sustainable Energy Reviews, 29, 52–62.
  • Fessehaye, M., Abdul-Wahab, S. A., Savage, M. J., Kohler, T., Gherezghiher, T., & Hurni, H. (2014). Fog-water collection for community use. Renewable and Sustainable Energy Reviews, 29, 52–62.
  • Forsberg, P., Nikolajeff, F., & Karlsson, M. (2011). Cassie- Wenzel and Wenzel-Cassie transitions on immersed superhydrophobic surfaces under hydrostatic pressure. Soft Matter, 7(1), 104–109.
  • Forsberg, P., Nikolajeff, F., & Karlsson, M. (2011). Cassie- Wenzel and Wenzel-Cassie transitions on immersed superhydrophobic surfaces under hydrostatic pressure. Soft Matter, 7(1), 104–109.
  • Gao, L., & McCarthy, T. J. (2006). The “lotus effect” explained: two reasons why two length scales of topography are important. Langmuir, 22(7), 2966–2967.
  • Gao, L., & McCarthy, T. J. (2006). The “lotus effect” explained: two reasons why two length scales of topography are important. Langmuir, 22(7), 2966–2967.
  • Gaydos, J., & Neumann, A. W. (1987). The dependence of contact angles on drop size and line tension. Journal of Colloid And Interface Science, 120(1), 76–86.
  • Gaydos, J., & Neumann, A. W. (1987). The dependence of contact angles on drop size and line tension. Journal of Colloid And Interface Science, 120(1), 76–86.
  • Ghosh, R., & Ganguly, R. (2018). Harvesting Water from Natural and Industrial Fogs—Opportunities and Challenges. In: S. Basu, A. Agarwal, A.,Mukhopadhyay, C. Patel, (Eds.), Droplet and spray transport: paradigms and applications. Energy, environment, and sustainability. Springer.
  • Ghosh, R., & Ganguly, R. (2018). Harvesting Water from Natural and Industrial Fogs—Opportunities and Challenges. In: S. Basu, A. Agarwal, A.,Mukhopadhyay, C. Patel, (Eds.), Droplet and spray transport: paradigms and applications. Energy, environment, and sustainability. Springer.
  • Ghosh, R., Ray, T. K., & Ganguly, R. (2015). Cooling tower fog harvesting in power plants - A pilot study. Energy, 89, 1018–1028.
  • Ghosh, R., Ray, T. K., & Ganguly, R. (2015). Cooling tower fog harvesting in power plants - A pilot study. Energy, 89, 1018–1028.
  • Gleick, P. H. (1996). Basic water requirements for human activities: Meeting basic needs. Water International, 21(2), 83–92.
  • Gleick, P. H. (1996). Basic water requirements for human activities: Meeting basic needs. Water International, 21(2), 83–92.
  • Good, R. J. (1992). Contact angle, wetting, and adhesion: A critical review. Journal of Adhesion Science and Technology, 6(12), 1269–1302.
  • Good, R. J. (1992). Contact angle, wetting, and adhesion: A critical review. Journal of Adhesion Science and Technology, 6(12), 1269–1302.
  • Good, R. J., & Koo, M. N. (1979). The effect of drop size on contact angle. Journal of Colloid and Interface Science, 71(2), 283–292.
  • Good, R. J., & Koo, M. N. (1979). The effect of drop size on contact angle. Journal of Colloid and Interface Science, 71(2), 283–292.
  • Guo, Z., Liu, W., & Su, B. L. (2011). Superhydrophobic surfaces: From natural to biomimetic to functional. Journal of Colloid and Interface Science, 353(2), 335–355.
  • Guo, Z., Liu, W., & Su, B. L. (2011). Superhydrophobic surfaces: From natural to biomimetic to functional. Journal of Colloid and Interface Science, 353(2), 335–355.
  • Gupta, V. K., Ali, I., Saleh, T. A., Nayak, A., & Agarwal, S. (2012). Chemical treatment technologies for waste- water recycling - An overview. RSC Advances, 2(16), 6380–6388.
  • Gupta, V. K., Ali, I., Saleh, T. A., Nayak, A., & Agarwal, S. (2012). Chemical treatment technologies for waste- water recycling - An overview. RSC Advances, 2(16), 6380–6388.
  • Hamed, A. M. (2000). Absorption–regeneration cycle for production of water from air-theoretical approach. Renewable Energy, 19(4), 625–635.
  • Hamed, A. M. (2000). Absorption–regeneration cycle for production of water from air-theoretical approach. Renewable Energy, 19(4), 625–635.
  • Hamed, A. M. & Aly, A. A., Zeidan, E. B., (2011). Application of solar energy for recovery of water from atmospheric air in climatic zones of Saudi Arabia. Natural Resources, 2(1), 8–17.
  • Hamed, A. M. & Aly, A. A., Zeidan, E. B., (2011). Application of solar energy for recovery of water from atmospheric air in climatic zones of Saudi Arabia. Natural Resources, 2(1), 8–17.
  • Holmes, R., Dios, J. De, & De, E. (2015). Large fog collectors : New strategies for collection efficiency and structural response to wind pressure. Atmospheric Research, 151, 236–249.
  • Holmes, R., Dios, J. De, & De, E. (2015). Large fog collectors : New strategies for collection efficiency and structural response to wind pressure. Atmospheric Research, 151, 236–249.
  • Hu, R., Wang, N., Hou, L., Cui, Z., Liu, J., Li, D., Li, Q., Zhang, H., & Zhao, Y. (2019). A bioinspired hybrid membrane with wettability and topology anisotropy for highly efficient fog collection. Journal of Materials Chemistry A, 7(1), 124–132.
  • Hu, R., Wang, N., Hou, L., Cui, Z., Liu, J., Li, D., Li, Q., Zhang, H., & Zhao, Y. (2019). A bioinspired hybrid membrane with wettability and topology anisotropy for highly efficient fog collection. Journal of Materials Chemistry A, 7(1), 124–132.
  • Huang, Z. X., Liu, X., Wong, S. C., & Qu, J. P. (2019). A single step fabrication of bio-inspired high efficiency and durable water harvester made of polymer membranes. Polymer, 183, Article 121843.
  • Huang, Z. X., Liu, X., Wong, S. C., & Qu, J. P. (2019). A single step fabrication of bio-inspired high efficiency and durable water harvester made of polymer membranes. Polymer, 183, Article 121843.
  • Huang, Z. X., Liu, X., Wu, J., Wong, S. C., & Qu, J. P. (2018). Electrospinning water harvesters inspired by spider silk and beetle. Materials Letters, 211, 28–31.
  • Huang, Z. X., Liu, X., Wu, J., Wong, S. C., & Qu, J. P. (2018). Electrospinning water harvesters inspired by spider silk and beetle. Materials Letters, 211, 28–31.
  • Klemm, O., Schemenauer, R. S., Lummerich, A., Cereceda, P., Marzol, V., Corell, D., Van Heerden, J., Reinhard, D., Gherezghiher, T., Olivier, J., Osses, P., Sarsour, J., Frost, E., Estrela, M. J., Valiente, J. A., & Fessehaye, G. M. (2012). Fog as a fresh-water resource: Overview and perspectives. Ambio, 41, 221–234.
  • Klemm, O., Schemenauer, R. S., Lummerich, A., Cereceda, P., Marzol, V., Corell, D., Van Heerden, J., Reinhard, D., Gherezghiher, T., Olivier, J., Osses, P., Sarsour, J., Frost, E., Estrela, M. J., Valiente, J. A., & Fessehaye, G. M. (2012). Fog as a fresh-water resource: Overview and perspectives. Ambio, 41, 221–234.
  • Kyong Kim, N., Hee Kang, D., Eom, H., & Wook Kang, H. (2019). Biomimetic fog harvesting surface by photo-induced micro-patterning of zinc-oxide silver hierarchical nanostructures. Applied Surface Science, 470, 161–167.
  • Kyong Kim, N., Hee Kang, D., Eom, H., & Wook Kang, H. (2019). Biomimetic fog harvesting surface by photo-induced micro-patterning of zinc-oxide silver hierarchical nanostructures. Applied Surface Science, 470, 161–167.
  • Li, D., Fan, Y., Han, G., & Guo, Z. (2021). Multibioinspired Janus membranes with superwettable performance for unidirectional transportation and fog collection. Chemical Engineering Journal, 404, Article 126515.
  • Li, D., Fan, Y., Han, G., & Guo, Z. (2021). Multibioinspired Janus membranes with superwettable performance for unidirectional transportation and fog collection. Chemical Engineering Journal, 404, Article 126515.
  • Li, J., Li, W., Han, X., & Wang, L. (2020). Sandwiched nets for efficient direction-independent fog collection. Journal of Colloid and Interface Science, 581, 545–551.
  • Li, J., Li, W., Han, X., & Wang, L. (2020). Sandwiched nets for efficient direction-independent fog collection. Journal of Colloid and Interface Science, 581, 545–551.
