Review Article
BibTex RIS Cite

Smart Materials Finishing and Insulation Solutions applied to the Interior Design of a Cruise Ship Cabin

Year 2023, Volume: 3 Issue: 2, 89 - 110
https://doi.org/10.14744/seatific.2023.0010

Abstract

A cruise ship cabin can be outlined using a complex bill of materials, components and sub-assemblies properly interconnected, considering its functional nature as a whole. In this regard, modern scientific achievements have allowed the development of so-called smart materials. The research activity has started with a scoping review of the currently constituent finishing, as well as insulation materials installed on-board.
The assessment of smart and high-performance solutions are aimed of optimizing thickness, weight, noise and vibrations parametres. Actual cases under analysis related to finishing materials include performance paints and inks, fabrics with antibacterial and water-repellent properties which, together with a protective action, are able to generate electricity if exposed to light. Some polymeric fibres can thermally modify their sensitivity to humidity and allow for better adaptability and reversible shrinkage; self-healing surfaces regenerate after the occurrence of a crack.
Many of the technological applications under investigation are synoptically oriented towards active safety, failure prevention and comfort criteria on board of passenger ships. They have to assess the compatibility with the marine environment, durability and compliance with the rules. Finally, the choice of appropriate furnishing materials in terms of sensory approach will allow the an even more rewarding user experience.

References

  • Abdullah, S. C., Jumahat, A., Abdullah, N. R., & Frormann, L. (2012). Determination of shape fixity and shape recovery rate of carbon nanotube-filled shape memory polymer nanocomposites. Procedia Engineering, 41, 1641–1646.
  • Adams, T. (2016). Sound materials: A Compendium of Sound Absorbing Materials for Architecture and Design. Frame Publishers.
  • Addington, M., & Schodek, D. (2012). Smart materials and technologies in architecture. Routledge.
  • Aegerter, M. A., Leventis, N., & Koebel, M. M. (2011). Aerogels Handbook. Springer Science & Business Media.
  • Al‐Dahoudi, N., Bisht, H., Göbbert, C., Krajewski, T., & Aegerter, M. A. (2001). Transparent conducting, anti- static and anti-static–anti-glare coatings on plastic substrates. Thin Solid Films, 392, 299–304.
  • Alım, B., Han, I., & Demir, L. (2018). Alloying effect on K shell X-ray fluorescence cross-sections and yields in Ti-Ni based shape memory alloys. Journal of Radiation Research and Applied Sciences, 11, 150–156.
  • Amendola, V., & Meneghetti, M. (2009). Self-healing at the nanoscale. Nanoscale, 1, 74.
  • Arciniegas, M. P., Casals, J., Manero, J. M., Peña, J., & Gil, F. (2008). Study of hardness and wear behaviour of NiTi shape memory alloys. Journal of Alloys and Compounds, 460, 213–219.
  • Arroyave, S., Asensio, E., Perilla, J. E., Narváez-Rincón, P. C., Cadavid, A., & Guerrero, A. (2023). Evaluation and characterization of autonomous self-healing cementitious materials with low carbon footprint using hybrid organic/inorganic microcapsules. Materials Today: Proceedings.
  • Azra, C., Plummer, C. J. G., & Månson, J. E. (2013). Dynamic mechanical analysis for rapid assessment of the time-dependent recovery behavior of shape memory polymers. Smart Materials and Structures, 22, 075037.
  • Bætens, R., Jelle, B. P., Thue, J. V., Tenpierik, M., Grynning, S., Uvsløkk, S., & Gustavsen, A. (2010). Vacuum insulation panels for building applications: A review and beyond. Energy and Buildings, 42, 147–172.
  • Baradari, S., Resnina, N., Belyaev, S., & Nili‐Ahmadabadi, M. (2021). Martensitic phase transformation and shape memory properties of the as-cast NiCuTiHf and NiCuTiHfZr alloys. Journal of Alloys and Compounds, 888, 161534.
  • Barati, M., Kadkhodaei, M., & Chirani, S. A. (2018). Investigation on pseudoelastic training method and the generated two-way shape memory effect in NiTi shape memory alloy. Modares Mechanical Engineering, 18, 86–94.
  • Behl, M., & Lendlein, A. (2007). Shape-memory polymers. Materials Today, 10, 20–28.
  • Bekas, D., Tsirka, K., Baltzis, D., & Paipetis, A.S. (2016). Self- healing materials: A review of advances in materials, evaluation, characterization and monitoring techniques. Composites Part B: Engineering, 87, 92–119.
  • Bell, V. B., & Rand, P. (2006). Materials for architectural design. Laurence King Pub.
  • Bengisu, M., & Ferrara, M. (2018). Materials that Move: Smart Materials, Intelligent Design. Springer.
  • Bessinger, D., Muggli, K., Beetz, M., Auras, F., & Bein, T. (2021). Fast-Switching VIS–IR Electrochromic covalent organic frameworks. Journal of the American Chemical Society, 143, 7351–7357.
  • Blaiszik, B. J., Kramer, S., Olugebefola, S. C., Moore, J. S., Sottos, N. R., White, S. R. (2010). Self-Healing Polymers and Composites. Annual Review of Materials Research, 40, 179–211.
  • Bode, S., Enke, M., Hernández, M., Bose, R. K., Grande, A. M., Van Der Zwaag, S., Schubert, U. S., Garcia, S. J., & Hager, M. D. (2015). Characterization of Self-Healing polymers: From macroscopic healing tests to the molecular mechanism. In Advances in Polymer Science (pp. 113–142).
  • Borui, L., Dang, J., Zhuang, Q., & Lv, Z. (2022). Recent Advances in Inorganic Electrochromic Materials from Synthesis to Applications: Critical Review on Functional Chemistry and Structure Engineering. Chemistry-An Asian Journal, 17.
  • Boscolo, A., Menosso, E., Piuzzi, B., Toppano, M. (2007). Thermochromic materials for temperature sensors in new applications. In Springer eBooks (pp. 139–144).
  • Cao, L., Gao, D. (2010). Transparent superhydrophobic and highly oleophobic coatings. Faraday Discussions, 146, 57.
  • Chabas, A., Lombardo, T., Cachier, H., Pertuisot, M., Oikonomou, K., Falcone, R., Verità, M., Geotti- Bianchini, F. (2008). Behaviour of self-cleaning glass in urban atmosphere. Building and Environment, 43, 2124–2131.
  • Chang, T., Cao, X., Dedon, L. R., Long, S., Huang, A., Shao, Z., Li, N., Luo, H., & Jin, P. (2018). Optical design and stability study for ultrahigh-performance and long-lived vanadium dioxide-based thermochromic coatings. Nano Energy, 44, 256–264.
  • Charfi, A., Bouraoui, T., Feki, M., Bradaï, C., & Normand, B. (2009). Surface treatment and corrosion behaviour of Fe–32Mn–6Si shape memory alloy. Comptes Rendus Chimie, 12, 270–275.
  • Coccia, M., Farotti, E., & Lattanzi, A. (2022). Evaluation of the thermomechanical Shape memory polymers in equi-biaxial condition by hydraulic bulge test. IOP Conference Series: Materials Science and Engineering, 1214, 012036.
  • Crowell, P. A., Wong, G. K., & Reppy, J. D. (1990). Measurement of the superfluid density in silica aerogels. Physica B: Condensed Matter, 165–166, 549–550. Cunha, M. F., Sobrinho, J. M. B., Da Rocha Souto, C., Santos, A. J. V. D., De Castro, A. C., Ries, A., & Sarmento, N. L. (2019). Transformation temperatures of shape memory alloy based on electromechanical impedance technique. Measurement, 145, 55–62.
  • Davraz, M., & Bayrakçı, H. C. (2013). Performance properties of vacuum insulation panels produced with various filling materials. Science and Engineering of Composite Materials. 21, 521–527.
  • Delgado, J. M., Martinho, J. C., Sá, A. V., Guimarães, A. S., & Abrantes, V. (2018). Thermal Energy Storage with Phase Change Materials: A Literature Review of Applications for Buildings Materials. Springer.