  • Li, J., Zhou, Y., Wang, W., Du, F., & Ren, L. (2020). A bio- inspired superhydrophobic surface for fog collection and directional water transport. Journal of Alloys and Compounds, 819, Article 152968.
  • Li, J., Zhou, Y., Wang, W., Du, F., & Ren, L. (2020). A bio- inspired superhydrophobic surface for fog collection and directional water transport. Journal of Alloys and Compounds, 819, Article 152968.
  • Lin, C., Huang, Y., Li, X., Sun, X., Zhang, W., Huang, J., Ying, X., & Liu, M. (2020). Fabrication of superhydrophobic surfaces inspired by “stomata effect” of plant leaves via swelling-vesiculating- cracking method. Chemical Engineering Journal, 400, Article 125935.
  • Lin, C., Huang, Y., Li, X., Sun, X., Zhang, W., Huang, J., Ying, X., & Liu, M. (2020). Fabrication of superhydrophobic surfaces inspired by “stomata effect” of plant leaves via swelling-vesiculating- cracking method. Chemical Engineering Journal, 400, Article 125935.
  • Liu, B., Gao, R., & Xu, Z. (2020). Fabrication of super- hydrophobic surfaces utilizing pyrolysis of waste printed circuit boards. Journal of Cleaner Production, 244, Article 118727.
  • Liu, B., Gao, R., & Xu, Z. (2020). Fabrication of super- hydrophobic surfaces utilizing pyrolysis of waste printed circuit boards. Journal of Cleaner Production, 244, Article 118727.
  • Liu, C., Zhang, L., Zhang, X., Jia, Y., Di, Y., & Gan, Z. (2020). Bioinspired free-standing one-dimensional photonic crystals with janus wettability for water quality monitoring. ACS Applied Materials & Interfaces, 12(36), 40979–40984.
  • Liu, C., Zhang, L., Zhang, X., Jia, Y., Di, Y., & Gan, Z. (2020). Bioinspired free-standing one-dimensional photonic crystals with janus wettability for water quality monitoring. ACS Applied Materials & Interfaces, 12(36), 40979–40984.
  • Liu, H., Xie, W. Y., Song, F., Wang, X. L., & Wang, Y. Z. (2019). Constructing hierarchically hydrophilic/ superhydrophobic ZIF-8 pattern on soy protein towards a biomimetic efficient water harvesting material. Chemical Engineering Journal, 369, 1040– 1048.
  • Liu, H., Xie, W. Y., Song, F., Wang, X. L., & Wang, Y. Z. (2019). Constructing hierarchically hydrophilic/ superhydrophobic ZIF-8 pattern on soy protein towards a biomimetic efficient water harvesting material. Chemical Engineering Journal, 369, 1040– 1048.
  • Liu, Y., Qu, R., Zhang, W., Li, X., Wei, Y., & Feng, L. (2019). Lotus- and mussel-inspired PDA-PET/PTFE Janus membrane: Toward integrated separation of light and heavy oils from water. ACS Applied Materials and Interfaces, 11(22), 20545–20556.
  • Liu, Y., Qu, R., Zhang, W., Li, X., Wei, Y., & Feng, L. (2019). Lotus- and mussel-inspired PDA-PET/PTFE Janus membrane: Toward integrated separation of light and heavy oils from water. ACS Applied Materials and Interfaces, 11(22), 20545–20556.
  • Mahmood, A., Chen, L., Chen, S., Chen, C., Yu, Y., Weng, D., & Wang, J. (2020). Nature-inspired design of conical array for continuous and efficient fog collection application. Colloids and Interface Science Communications, 37, Article 100283.
  • Mahmood, A., Chen, L., Chen, S., Chen, C., Yu, Y., Weng, D., & Wang, J. (2020). Nature-inspired design of conical array for continuous and efficient fog collection application. Colloids and Interface Science Communications, 37, Article 100283.
  • Munson, B. R., Okiishi, T. H., Huebsch, W. W., and Rothmayer, A. P. (2013). Fluid mechanics (7th ed). Wiley.
  • Munson, B. R., Okiishi, T. H., Huebsch, W. W., and Rothmayer, A. P. (2013). Fluid mechanics (7th ed). Wiley.
  • Neinhuis, C., & Barthlott, W. (1997). Characterization and distribution of water-repellent, self-cleaning plant surfaces. Annals of Botany, 79(6), 667–677.
  • Neinhuis, C., & Barthlott, W. (1997). Characterization and distribution of water-repellent, self-cleaning plant surfaces. Annals of Botany, 79(6), 667–677.
  • Odian, G. (2004). Principles of polymerization. John Wiley & Sons.
  • Odian, G. (2004). Principles of polymerization. John Wiley & Sons.
  • Olivier, J. (2002). Fog-water harvesting along the West Coast of South Africa: A feasibility study. Water SA, 28(4), 349–360.
  • Olivier, J. (2002). Fog-water harvesting along the West Coast of South Africa: A feasibility study. Water SA, 28(4), 349–360.
  • Park, B., & Hwang, W. (2016). A facile fabrication method for corrosion-resistant micro/nanostructures on stainless steel surfaces with tunable wettability. Scripta Materialia, 113, 118–121.
  • Park, B., & Hwang, W. (2016). A facile fabrication method for corrosion-resistant micro/nanostructures on stainless steel surfaces with tunable wettability. Scripta Materialia, 113, 118–121.
  • Park, J. Y., Hwang, C. M., & Lee, S. H. (2008). Effective methods to improve the biocompatibility of poly (dimethylsiloxane). Biochip Journal, 2(1), 39–43.
  • Park, J. Y., Hwang, C. M., & Lee, S. H. (2008). Effective methods to improve the biocompatibility of poly (dimethylsiloxane). Biochip Journal, 2(1), 39–43.
  • Park, K. C., Chhatre, S. S., Srinivasan, S., Cohen, R. E., & McKinley, G. H. (2013). Optimal design of permeable fiber network structures for fog harvesting. Langmuir, 29(43), 13269–13277.
  • Park, K. C., Chhatre, S. S., Srinivasan, S., Cohen, R. E., & McKinley, G. H. (2013). Optimal design of permeable fiber network structures for fog harvesting. Langmuir, 29(43), 13269–13277.
  • Pei, M., Huo, L., Zhao, X., Chen, S., Li, J., Peng, Z., Zhang, K., Zhou, H., & Liu, P. (2020). Facile construction of stable hydrophobic surface via covalent self- assembly of silane-terminated fluorinated polymer. Applied Surface Science, 507, Article 145138.
  • Pei, M., Huo, L., Zhao, X., Chen, S., Li, J., Peng, Z., Zhang, K., Zhou, H., & Liu, P. (2020). Facile construction of stable hydrophobic surface via covalent self- assembly of silane-terminated fluorinated polymer. Applied Surface Science, 507, Article 145138.
  • Pei, M., Pan, C., Wu, D., & Liu, P. (2020). Surface hydrophilic-hydrophobic reversal coatings of polydimethylsiloxane-palygorskite nanosponges. Applied Clay Science, 189, Article Article 105546.
  • Pei, M., Pan, C., Wu, D., & Liu, P. (2020). Surface hydrophilic-hydrophobic reversal coatings of polydimethylsiloxane-palygorskite nanosponges. Applied Clay Science, 189, Article Article 105546.
  • Peng, Y., He, Y., Yang, S., Ben, S., Cao, M., Li, K., Liu, K., & Jiang, L. (2015). Magnetically induced fog harvesting via flexible conical arrays. Advanced Functional Materials, 25, 5967–5971.
  • Peng, Y., He, Y., Yang, S., Ben, S., Cao, M., Li, K., Liu, K., & Jiang, L. (2015). Magnetically induced fog harvesting via flexible conical arrays. Advanced Functional Materials, 25, 5967–5971.
  • Qu, M., Zhao, G., Cao, X., & Zhang, J. (2008). Biomimetic fabrication of lotus-leaf-like structured polyaniline film with stable superhydrophobic and conductive properties. Langmuir, 24(8), 4185–4189.
  • Qu, M., Zhao, G., Cao, X., & Zhang, J. (2008). Biomimetic fabrication of lotus-leaf-like structured polyaniline film with stable superhydrophobic and conductive properties. Langmuir, 24(8), 4185–4189.
  • Rajaram, M., Heng, X., Oza, M., & Luo, C. (2016). Enhancement of fog-collection efficiency of a Raschel mesh using surface coatings and local geometric changes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 508, 218–229.
  • Rajaram, M., Heng, X., Oza, M., & Luo, C. (2016). Enhancement of fog-collection efficiency of a Raschel mesh using surface coatings and local geometric changes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 508, 218–229.
  • Raut, H. K., Ranganath, A. S., Baji, A., & Wood, K. L. (2019). Bio-inspired hierarchical topography for texture driven fog harvesting. Applied Surface Science, 465, 362–368.
  • Raut, H. K., Ranganath, A. S., Baji, A., & Wood, K. L. (2019). Bio-inspired hierarchical topography for texture driven fog harvesting. Applied Surface Science, 465, 362–368.