  • deMello, A. J. (2006). Control and detection of chemical reactions in microfluidic systems. Nature, 442, 394–402.
  • Deputatova, L. V., Syrovatka, R. A., Vasilyak, L. M., Филинов, В. С., Lapitsky, D. S., Vladimirov, V. I., & Pecherkin, V. Y. (2018). Linear electrodynamic trap as a tool for cleaning dusty surfaces. Contributions to Plasma Physics, 59, 340–344.
  • Di Bari, R., Horn, R., Nienborg, B., Klinker, F., Kieseritzky, E., & Pawelz, F. (2020). The environmental potential of phase change materials in building applications. A multiple case investigation based on life cycle assessment and building simulation. Energies, 13, 3045.
  • Dornelas, V. M., De Oliveira, S. A., Savi, M. A., Pacheco, P. M. C. L., & De Souza, L. F. G. (2021). Fatigue on shape memory alloys: Experimental observations and constitutive modeling. International Journal of Solids and Structures, 213, 1–24.
  • Egea, A., Molina‐García, Á., Herrero-Martín, R., & Pérez- García, J. (2022). Accelerated testing methods to analyse long term stability of a Phase Change Material under the combined effect of shear stress and thermal cycling. Journal of Energy Storage, 56, 105867.
  • Ehrburger‐Dolle, F., Dallamano, J., Elaloui, E., & Pajonk, G. M. (1995). Relations between the texture of silica aerogels and their preparation. Journal of Non- Crystalline Solids, 186, 9–17.
  • Elgrishi, N., Rountree, K., McCarthy, B. D., Rountree, E. S., Eisenhart, T. T., & Dempsey, J. L. (2017). A practical Beginner’s guide to cyclic voltammetry. Journal of Chemical Education, 95, 197–206.
  • Fabretto, M., Vaithianathan, T., Hall, C., Murphy, P., Innis, P. C., Mazurkiewicz, J., & Wallace, G. G. (2007). Colouration efficiency measurements in electrochromic polymers: The importance of charge density. Electrochemistry Communications, 9, 2032–2036.
  • Fan, H., Li, K., Liu, X., Xu, K., Su, Y., Hou, C., Zhang, Q., Li, Y., & Wang, H. (2020). Continuously Processed, Long Electrochromic Fibers with Multi-Environmental Stability. ACS Applied Materials & Interfaces, 12, 28451–28460.
  • Fan, L., Rong, M. Z., Zhang, M. Q., & Chen, X. (2018). Repeated Intrinsic Self-Healing of Wider Cracks in Polymer via Dynamic Reversible Covalent Bonding Molecularly Combined with a Two-Way Shape Memory Effect. ACS Applied Materials & Interfaces, 10, 38538–38546.
  • Fawaier, M., & Bokor, B. (2022). Dynamic insulation systems of building envelopes: A review. Energy and Buildings, 270, 112268.
  • Fiksman, G. (1997). Optical memory effects in sol-gel gel-glass based thermochromic material. Optical Engineering, 36, 1766.
  • Fink, A., Fu, Z., & Körner, C. (2023). Functional properties and shape memory effect of Nitinol manufactured via electron beam powder bed fusion. Materialia, 30, 101823.
  • Fisher, G. (2003). Chemical Analysis of Nickel-Manganese- Gallium Alloys. Defence R&D Canada – Atlantic, 1–22.
  • Fisher, H., Woolard, P., Ross, C. J., Kunkel, R., Bohnstedt, B. N., Liu, Y., & Lee, C. (2020). Thermomechanical data of polyurethane shape memory polymer: Considering varying compositions. Data in Brief, 32, 106294.
  • Flexible Eddy Current Test Probe Using a Shape-Memory Alloy for. (2021, March 2). Southwest Research Institute. Retrieved from https://www.swri.org/ patents/flexible-eddy-current-test-10895554
  • FTP Code. (2020). International Code for Application of Fire Test Procedures, 2010 Edition. International Maritime Organization.
  • Fu, F., & Hu, L. (2017). Temperature sensitive colour-changed composites. In Elsevier eBooks (pp. 405–423).
  • Fulcher, J., Yang, L., Tandon, G. P., & Foster, D. C. (2010). Thermomechanical characterization of shape memory polymers using high temperature nanoindentation. Polymer Testing, 29, 544–552.
  • Gall, K., Dunn, M. L., Liu, Y., Finch, D. S., Lake, M. S., & Munshi, N. A. (2002). Shape memory polymer nanocomposites. Acta Materialia, 50, 5115–5126.
  • Gan, B., Gatepin, M., Cantonwine, S., & Tin, S. (2012). In situ characterization of the martensitic transformation temperature of NiTi shape memory alloys via instrumented microindentation. Philosophical Magazine Letters, 92, 254–261.
  • Garber-Slaght, R., & Craven, C. (2012). EVALUATING WINDOW INSULATION FOR COLD CLIMATES. Journal of Green Building, 7, 32–48.
  • Goda, I., Zubair, Z., L’Hostis, G., & Dréan, J. (2020). Design and characterization of 3D multilayer woven reinforcements shape memory polymer composites. Journal of Composite Materials, 55, 653–673. Gojević, A., Grubeša, I. N., Marković, B., Juradin, S., & Crnoja, A. (2023). Autonomous Self- Healing methods as a potential technique for the improvement of concrete’s durability. Materials, 16, 7391. Goldade, V., Shil’ko, S., & Neverov, A. (2015). Smart Materials Taxonomy. CRC Press.
  • Granqvist, C. G., Arvizu, M. A., Pehlivan, İ. B., Qu, H., Wen, R., & Niklasson, G. A. (2018a). Electrochromic materials and devices for energy efficiency and human comfort in buildings: A critical review. Electrochimica Acta, 259, 1170–1182.
  • Granqvist, C. G., Arvizu, M. A., Pehlivan, İ. B., Qu, H., Wen, R., & Niklasson, G. A. (2018b). Electrochromic materials and devices for energy efficiency and human comfort in buildings: A critical review. Electrochimica Acta, 259, 1170–1182.
  • Grinshpun, S. A., Adhikari, A., Honda, T., Kim, K. Y., Toivola, M., Rao, K. S., & Reponen, T. (2006). Control of Aerosol Contaminants in Indoor Air: Combining the Particle Concentration Reduction with Microbial Inactivation. Environmental Science & Technology, 41, 606–612.
  • Haimei, L., Guo, Q., Zhao, T., Zuo, P., & Fengming, E. (2023). Effects of aging and immersion on the healing property of Asphalt–Aggregate interface and relationship to the healing potential of asphalt mixture. Materials, 16, 3574.
  • Haj-Ali, R., Eliasi, R., Fourman, V., Tzur, C., Bar, G., Grossman, E., Verker, R., Gvishi, R., Gouzman, I., & Eliaz, N. (2016). Mechanical characterization of aerogel materials with digital image correlation. Microporous and Mesoporous Materials, 226, 44–52.
  • Hamilton, A., Sottos, N. R., & White, S. R. (2011). Pressurized vascular systems for self-healing materials. Journal of the Royal Society Interface, 9, 1020–1028.
  • Hartl, D. J., & Lagoudas, D. C. (2008). Thermomechanical characterization of shape memory alloy materials. In Springer eBooks (pp. 53–119).
  • Hashemi, Y. M., Kadkhodaei, M., Sgambitterra, E., & Maletta, C. (2023). On the characterization of the compressive response of shape memory alloys using bending. Smart Materials and Structures, 32, 035033.
  • Hassab, S., Shen, D. E., Österholm, A. M., Da Rocha, M., Song, G., Alesanco, Y., Viñuales, A., Rougier, A., Reynolds, J. R., & Padilla, J. (2018). A new standard method to calculate electrochromic switching time. Solar Energy Materials and Solar Cells, 185, 54–60.
  • Hickey, A., Gonda, I., Irwin, W. J., & Fildes, F. (1990). Effect of hydrophobic coating on the behavior of a hygroscopic aerosol powder in an environment of controlled temperature and relative humidity. Journal of Pharmaceutical Sciences, 79, 1009–1014.