  • Rivera, J. de D. (2011). Aerodynamic collection efficiency of fog water collectors. Atmospheric Research, 102(3), 335–342.
  • Rivera, J. de D. (2011). Aerodynamic collection efficiency of fog water collectors. Atmospheric Research, 102(3), 335–342.
  • Salehi, A. A., Ghannadi-Maragheh, M., Torab-Mostaedi, M., Torkaman, R. & Asadollahzadeh M., (2020). A review on the water-energy nexus for drinking water production from humid air. Renewable Sustainable Energy Reviews,120, Article 109627.
  • Salehi, A. A., Ghannadi-Maragheh, M., Torab-Mostaedi, M., Torkaman, R. & Asadollahzadeh M., (2020). A review on the water-energy nexus for drinking water production from humid air. Renewable Sustainable Energy Reviews,120, Article 109627.
  • Sharma, V., Yiannacou, K., Karjalainen, M., Lahtonen, K., Valden, M., & Sariola, V. (2019). Large-scale efficient water harvesting using bioinspired micro-patterned copper oxide nanoneedle surfaces and guided droplet transport. Nanoscale Advances, 1(10), 4025–4040.
  • Sharma, V., Yiannacou, K., Karjalainen, M., Lahtonen, K., Valden, M., & Sariola, V. (2019). Large-scale efficient water harvesting using bioinspired micro-patterned copper oxide nanoneedle surfaces and guided droplet transport. Nanoscale Advances, 1(10), 4025–4040.
  • Söz, Ç. K., Trosien, S., & Biesalski, M. (2020). Janus Interface Materials: A Critical Review and Comparative Study. ACS Materials Letters, 2(4), 336–357.
  • Söz, Ç. K., Trosien, S., & Biesalski, M. (2020). Janus Interface Materials: A Critical Review and Comparative Study. ACS Materials Letters, 2(4), 336–357.
  • Su, Y., Cai, S., Wu, T., Li, C., Huang, Z., Zhang, Y., Wu, H., Hu, K., Chen, C., Li, J., Hu, Y., Zhu, S., & Wu, D. (2019). Smart stretchable janus membranes with tunable collection rate for fog harvesting. Advanced Materials Interfaces, 6(22), Article 1901465.
  • Su, Y., Cai, S., Wu, T., Li, C., Huang, Z., Zhang, Y., Wu, H., Hu, K., Chen, C., Li, J., Hu, Y., Zhu, S., & Wu, D. (2019). Smart stretchable janus membranes with tunable collection rate for fog harvesting. Advanced Materials Interfaces, 6(22), Article 1901465.
  • Torun, I., Ruzi, M., Er, F., & Onses, M. S. (2019). Superhydrophobic coatings made from biocompatible polydimethylsiloxane and natural wax. Progress in Organic Coatings, 136, Article 105279.
  • Torun, I., Ruzi, M., Er, F., & Onses, M. S. (2019). Superhydrophobic coatings made from biocompatible polydimethylsiloxane and natural wax. Progress in Organic Coatings, 136, Article 105279.
  • Upadhyay, R. K., & Waghmare, P. R. (2019). Green preparation of copper surfaces with wettability contrast for guided fluid transport and fog harvesting application. Materials Letters, 246, 223–226.
  • Upadhyay, R. K., & Waghmare, P. R. (2019). Green preparation of copper surfaces with wettability contrast for guided fluid transport and fog harvesting application. Materials Letters, 246, 223–226.
  • Villarreal, E. L., & Dixon, A., (2005). Analysis of a rainwater collection system for domestic water supply in Ringdansen, Norrköping, Sweden. Building and Environment, 40(9), 1174–1184.
  • Villarreal, E. L., & Dixon, A., (2005). Analysis of a rainwater collection system for domestic water supply in Ringdansen, Norrköping, Sweden. Building and Environment, 40(9), 1174–1184.
  • Wan, Y., Cui, P., Xu, J., & Yu, H. (2019). Directional water- collecting behavior of pine needle surface. Materials Letters, 255, Article 126561.
  • Wan, Y., Cui, P., Xu, J., & Yu, H. (2019). Directional water- collecting behavior of pine needle surface. Materials Letters, 255, Article 126561.
  • Wang, J. N., Liu, Y. Q., Zhang, Y. L., Feng, J., Wang, H., Yu, Y. H., & Sun, H. B. (2018). Wearable superhydrophobic elastomer skin with switchable wettability. Advanced Functional Materials, 28(23), Article 1800625.
  • Wang, J. N., Liu, Y. Q., Zhang, Y. L., Feng, J., Wang, H., Yu, Y. H., & Sun, H. B. (2018). Wearable superhydrophobic elastomer skin with switchable wettability. Advanced Functional Materials, 28(23), Article 1800625.
  • Wang, Y., Zhang, L., Wu, J., Hedhili, M. N., & Wang, P. (2015). A facile strategy for the fabrication of a bioinspired hydrophilic-superhydrophobic patterned surface for highly efficient fog-harvesting. Journal of Materials Chemistry A, 3(37), 18963–18969.
  • Wang, Y., Zhang, L., Wu, J., Hedhili, M. N., & Wang, P. (2015). A facile strategy for the fabrication of a bioinspired hydrophilic-superhydrophobic patterned surface for highly efficient fog-harvesting. Journal of Materials Chemistry A, 3(37), 18963–18969.
  • WWAP (UNESCO World Water Assessment Programme). (2019). The United Nations World Water Development Report 2019: Leaving No One Behind. Paris.
  • WWAP (UNESCO World Water Assessment Programme). (2019). The United Nations World Water Development Report 2019: Leaving No One Behind. Paris.
  • Zhang, M., & Zheng, Y. (2016). Bioinspired Structure Materials to Control Water-collecting Properties. Materials Today: Proceedings, 3(2), 696–702.
  • Zhang, M., & Zheng, Y. (2016). Bioinspired Structure Materials to Control Water-collecting Properties. Materials Today: Proceedings, 3(2), 696–702.
  • Zhang, Q., Lin, G., & Yin, J. (2018). Highly efficient fog harvesting on superhydrophobic microfibers through droplet oscillation and sweeping. Soft Matter, 14(41), 8276–8283.
  • Zhang, Q., Lin, G., & Yin, J. (2018). Highly efficient fog harvesting on superhydrophobic microfibers through droplet oscillation and sweeping. Soft Matter, 14(41), 8276–8283.
  • Zhao, X., Sun, M., Duan, Y., & Hao, H. (2020). Superhydrophobic coatings based on raspberry- like nanoparticles and their applications on cotton. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 602, Article 125039.
  • Zhao, X., Sun, M., Duan, Y., & Hao, H. (2020). Superhydrophobic coatings based on raspberry- like nanoparticles and their applications on cotton. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 602, Article 125039.
  • Zhong, L., Feng, J., & Guo, Z. (2019). An alternating nanoscale (hydrophilic-hydrophobic)/hydrophilic Janus cooperative copper mesh fabricated by a simple liquidus modification for efficient fog harvesting. Journal of Materials Chemistry A, 7(14), 8405–8413.
  • Zhong, L., Feng, J., & Guo, Z. (2019). An alternating nanoscale (hydrophilic-hydrophobic)/hydrophilic Janus cooperative copper mesh fabricated by a simple liquidus modification for efficient fog harvesting. Journal of Materials Chemistry A, 7(14), 8405–8413.
  • Zhou, H., Jing, X., & Guo, Z. (2020). Excellent fog droplets collector via an extremely stable hybrid hydrophobic-hydrophilic surface and Janus copper foam integrative system with hierarchical micro/ nanostructures. Journal of Colloid and Interface Science, 561, 730–740.
  • Zhou, H., Jing, X., & Guo, Z. (2020). Excellent fog droplets collector via an extremely stable hybrid hydrophobic-hydrophilic surface and Janus copper foam integrative system with hierarchical micro/ nanostructures. Journal of Colloid and Interface Science, 561, 730–740.
  • Zhou, H., Zhang, M., Li, C., Gao, C., & Zheng, Y. (2018). Excellent fog-droplets collector via integrative Janus membrane and conical spine with micro/ nanostructures. Small, 14(27), Article 1801335.
  • Zhou, H., Zhang, M., Li, C., Gao, C., & Zheng, Y. (2018). Excellent fog-droplets collector via integrative Janus membrane and conical spine with micro/ nanostructures. Small, 14(27), Article 1801335.
  • Zhu, H., Huang, Y., Lou, X., & Xia, F. (2019). Beetle-inspired wettable materials: from fabrications to applications. Materials Today Nano, 6, Article 100034.
  • Zhu, H., Huang, Y., Lou, X., & Xia, F. (2019). Beetle-inspired wettable materials: from fabrications to applications. Materials Today Nano, 6, Article 100034.