  • Hongisto, V., Saarinen, P., Alakoivu, R., & Hakala, J. (2022). Acoustic properties of commercially available thermal insulators − An experimental study. Journal of Building Engineering, 54, 104588.
  • Huang, W., Ding, Z., Wang, C., Wei, J., Zhao, Y., & Purnawali, H. (2010). Shape memory materials. Materials Today, 13, 54–61.
  • Huang, X., Panahi‐Sarmad, M., Dong, K., Li, R., Chen, T., & Xiao, X. (2021). Tracing evolutions in electro- activatedshapememorypolymercompositeswith 4D printing strategies: A systematic review. Composites Part A: Applied Science and Manufacturing, 147, 106444.
  • Huang, Y., Stonehouse, A., & Abeykoon, C. (2023). Encapsulation methods for phase change materials – A critical review. International Journal of Heat and Mass Transfer, 200, 123458.
  • Ibarra, D. S., Jacob, M., Li, F., Lü, H., Li, G., & Chen, J. (2022). Deep learning for predicting the thermomechanical behavior of shape memory polymers. Polymer, 261, 125395.
  • Ibrahim, N. I., Al‐Sulaiman, F. A., Saidur, R., Yilbaş, B. S., & Sahin, A. Z. (2017). Heat transfer enhancement of phase change materials for thermal energy storage applications: A critical review. Renewable & Sustainable Energy Reviews, 74, 26–50.
  • International Maritime Organization (IMO). (2021). SOLAS - International Convention for the Safety of Life at Sea. IMO Publications.
  • Ismaeel, W. S. (2023). The dynamics of sustainable material selection for Green-Certified Projects. Buildings, 13, 2077.
  • Jacobson, N. D., & Iroh, J. O. (2021). Shapememory Corrosion- Resistant polymeric materials. International Journal of Polymer Science, 2021, 1–18.
  • Jani, J. M., Leary, M., Subic, A., & Gibson, M. (2014). A review of shape memory alloy research, applications and opportunities. Materials in Engineering, 56, 1078–1113.
  • Jelle, B. P., & Hägen, G. (1993). Transmission spectra of an electrochromic window based on polyaniline, Prussian blue and tungsten oxide. Journal of the Electrochemical Society, 140, 3560–3564.
  • Jensen, J., Madsen, M. V., & Krebs, F. C. (2013). Photochemical stability of electrochromic polymers and devices. Journal of Materials Chemistry C, 1, 4826.
  • Jia, Z., Bao, W., Tao, C., & Song, W. (2021). Reversibly photochromic wood constructed by depositing microencapsulated/polydimethylsiloxane composite coating. Journal of Forestry Research, 33, 1409–1418.
  • Jin, R., Zhou, Z., Liu, J., Shi, B., Zhou, N., Wang, X., Jia, X., Guo, D., & Jin, X. (2023). Aerogels for thermal protection and their application in aerospace. Gels, 9, 606.
  • Johnson, W. L., Demko, J. A., Fesmire, J. E., & Weisend, J. G. (2010). Analysis and testing of multilayer and aerogel insulation configurations. AIP Conference Proceedings.
  • Joo, S. J., Yu, M. H., Kim, W. S., & Kim, K. H. (2018). Damage detection and self-healing of carbon fiber polypropylene (CFPP)/carbon nanotube (CNT) nano-composite via addressable conducting network. Composites Science and Technology, 167, 62–70. Kang, G., & Song, D. (2015). Review on structural fatigue of NiTi shape memory alloys: Pure mechanical and thermo-mechanical ones. Theoretical and Applied Mechanics Letters, 5, 245–254.
  • Kim, J., Boafo, F. E., Kim, S., & Kim, J. (2017). Aging performance evaluation of vacuum insulation panel (VIP). Case Studies in Construction Materials, 7, 329–335.
  • Kim, M., Jang, S., Choi, S. W., Yang, J., Kim, J., & Choi, D. Y. (2021a). Analysis of shape memory behavior and mechanical properties of shape memory polymer composites using thermal conductive fillers. Micromachines, 12, 1107.
  • Kim, M., Jang, S., Choi, S. W., Yang, J., Kim, J., & Choi, D. Y. (2021b). Analysis of shape memory behavior and mechanical properties of shape memory polymer composites using thermal conductive fillers. Micromachines, 12, 1107.
  • Kim, Y. U., Chang, S. J., Lee, Y. J., No, H., Choi, G., & Kim, S. (2021). Evaluation of the applicability of high insulation fire door with vacuum insulation panels: Experimental results from fire resistance, airtightness, and condensation tests. Journal of Building Engineering, 43, 102800.
  • Ko, K., Cho, T., Ham, D. S., Kang, M., Choi, W. J., & Cho, S. (2022). Preparation of highly adhesive urethane– acrylate-based gel-polymer electrolytes and their optimization in flexible electrochromic devices. Journal of Electroanalytical Chemistry, 917, 116423.
  • Kotzé, J. P., Von Backström, T. W., & Erens, P. (2014). Simulation and Testing of a Latent Heat Thermal Energy Storage Unit with Metallic Phase Change Material. Energy Procedia, 49, 860–869.
  • Kožuh, S., Gojić, M., Ivanić, I., Grgurić, T. H., Kosec, B., & Anžel, I. (2018). The effect of heat treatment on the microstructure and mechanical properties of CU- AL-MN shape memory alloy. Kemija U Industriji, 67, 11–17.
  • Kulkov, S. N. (2019). Smart Materials based on a high and low temperatures SME-Alloys. IOP Conference Series: Materials Science and Engineering, 613, 012002.
  • Lakatos, A. (2022). Novel Thermal Insulation Materials for Buildings. Energies, 15, 6713.
  • Lavernhe-Taillard, K., Calloch, S., Chirani, S. A., & Lexcellent, C. (2009). Multiaxial shape memory effect and superelasticity. Strain, 45, 77–84.
  • Lee, J., Kim, H. W., Lee, J., An, H., & Chung, C. (2021). Microcapsule-Type Self-Healing Protective Coating That Can Maintain Its Healed State upon Crack Expansion. Materials, 14, 6198.
  • Lee, M. W., An, S., Yoon, S. S., & Yarin, A. L. (2018). Advances in self-healing materials based on vascular networks with mechanical self-repair characteristics. Advances in Colloid and Interface Science, 252, 21–37.
  • Lee, T., Jeong, S., Woo, U., Choi, H., & Jung, D. S. (2023). Experimental evaluation of shape memory alloy ultrasonic pulse velocity. International Journal of Concrete Structures and Materials, 17.
  • Lendlein, A. (2010). Characterization Methods for Shape- Memory Polymers. In Shape-Memory Polymers (Vol. 226, pp. 97–143). Springer Science & Business Media.
  • Lexcellent, C., Leclercq, S., Gabry, B., & Bourbon, G. (2000). The two-way shape memory effect of shape memory alloys: an experimental study and a phenomenological model. International Journal of Plasticity, 16, 1155–1168.
  • Li, G., & Feng, X. (2022). Recent advances in smart Self- Healing polymers and composites. Woodhead Publishing.
  • Li, G., & Wang, A. (2016). Cold, warm, and hot programming of shape memory polymers. Journal of Polymer Science Part B, 54, 1319–1339.
  • Li, R., Ma, X., Li, J., Cao, J., Gao, H., Li, T., Zhang, X., Wang, L., Zhang, Q., Wang, G., Hou, C., Li, Y., Palacios, T., Lin, Y., Wang, H., & Ling, X. (2021). Flexible and high-performance electrochromic devices enabled by self-assembled 2D TiO2/MXene heterostructures. Nature Communications, 12.
  • Liu, B., Wang, M., Du, W., Jiang, L., Li, H., Wang, L., Li, J., Zuo, D., & Ding, Q. (2023). The Application of Self-Healing Microcapsule Technology in the field of Cement-Based Materials: A Review and Prospect. Polymers, 15, 2718.
  • Liu, K., & Jiang, L. (2012). Bio-Inspired Self-Cleaning surfaces. Annual Review of Materials Research, 42, 231–263.