Fog collection - materials, techniques and affecting parameters - A review

Year 2022, Volume: 2 Issue: 2, 102 - 127, 30.12.2022
https://doi.org/10.14744/seatific.2022.0009

Abstract

Water scarcity has shown a great challenge during the past decades with millions suffering from lack of potable water. Although, people try to benefit from the water naturally existing in air by two sources: fog and humid air. In this paper, we mainly allot the work on fog water. Fog collection is undergone using fog mesh collectors. There are lots of methods to rate the quality of fog water collection. Most used method is the quantity of water collected in kilograms for a one square meter harvester mesh per one hour. However, sometimes water contact angle on a flat surface of the mesh's material is also reliable. Both give an indication of hydrophobicity or water repellency which is significant for high fog collection efficiency. In addition, drop falling velocity and deposition time of water on the harvester measured in seconds are both indications for fog collection efficiency but rarely used. The scope of this article is to make a helpful guide for fog harvesting technology with the parameters that control the efficiency of this water resource. In addition, there is a detailed review in the chemistry of some of the previous researches on fog water collection inspired by natural existing plants and animals that survive in arid zones where only fog or humid air is found. Concerning the fog harvesting surface material, there will be a comparison between different essential parameters as mentioned above or other general indications. Some of the procedures to create the material will also be explained.