  • Liu, N., & Huang, W. (2006). DSC study on temperature memory effect of NiTi shape memory alloy. Transactions of Nonferrous Metals Society of China, 16, 37–41.
  • Liu, Y., Zhang, Y., Chen, T., Jin, Z., Feng, W., Li, M., Chen, L., & Wang, C. (2023). A stable and Self‐Healing thermochromic polymer coating for all weather thermal regulation. Advanced Functional Materials, 33.
  • Liu, Y., & Zhang, X. (2020). Bio-Inspired Self-Healing Surfaces with Mechanical Adaptability: A Review. Soft Matter, 16, 5466–5478.
  • Luo, H., Lu, H., & Leventis, N. (2006). The compressive behavior of isocyanate-crosslinked silica aerogel at high strain rates. Mechanics of Time-Dependent Materials, 10, 83–111.
  • Ma, E., Chen, X., Lai, J., Kong, X., & Guo, C. (2023). Self-healing of microcapsule-based materials for highway construction: A review. Journal of Traffic and Transportation Engineering (English Edition), 10, 368–384.
  • Mao, W., Litina, C., & Al‐Tabbaa, A. (2020). Development and application of novel sodium silicate Microcapsule-Based Self-Healing Oil Well cement. Materials, 13, 456.
  • Martins, G. S. (2019a). Differential scanning thermal analysis of Shape-Memory polymers, polymer blends and composites. In Advanced structured materials (pp. 153–166).
  • Martins, G. S. (2019b). Differential scanning thermal analysis of Shape-Memory polymers, polymer blends and composites. In Advanced structured materials (pp. 153–166).
  • Materials, G. I. O. N. A performance test method of electrochromic device. Retrieved from https://eureka. patsnap.com/patent-CN110824197B
  • McKinley, G. (2004). Actuation of shape memory polymer using magnetic fields for applications in medical devices.Department of Mechanical Engineering, Massachusetts Institute of Technology, 144.
  • Meddour, B., & Brek, S. (2018). Modeling of the Two-Way shape memory effect. In InTech eBooks.
  • Meir, S., Gordon, S., Karsh, M., Wiezman, A., Ayers, R., & Olson, D. L. (2011). Nondestructive evaluation of ni- ti shape memory alloy. AIP Conference Proceedings.
  • Mirzamojeni, M., Aghayan, I., & Behzadian, R. (2023). Evaluation of field aging effect on self-healing capability of asphalt mixtures. Construction and Building Materials, 369, 130571.
  • Mohamed, A., Salehi, S., Ahmed, R., & Li, G. (2022). Experimental study on rheological and settling properties of shape memory polymer for fracture sealing in geothermal formations. Journal of Petroleum Science and Engineering, 208, 109535.
  • Moner‐Girona, M., Roig, A., Molins, E., Martínez, E., & Esteve, J. (1999). Micromechanical properties of silica aerogels. Applied Physics Letters, 75, 653–655. Mphahlele, K., Ray, S. S., & Колесников, А. В. (2017). Self- Healing Polymeric Composite Material Design, Failure Analysis and Future Outlook: A review. Polymers, 9, 535.
  • Naresh, C., Bose, P. S. C., & Rao, C. (2016). Shape memory alloys: a state of art review. IOP Conference Series: Materials Science and Engineering, 149, 012054.
  • Nikafkar, M., & Berardi, U. (2020). Experimental verification of the theoretical aging of vacuum insulated panels. XV International Conference on Durability of Building Materials and Components. eBook of Proceedings.
  • Ning, J., Chen, S., Wang, J., He, C., Fang, K., Yin, H., Liu, Y., Li, Y., & Yu, D. (2023). Smart thermally responsive perovskite materials: Thermo-chromic application and density function theory calculation. Heliyon, 9, e12845.
  • Nunayon, S. S., Zhang, H., & Lai, A. C. (2019). Comparison of disinfection performance of UVC‐LED and conventional upper‐room UVGI systems. Indoor Air, 30, 180–191.
  • Ohki, T., Ni, Q., Ohsako, N., & Iwamoto, M. (2004). Mechanical and shape memory behavior of composites with shape memory polymer. Composites Part A: Applied Science and Manufacturing, 35, 1065–1073.