References

  • Almasian, A., Chizari Fard, G., Mirjalili, M., & Parvinzadeh Gashti, M. (2018). Fluorinated-PAN nanofibers: Preparation, optimization, characterization and fog harvesting property. Journal of Industrial and Engineering Chemistry, 62, 146–155.
  • Almasian, A., Chizari Fard, G., Mirjalili, M., & Parvinzadeh Gashti, M. (2018). Fluorinated-PAN nanofibers: Preparation, optimization, characterization and fog harvesting property. Journal of Industrial and Engineering Chemistry, 62, 146–155.
  • Bai, H., Wang, L., Ju, J., Sun, R., Zheng, Y., & Jiang, L. (2014). Efficient water collection on integrative bioinspired surfaces with star-shaped wettability patterns. Advanced Materials, 26(29), 5025–5030.
  • Bai, H., Wang, L., Ju, J., Sun, R., Zheng, Y., & Jiang, L. (2014). Efficient water collection on integrative bioinspired surfaces with star-shaped wettability patterns. Advanced Materials, 26(29), 5025–5030.
  • Batisha, A. F. (2015). Feasibility and sustainability of fog harvesting. Sustainability of Water Quality and Ecology, 6, 1–10.
  • Batisha, A. F. (2015). Feasibility and sustainability of fog harvesting. Sustainability of Water Quality and Ecology, 6, 1–10.
  • Bertule, M., Appelquist, L. R., Spensley, J., Traerup, S. L. M., & Naswa, P. (2018). Climate change adaptation technologies for water : a practitioner’s guide to adaptation technologies for increased water sector resilience. (pp. 1–56). UN Environment-DHI Centre.
  • Bertule, M., Appelquist, L. R., Spensley, J., Traerup, S. L. M., & Naswa, P. (2018). Climate change adaptation technologies for water : a practitioner’s guide to adaptation technologies for increased water sector resilience. (pp. 1–56). UN Environment-DHI Centre.
  • Bhushan, B. (2013). Introduction to Tribology. In Introduction to Tribology (2nd ed.). Wiley Online Library.
  • Bhushan, B. (2013). Introduction to Tribology. In Introduction to Tribology (2nd ed.). Wiley Online Library.
  • Bhushan, B. (2020). Design of water harvesting towers and projections for water collection from fog and condensation. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 378(2167), 1–37.
  • Bhushan, B. (2020). Design of water harvesting towers and projections for water collection from fog and condensation. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 378(2167), 1–37.
  • Brown, P. S., & Bhushan, B. (2016). Durable superoleophobic polypropylene surfaces. Philosophical Transactions of the Royal Society A, 374(2073), 1–9.
  • Brown, P. S., & Bhushan, B. (2016). Durable superoleophobic polypropylene surfaces. Philosophical Transactions of the Royal Society A, 374(2073), 1–9.
  • Brown, P. S., & Bhushan, B. (2016). Durable, superoleophobic polymer-nanoparticle composite surfaces with re-entrant geometry via solvent-induced phase transformation. Scientific Reports, 6, Article 2148.
  • Brown, P. S., & Bhushan, B. (2016). Durable, superoleophobic polymer-nanoparticle composite surfaces with re-entrant geometry via solvent-induced phase transformation. Scientific Reports, 6, Article 2148.
  • Cengel, Y. A., & Boles, M. A. (2002). Thermodyamics an engineering approach. Energy, 1, Article 51.
  • Cengel, Y. A., & Boles, M. A. (2002). Thermodyamics an engineering approach. Energy, 1, Article 51.
  • Chen, D., Li, J., Zhao, J., Guo, J., Zhang, S., Sherazi, T. A., Ambreen, & Li, S. (2018). Bioinspired superhydrophilic-hydrophobic integrated surface with conical pattern-shape for self-driven fog collection. Journal of Colloid and Interface Science, 530, 274–281.
  • Chen, D., Li, J., Zhao, J., Guo, J., Zhang, S., Sherazi, T. A., Ambreen, & Li, S. (2018). Bioinspired superhydrophilic-hydrophobic integrated surface with conical pattern-shape for self-driven fog collection. Journal of Colloid and Interface Science, 530, 274–281.
  • Choo, S., Choi, H. J., & Lee, H. (2015). Water-collecting behavior of nanostructured surfaces with special wettability. Applied Surface Science, 324, 563–568.
  • Choo, S., Choi, H. J., & Lee, H. (2015). Water-collecting behavior of nanostructured surfaces with special wettability. Applied Surface Science, 324, 563–568.
  • Damak, M., & Varanasi, K. K. (2018). Electrostatically driven fog collection using space charge injection. Science Advances, 4(6), 1–8.
  • Damak, M., & Varanasi, K. K. (2018). Electrostatically driven fog collection using space charge injection. Science Advances, 4(6), 1–8.
  • Darmanin, T., & Guittard, F. (2015). Superhydrophobic and superoleophobic properties in nature. Materials Today, 18(5), 273–285.
  • Darmanin, T., & Guittard, F. (2015). Superhydrophobic and superoleophobic properties in nature. Materials Today, 18(5), 273–285.
  • De Gennes, P. G. (1992). Soft matter (nobel lecture). Angewandte Chemie International Edition, 31(7), 842–845.
  • De Gennes, P. G. (1992). Soft matter (nobel lecture). Angewandte Chemie International Edition, 31(7), 842–845.
  • Dodson, L. L., & Bargach, J. (2015). Harvesting fresh water from fog in rural Morocco: Research and impact Dar Si Hmad’s fogwater project in aït Baamrane. Procedia Engineering, 107, 186–193.
  • Dodson, L. L., & Bargach, J. (2015). Harvesting fresh water from fog in rural Morocco: Research and impact Dar Si Hmad’s fogwater project in aït Baamrane. Procedia Engineering, 107, 186–193.
  • Domen, J. K., Stringfellow, W. T., Camarillo, M. K., Gulati, S., Kay, M., & Shelly, C. (2014). Fog water as an alternative and sustainable water resource. Clean Technologies and Environmental Policy, 16, 235–249.
  • Domen, J. K., Stringfellow, W. T., Camarillo, M. K., Gulati, S., Kay, M., & Shelly, C. (2014). Fog water as an alternative and sustainable water resource. Clean Technologies and Environmental Policy, 16, 235–249.
  • Dunn, M. (1989). Exploring your world: The adventure of geography. Natl. Geogr. Soc.
  • Dunn, M. (1989). Exploring your world: The adventure of geography. Natl. Geogr. Soc.
  • El-Dessouky, H. T., & Ettouney, H. M. (2002). Fundamentals of salt water desalination. Elsevier Science B.V.
  • El-Dessouky, H. T., & Ettouney, H. M. (2002). Fundamentals of salt water desalination. Elsevier Science B.V.
  • Feng, J., Zhong, L., & Guo, Z. (2020). Sprayed hieratical biomimetic superhydrophilic-superhydrophobic surface for efficient fog harvesting. Chemical Engineering Journal, 388, Article 124283.
  • Feng, J., Zhong, L., & Guo, Z. (2020). Sprayed hieratical biomimetic superhydrophilic-superhydrophobic surface for efficient fog harvesting. Chemical Engineering Journal, 388, Article 124283.
  • Feng, L., Li, S., Li, Y., Li, H., Zhang, L., Zhai, J., Song, Y., Liu, B., Jiang, L., & Zhu, D. (2002). Super-hydrophobic surfaces: From natural to artificial. Advanced Materials, 14(24), 1857–1860.
  • Feng, L., Li, S., Li, Y., Li, H., Zhang, L., Zhai, J., Song, Y., Liu, B., Jiang, L., & Zhu, D. (2002). Super-hydrophobic surfaces: From natural to artificial. Advanced Materials, 14(24), 1857–1860.
  • Fernandez, D.M., Torregrosa, A., Weiss-Penzias, P.S., Zhang, B.J., Sorensen, D., Cohen, R.E., McKinley, G.H., Kleingartner, J., Oliphant, A., and Bowman, M. (2018). Fog water collection effectiveness: Mesh intercomparisons. Aerosol and Air Quality Research, 18(1), 270–283.
  • Fernandez, D.M., Torregrosa, A., Weiss-Penzias, P.S., Zhang, B.J., Sorensen, D., Cohen, R.E., McKinley, G.H., Kleingartner, J., Oliphant, A., and Bowman, M. (2018). Fog water collection effectiveness: Mesh intercomparisons. Aerosol and Air Quality Research, 18(1), 270–283.
  • Fessehaye, M., Abdul-Wahab, S. A., Savage, M. J., Kohler, T., Gherezghiher, T., & Hurni, H. (2014). Fog-water collection for community use. Renewable and Sustainable Energy Reviews, 29, 52–62.
  • Fessehaye, M., Abdul-Wahab, S. A., Savage, M. J., Kohler, T., Gherezghiher, T., & Hurni, H. (2014). Fog-water collection for community use. Renewable and Sustainable Energy Reviews, 29, 52–62.
  • Forsberg, P., Nikolajeff, F., & Karlsson, M. (2011). Cassie- Wenzel and Wenzel-Cassie transitions on immersed superhydrophobic surfaces under hydrostatic pressure. Soft Matter, 7(1), 104–109.
  • Forsberg, P., Nikolajeff, F., & Karlsson, M. (2011). Cassie- Wenzel and Wenzel-Cassie transitions on immersed superhydrophobic surfaces under hydrostatic pressure. Soft Matter, 7(1), 104–109.
  • Gao, L., & McCarthy, T. J. (2006). The “lotus effect” explained: two reasons why two length scales of topography are important. Langmuir, 22(7), 2966–2967.
  • Gao, L., & McCarthy, T. J. (2006). The “lotus effect” explained: two reasons why two length scales of topography are important. Langmuir, 22(7), 2966–2967.
  • Gaydos, J., & Neumann, A. W. (1987). The dependence of contact angles on drop size and line tension. Journal of Colloid And Interface Science, 120(1), 76–86.
  • Gaydos, J., & Neumann, A. W. (1987). The dependence of contact angles on drop size and line tension. Journal of Colloid And Interface Science, 120(1), 76–86.
  • Ghosh, R., & Ganguly, R. (2018). Harvesting Water from Natural and Industrial Fogs—Opportunities and Challenges. In: S. Basu, A. Agarwal, A.,Mukhopadhyay, C. Patel, (Eds.), Droplet and spray transport: paradigms and applications. Energy, environment, and sustainability. Springer.
  • Ghosh, R., & Ganguly, R. (2018). Harvesting Water from Natural and Industrial Fogs—Opportunities and Challenges. In: S. Basu, A. Agarwal, A.,Mukhopadhyay, C. Patel, (Eds.), Droplet and spray transport: paradigms and applications. Energy, environment, and sustainability. Springer.
  • Ghosh, R., Ray, T. K., & Ganguly, R. (2015). Cooling tower fog harvesting in power plants - A pilot study. Energy, 89, 1018–1028.
  • Ghosh, R., Ray, T. K., & Ganguly, R. (2015). Cooling tower fog harvesting in power plants - A pilot study. Energy, 89, 1018–1028.
  • Gleick, P. H. (1996). Basic water requirements for human activities: Meeting basic needs. Water International, 21(2), 83–92.
  • Gleick, P. H. (1996). Basic water requirements for human activities: Meeting basic needs. Water International, 21(2), 83–92.
  • Good, R. J. (1992). Contact angle, wetting, and adhesion: A critical review. Journal of Adhesion Science and Technology, 6(12), 1269–1302.
  • Good, R. J. (1992). Contact angle, wetting, and adhesion: A critical review. Journal of Adhesion Science and Technology, 6(12), 1269–1302.
  • Good, R. J., & Koo, M. N. (1979). The effect of drop size on contact angle. Journal of Colloid and Interface Science, 71(2), 283–292.
  • Good, R. J., & Koo, M. N. (1979). The effect of drop size on contact angle. Journal of Colloid and Interface Science, 71(2), 283–292.
  • Guo, Z., Liu, W., & Su, B. L. (2011). Superhydrophobic surfaces: From natural to biomimetic to functional. Journal of Colloid and Interface Science, 353(2), 335–355.
  • Guo, Z., Liu, W., & Su, B. L. (2011). Superhydrophobic surfaces: From natural to biomimetic to functional. Journal of Colloid and Interface Science, 353(2), 335–355.
  • Gupta, V. K., Ali, I., Saleh, T. A., Nayak, A., & Agarwal, S. (2012). Chemical treatment technologies for waste- water recycling - An overview. RSC Advances, 2(16), 6380–6388.
  • Gupta, V. K., Ali, I., Saleh, T. A., Nayak, A., & Agarwal, S. (2012). Chemical treatment technologies for waste- water recycling - An overview. RSC Advances, 2(16), 6380–6388.
  • Hamed, A. M. (2000). Absorption–regeneration cycle for production of water from air-theoretical approach. Renewable Energy, 19(4), 625–635.
  • Hamed, A. M. (2000). Absorption–regeneration cycle for production of water from air-theoretical approach. Renewable Energy, 19(4), 625–635.
  • Hamed, A. M. & Aly, A. A., Zeidan, E. B., (2011). Application of solar energy for recovery of water from atmospheric air in climatic zones of Saudi Arabia. Natural Resources, 2(1), 8–17.
  • Hamed, A. M. & Aly, A. A., Zeidan, E. B., (2011). Application of solar energy for recovery of water from atmospheric air in climatic zones of Saudi Arabia. Natural Resources, 2(1), 8–17.
  • Holmes, R., Dios, J. De, & De, E. (2015). Large fog collectors : New strategies for collection efficiency and structural response to wind pressure. Atmospheric Research, 151, 236–249.
  • Holmes, R., Dios, J. De, & De, E. (2015). Large fog collectors : New strategies for collection efficiency and structural response to wind pressure. Atmospheric Research, 151, 236–249.
  • Hu, R., Wang, N., Hou, L., Cui, Z., Liu, J., Li, D., Li, Q., Zhang, H., & Zhao, Y. (2019). A bioinspired hybrid membrane with wettability and topology anisotropy for highly efficient fog collection. Journal of Materials Chemistry A, 7(1), 124–132.
  • Hu, R., Wang, N., Hou, L., Cui, Z., Liu, J., Li, D., Li, Q., Zhang, H., & Zhao, Y. (2019). A bioinspired hybrid membrane with wettability and topology anisotropy for highly efficient fog collection. Journal of Materials Chemistry A, 7(1), 124–132.
  • Huang, Z. X., Liu, X., Wong, S. C., & Qu, J. P. (2019). A single step fabrication of bio-inspired high efficiency and durable water harvester made of polymer membranes. Polymer, 183, Article 121843.
  • Huang, Z. X., Liu, X., Wong, S. C., & Qu, J. P. (2019). A single step fabrication of bio-inspired high efficiency and durable water harvester made of polymer membranes. Polymer, 183, Article 121843.
  • Huang, Z. X., Liu, X., Wu, J., Wong, S. C., & Qu, J. P. (2018). Electrospinning water harvesters inspired by spider silk and beetle. Materials Letters, 211, 28–31.
  • Huang, Z. X., Liu, X., Wu, J., Wong, S. C., & Qu, J. P. (2018). Electrospinning water harvesters inspired by spider silk and beetle. Materials Letters, 211, 28–31.
  • Klemm, O., Schemenauer, R. S., Lummerich, A., Cereceda, P., Marzol, V., Corell, D., Van Heerden, J., Reinhard, D., Gherezghiher, T., Olivier, J., Osses, P., Sarsour, J., Frost, E., Estrela, M. J., Valiente, J. A., & Fessehaye, G. M. (2012). Fog as a fresh-water resource: Overview and perspectives. Ambio, 41, 221–234.
  • Klemm, O., Schemenauer, R. S., Lummerich, A., Cereceda, P., Marzol, V., Corell, D., Van Heerden, J., Reinhard, D., Gherezghiher, T., Olivier, J., Osses, P., Sarsour, J., Frost, E., Estrela, M. J., Valiente, J. A., & Fessehaye, G. M. (2012). Fog as a fresh-water resource: Overview and perspectives. Ambio, 41, 221–234.
  • Kyong Kim, N., Hee Kang, D., Eom, H., & Wook Kang, H. (2019). Biomimetic fog harvesting surface by photo-induced micro-patterning of zinc-oxide silver hierarchical nanostructures. Applied Surface Science, 470, 161–167.
  • Kyong Kim, N., Hee Kang, D., Eom, H., & Wook Kang, H. (2019). Biomimetic fog harvesting surface by photo-induced micro-patterning of zinc-oxide silver hierarchical nanostructures. Applied Surface Science, 470, 161–167.
  • Li, D., Fan, Y., Han, G., & Guo, Z. (2021). Multibioinspired Janus membranes with superwettable performance for unidirectional transportation and fog collection. Chemical Engineering Journal, 404, Article 126515.
  • Li, D., Fan, Y., Han, G., & Guo, Z. (2021). Multibioinspired Janus membranes with superwettable performance for unidirectional transportation and fog collection. Chemical Engineering Journal, 404, Article 126515.
  • Li, J., Li, W., Han, X., & Wang, L. (2020). Sandwiched nets for efficient direction-independent fog collection. Journal of Colloid and Interface Science, 581, 545–551.
  • Li, J., Li, W., Han, X., & Wang, L. (2020). Sandwiched nets for efficient direction-independent fog collection. Journal of Colloid and Interface Science, 581, 545–551.
  • Li, J., Zhou, Y., Wang, W., Du, F., & Ren, L. (2020). A bio- inspired superhydrophobic surface for fog collection and directional water transport. Journal of Alloys and Compounds, 819, Article 152968.
  • Li, J., Zhou, Y., Wang, W., Du, F., & Ren, L. (2020). A bio- inspired superhydrophobic surface for fog collection and directional water transport. Journal of Alloys and Compounds, 819, Article 152968.
  • Lin, C., Huang, Y., Li, X., Sun, X., Zhang, W., Huang, J., Ying, X., & Liu, M. (2020). Fabrication of superhydrophobic surfaces inspired by “stomata effect” of plant leaves via swelling-vesiculating- cracking method. Chemical Engineering Journal, 400, Article 125935.
  • Lin, C., Huang, Y., Li, X., Sun, X., Zhang, W., Huang, J., Ying, X., & Liu, M. (2020). Fabrication of superhydrophobic surfaces inspired by “stomata effect” of plant leaves via swelling-vesiculating- cracking method. Chemical Engineering Journal, 400, Article 125935.
  • Liu, B., Gao, R., & Xu, Z. (2020). Fabrication of super- hydrophobic surfaces utilizing pyrolysis of waste printed circuit boards. Journal of Cleaner Production, 244, Article 118727.
  • Liu, B., Gao, R., & Xu, Z. (2020). Fabrication of super- hydrophobic surfaces utilizing pyrolysis of waste printed circuit boards. Journal of Cleaner Production, 244, Article 118727.
  • Liu, C., Zhang, L., Zhang, X., Jia, Y., Di, Y., & Gan, Z. (2020). Bioinspired free-standing one-dimensional photonic crystals with janus wettability for water quality monitoring. ACS Applied Materials & Interfaces, 12(36), 40979–40984.
  • Liu, C., Zhang, L., Zhang, X., Jia, Y., Di, Y., & Gan, Z. (2020). Bioinspired free-standing one-dimensional photonic crystals with janus wettability for water quality monitoring. ACS Applied Materials & Interfaces, 12(36), 40979–40984.
  • Liu, H., Xie, W. Y., Song, F., Wang, X. L., & Wang, Y. Z. (2019). Constructing hierarchically hydrophilic/ superhydrophobic ZIF-8 pattern on soy protein towards a biomimetic efficient water harvesting material. Chemical Engineering Journal, 369, 1040– 1048.
  • Liu, H., Xie, W. Y., Song, F., Wang, X. L., & Wang, Y. Z. (2019). Constructing hierarchically hydrophilic/ superhydrophobic ZIF-8 pattern on soy protein towards a biomimetic efficient water harvesting material. Chemical Engineering Journal, 369, 1040– 1048.
  • Liu, Y., Qu, R., Zhang, W., Li, X., Wei, Y., & Feng, L. (2019). Lotus- and mussel-inspired PDA-PET/PTFE Janus membrane: Toward integrated separation of light and heavy oils from water. ACS Applied Materials and Interfaces, 11(22), 20545–20556.
  • Liu, Y., Qu, R., Zhang, W., Li, X., Wei, Y., & Feng, L. (2019). Lotus- and mussel-inspired PDA-PET/PTFE Janus membrane: Toward integrated separation of light and heavy oils from water. ACS Applied Materials and Interfaces, 11(22), 20545–20556.
  • Mahmood, A., Chen, L., Chen, S., Chen, C., Yu, Y., Weng, D., & Wang, J. (2020). Nature-inspired design of conical array for continuous and efficient fog collection application. Colloids and Interface Science Communications, 37, Article 100283.
  • Mahmood, A., Chen, L., Chen, S., Chen, C., Yu, Y., Weng, D., & Wang, J. (2020). Nature-inspired design of conical array for continuous and efficient fog collection application. Colloids and Interface Science Communications, 37, Article 100283.
  • Munson, B. R., Okiishi, T. H., Huebsch, W. W., and Rothmayer, A. P. (2013). Fluid mechanics (7th ed). Wiley.
  • Munson, B. R., Okiishi, T. H., Huebsch, W. W., and Rothmayer, A. P. (2013). Fluid mechanics (7th ed). Wiley.
  • Neinhuis, C., & Barthlott, W. (1997). Characterization and distribution of water-repellent, self-cleaning plant surfaces. Annals of Botany, 79(6), 667–677.
  • Neinhuis, C., & Barthlott, W. (1997). Characterization and distribution of water-repellent, self-cleaning plant surfaces. Annals of Botany, 79(6), 667–677.
  • Odian, G. (2004). Principles of polymerization. John Wiley & Sons.
  • Odian, G. (2004). Principles of polymerization. John Wiley & Sons.
  • Olivier, J. (2002). Fog-water harvesting along the West Coast of South Africa: A feasibility study. Water SA, 28(4), 349–360.
  • Olivier, J. (2002). Fog-water harvesting along the West Coast of South Africa: A feasibility study. Water SA, 28(4), 349–360.
  • Park, B., & Hwang, W. (2016). A facile fabrication method for corrosion-resistant micro/nanostructures on stainless steel surfaces with tunable wettability. Scripta Materialia, 113, 118–121.
  • Park, B., & Hwang, W. (2016). A facile fabrication method for corrosion-resistant micro/nanostructures on stainless steel surfaces with tunable wettability. Scripta Materialia, 113, 118–121.
  • Park, J. Y., Hwang, C. M., & Lee, S. H. (2008). Effective methods to improve the biocompatibility of poly (dimethylsiloxane). Biochip Journal, 2(1), 39–43.
  • Park, J. Y., Hwang, C. M., & Lee, S. H. (2008). Effective methods to improve the biocompatibility of poly (dimethylsiloxane). Biochip Journal, 2(1), 39–43.
  • Park, K. C., Chhatre, S. S., Srinivasan, S., Cohen, R. E., & McKinley, G. H. (2013). Optimal design of permeable fiber network structures for fog harvesting. Langmuir, 29(43), 13269–13277.
  • Park, K. C., Chhatre, S. S., Srinivasan, S., Cohen, R. E., & McKinley, G. H. (2013). Optimal design of permeable fiber network structures for fog harvesting. Langmuir, 29(43), 13269–13277.
  • Pei, M., Huo, L., Zhao, X., Chen, S., Li, J., Peng, Z., Zhang, K., Zhou, H., & Liu, P. (2020). Facile construction of stable hydrophobic surface via covalent self- assembly of silane-terminated fluorinated polymer. Applied Surface Science, 507, Article 145138.
  • Pei, M., Huo, L., Zhao, X., Chen, S., Li, J., Peng, Z., Zhang, K., Zhou, H., & Liu, P. (2020). Facile construction of stable hydrophobic surface via covalent self- assembly of silane-terminated fluorinated polymer. Applied Surface Science, 507, Article 145138.
  • Pei, M., Pan, C., Wu, D., & Liu, P. (2020). Surface hydrophilic-hydrophobic reversal coatings of polydimethylsiloxane-palygorskite nanosponges. Applied Clay Science, 189, Article Article 105546.
  • Pei, M., Pan, C., Wu, D., & Liu, P. (2020). Surface hydrophilic-hydrophobic reversal coatings of polydimethylsiloxane-palygorskite nanosponges. Applied Clay Science, 189, Article Article 105546.
  • Peng, Y., He, Y., Yang, S., Ben, S., Cao, M., Li, K., Liu, K., & Jiang, L. (2015). Magnetically induced fog harvesting via flexible conical arrays. Advanced Functional Materials, 25, 5967–5971.
  • Peng, Y., He, Y., Yang, S., Ben, S., Cao, M., Li, K., Liu, K., & Jiang, L. (2015). Magnetically induced fog harvesting via flexible conical arrays. Advanced Functional Materials, 25, 5967–5971.
  • Qu, M., Zhao, G., Cao, X., & Zhang, J. (2008). Biomimetic fabrication of lotus-leaf-like structured polyaniline film with stable superhydrophobic and conductive properties. Langmuir, 24(8), 4185–4189.
  • Qu, M., Zhao, G., Cao, X., & Zhang, J. (2008). Biomimetic fabrication of lotus-leaf-like structured polyaniline film with stable superhydrophobic and conductive properties. Langmuir, 24(8), 4185–4189.
  • Rajaram, M., Heng, X., Oza, M., & Luo, C. (2016). Enhancement of fog-collection efficiency of a Raschel mesh using surface coatings and local geometric changes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 508, 218–229.
  • Rajaram, M., Heng, X., Oza, M., & Luo, C. (2016). Enhancement of fog-collection efficiency of a Raschel mesh using surface coatings and local geometric changes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 508, 218–229.
  • Raut, H. K., Ranganath, A. S., Baji, A., & Wood, K. L. (2019). Bio-inspired hierarchical topography for texture driven fog harvesting. Applied Surface Science, 465, 362–368.
  • Raut, H. K., Ranganath, A. S., Baji, A., & Wood, K. L. (2019). Bio-inspired hierarchical topography for texture driven fog harvesting. Applied Surface Science, 465, 362–368.
  • Rivera, J. de D. (2011). Aerodynamic collection efficiency of fog water collectors. Atmospheric Research, 102(3), 335–342.
  • Rivera, J. de D. (2011). Aerodynamic collection efficiency of fog water collectors. Atmospheric Research, 102(3), 335–342.
  • Salehi, A. A., Ghannadi-Maragheh, M., Torab-Mostaedi, M., Torkaman, R. & Asadollahzadeh M., (2020). A review on the water-energy nexus for drinking water production from humid air. Renewable Sustainable Energy Reviews,120, Article 109627.
  • Salehi, A. A., Ghannadi-Maragheh, M., Torab-Mostaedi, M., Torkaman, R. & Asadollahzadeh M., (2020). A review on the water-energy nexus for drinking water production from humid air. Renewable Sustainable Energy Reviews,120, Article 109627.
  • Sharma, V., Yiannacou, K., Karjalainen, M., Lahtonen, K., Valden, M., & Sariola, V. (2019). Large-scale efficient water harvesting using bioinspired micro-patterned copper oxide nanoneedle surfaces and guided droplet transport. Nanoscale Advances, 1(10), 4025–4040.
  • Sharma, V., Yiannacou, K., Karjalainen, M., Lahtonen, K., Valden, M., & Sariola, V. (2019). Large-scale efficient water harvesting using bioinspired micro-patterned copper oxide nanoneedle surfaces and guided droplet transport. Nanoscale Advances, 1(10), 4025–4040.
  • Söz, Ç. K., Trosien, S., & Biesalski, M. (2020). Janus Interface Materials: A Critical Review and Comparative Study. ACS Materials Letters, 2(4), 336–357.
  • Söz, Ç. K., Trosien, S., & Biesalski, M. (2020). Janus Interface Materials: A Critical Review and Comparative Study. ACS Materials Letters, 2(4), 336–357.
  • Su, Y., Cai, S., Wu, T., Li, C., Huang, Z., Zhang, Y., Wu, H., Hu, K., Chen, C., Li, J., Hu, Y., Zhu, S., & Wu, D. (2019). Smart stretchable janus membranes with tunable collection rate for fog harvesting. Advanced Materials Interfaces, 6(22), Article 1901465.
  • Su, Y., Cai, S., Wu, T., Li, C., Huang, Z., Zhang, Y., Wu, H., Hu, K., Chen, C., Li, J., Hu, Y., Zhu, S., & Wu, D. (2019). Smart stretchable janus membranes with tunable collection rate for fog harvesting. Advanced Materials Interfaces, 6(22), Article 1901465.
  • Torun, I., Ruzi, M., Er, F., & Onses, M. S. (2019). Superhydrophobic coatings made from biocompatible polydimethylsiloxane and natural wax. Progress in Organic Coatings, 136, Article 105279.
  • Torun, I., Ruzi, M., Er, F., & Onses, M. S. (2019). Superhydrophobic coatings made from biocompatible polydimethylsiloxane and natural wax. Progress in Organic Coatings, 136, Article 105279.
  • Upadhyay, R. K., & Waghmare, P. R. (2019). Green preparation of copper surfaces with wettability contrast for guided fluid transport and fog harvesting application. Materials Letters, 246, 223–226.
  • Upadhyay, R. K., & Waghmare, P. R. (2019). Green preparation of copper surfaces with wettability contrast for guided fluid transport and fog harvesting application. Materials Letters, 246, 223–226.
  • Villarreal, E. L., & Dixon, A., (2005). Analysis of a rainwater collection system for domestic water supply in Ringdansen, Norrköping, Sweden. Building and Environment, 40(9), 1174–1184.
  • Villarreal, E. L., & Dixon, A., (2005). Analysis of a rainwater collection system for domestic water supply in Ringdansen, Norrköping, Sweden. Building and Environment, 40(9), 1174–1184.
  • Wan, Y., Cui, P., Xu, J., & Yu, H. (2019). Directional water- collecting behavior of pine needle surface. Materials Letters, 255, Article 126561.
  • Wan, Y., Cui, P., Xu, J., & Yu, H. (2019). Directional water- collecting behavior of pine needle surface. Materials Letters, 255, Article 126561.
  • Wang, J. N., Liu, Y. Q., Zhang, Y. L., Feng, J., Wang, H., Yu, Y. H., & Sun, H. B. (2018). Wearable superhydrophobic elastomer skin with switchable wettability. Advanced Functional Materials, 28(23), Article 1800625.
  • Wang, J. N., Liu, Y. Q., Zhang, Y. L., Feng, J., Wang, H., Yu, Y. H., & Sun, H. B. (2018). Wearable superhydrophobic elastomer skin with switchable wettability. Advanced Functional Materials, 28(23), Article 1800625.
  • Wang, Y., Zhang, L., Wu, J., Hedhili, M. N., & Wang, P. (2015). A facile strategy for the fabrication of a bioinspired hydrophilic-superhydrophobic patterned surface for highly efficient fog-harvesting. Journal of Materials Chemistry A, 3(37), 18963–18969.
  • Wang, Y., Zhang, L., Wu, J., Hedhili, M. N., & Wang, P. (2015). A facile strategy for the fabrication of a bioinspired hydrophilic-superhydrophobic patterned surface for highly efficient fog-harvesting. Journal of Materials Chemistry A, 3(37), 18963–18969.
  • WWAP (UNESCO World Water Assessment Programme). (2019). The United Nations World Water Development Report 2019: Leaving No One Behind. Paris.
  • WWAP (UNESCO World Water Assessment Programme). (2019). The United Nations World Water Development Report 2019: Leaving No One Behind. Paris.
  • Zhang, M., & Zheng, Y. (2016). Bioinspired Structure Materials to Control Water-collecting Properties. Materials Today: Proceedings, 3(2), 696–702.
  • Zhang, M., & Zheng, Y. (2016). Bioinspired Structure Materials to Control Water-collecting Properties. Materials Today: Proceedings, 3(2), 696–702.
  • Zhang, Q., Lin, G., & Yin, J. (2018). Highly efficient fog harvesting on superhydrophobic microfibers through droplet oscillation and sweeping. Soft Matter, 14(41), 8276–8283.
  • Zhang, Q., Lin, G., & Yin, J. (2018). Highly efficient fog harvesting on superhydrophobic microfibers through droplet oscillation and sweeping. Soft Matter, 14(41), 8276–8283.
  • Zhao, X., Sun, M., Duan, Y., & Hao, H. (2020). Superhydrophobic coatings based on raspberry- like nanoparticles and their applications on cotton. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 602, Article 125039.
  • Zhao, X., Sun, M., Duan, Y., & Hao, H. (2020). Superhydrophobic coatings based on raspberry- like nanoparticles and their applications on cotton. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 602, Article 125039.
  • Zhong, L., Feng, J., & Guo, Z. (2019). An alternating nanoscale (hydrophilic-hydrophobic)/hydrophilic Janus cooperative copper mesh fabricated by a simple liquidus modification for efficient fog harvesting. Journal of Materials Chemistry A, 7(14), 8405–8413.
  • Zhong, L., Feng, J., & Guo, Z. (2019). An alternating nanoscale (hydrophilic-hydrophobic)/hydrophilic Janus cooperative copper mesh fabricated by a simple liquidus modification for efficient fog harvesting. Journal of Materials Chemistry A, 7(14), 8405–8413.
  • Zhou, H., Jing, X., & Guo, Z. (2020). Excellent fog droplets collector via an extremely stable hybrid hydrophobic-hydrophilic surface and Janus copper foam integrative system with hierarchical micro/ nanostructures. Journal of Colloid and Interface Science, 561, 730–740.
  • Zhou, H., Jing, X., & Guo, Z. (2020). Excellent fog droplets collector via an extremely stable hybrid hydrophobic-hydrophilic surface and Janus copper foam integrative system with hierarchical micro/ nanostructures. Journal of Colloid and Interface Science, 561, 730–740.
  • Zhou, H., Zhang, M., Li, C., Gao, C., & Zheng, Y. (2018). Excellent fog-droplets collector via integrative Janus membrane and conical spine with micro/ nanostructures. Small, 14(27), Article 1801335.
  • Zhou, H., Zhang, M., Li, C., Gao, C., & Zheng, Y. (2018). Excellent fog-droplets collector via integrative Janus membrane and conical spine with micro/ nanostructures. Small, 14(27), Article 1801335.
  • Zhu, H., Huang, Y., Lou, X., & Xia, F. (2019). Beetle-inspired wettable materials: from fabrications to applications. Materials Today Nano, 6, Article 100034.
  • Zhu, H., Huang, Y., Lou, X., & Xia, F. (2019). Beetle-inspired wettable materials: from fabrications to applications. Materials Today Nano, 6, Article 100034.
There are 162 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Review Article
Authors

Abdullah A. Elshennawy 0000-0002-8982-3630

Mohamed M. Awad 0000-0001-6238-5872

Magdy Y Abdelaal 0000-0002-1948-6413

Ahmed M. Hamed 0000-0001-7460-2600

Publication Date December 30, 2022
Submission Date October 17, 2022
Published in Issue Year 2022 Volume: 2 Issue: 2

Cite

APA Elshennawy, A. A., Awad, M. M., Abdelaal, M. Y., Hamed, A. M. (2022). Fog collection - materials, techniques and affecting parameters - A review. Seatific Journal, 2(2), 102-127. https://doi.org/10.14744/seatific.2022.0009

Seatific Journal

Creative Commons Attribution-NonCommercial (CC BY-NC) 4.0 International License