  • Ostrý, M., Bantová, S., & Struhala, K. (2019). Tests on material compatibility of phase change materials and selected plastics. Molecules, 24, 1398.
  • Padilla, J., Niklaus, L., Schott, M., Posset, U., Faceira, B., Mjejri, I., Rougier, A., Alesanco, Y., Viñuales, A., Shen, D. E., Österholm, A. M., & Reynolds, J. R. (2023). Quantitative assessment of the cycling stability of different electrochromic materials and devices. ACS Applied Optical Materials, 1, 1174– 1183.
  • Pan, H., Li, Y., Zhang, H., Sun, D., Hu, X., Yang, J., & Xu, F. (2022). In situ investigation of the healing process in dual-microcapsule self-healing materials by the synchrotron radiation computed tomography. Composites Part A: Applied Science and Manufacturing, 158, 106955.
  • Park, C., Kim, J., Kim, Y., Bae, S., Do, M., Im, S., & Yoo, S. D. (2021). High-Coloration Efficiency and Low- Power Consumption Electrochromic Film based on Multifunctional Conducting Polymer for Large Scale Smart Windows. ACS Applied Electronic Materials, 3, 4781–4792.
  • Park, S. I., Quan, Y., Kim, S., Kim, H., Kim, S., Chun, D., Lee, C. S., Taya, M., Chu, W., & Ahn, S. (2016). A review on fabrication processes for electrochromic devices. International Journal of Precision Engineering and Manufacturing-Green Technology, 3, 397–421. Pehlivan, E., Granqvist, C. G., & Niklasson, G. A. (2021). Impedance spectroscopy of electrochromic hydrous tungsten oxide films. Electronic Materials, 2, 312– 323.
  • Peijnenburg, W. J., Oomen, A. G., Soeteman‐Hernández, L. G., Groenewold, M., Sips, A. J. a. M., Noorlander, C., Kettelarij, J., & Bleeker, E. A. (2021). Identification of emerging safety and sustainability issues of advanced materials: Proposal for a systematic approach. NanoImpact, 23, 100342.
  • Perego, D. L. (2008). Ageing tests and recovery procedures of silica aerogel. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 595, 224–227.
  • Peters, S., & Drewes, D. (2019). Materials in progress: Innovations for designers and architects. Birkhäuser.
  • Pierre, A. C., & Anderson, M. A. (2011). Aerogels: Synthesis, Characterization, and Applications. Wiley.
  • Pradhan, S., Sahu, S. K., Pramanik, J., & Badgayan, N. D. (2022). An insight into mechanical & thermal properties of shape memory polymer reinforced with nanofillers; a critical review. Materials Today: Proceedings, 50, 1107–1112.
  • Putra, N., Hakim, I. I., Erwin, F. P., Abdullah, N. A., Ariantara, B., Amin, M., Mahlia, T., & Kusrini, E. (2019). Development of a novel thermoelectric module based device for thermal stability measurement of phase change materials. Journal of Energy Storage, 22, 331–335. Rahman, A., Penco, M., Peroni, I., Ramorino, G., Janszen, G., & Di Landro, L. A. (2012). Autonomous healing materials based on epoxidized natural rubber and ethylene methacrylic acid ionomers. Smart Materials and Structures, 21, 035014.
  • Rai, V., Singh, R. S., Blackwood, D. J., & Zhao, D. (2020). A review on Recent Advances in Electrochromic Devices: A Material Approach. Advanced Engineering Materials, 22.
  • Ritter, A. (2006). Smart materials in architecture, interior architecture and design. Walter de Gruyter.
  • Rondelli, G. (1996). Corrosion resistance tests on NiTi shape memory alloy. Biomaterials, 17, 2003–2008.
  • Rybak, A., Malinowski, Ł., Adamus-Włodarczyk, A., & Ulański, P. (2021). Thermally Conductive Shape Memory Polymer Composites Filled with Boron Nitride for Heat Management in Electrical Insulation. Polymers, 13, 2191.
  • Sampath, S., Harris, W. B. J., & Srivatsan, T. S. (2023). Environment-Induced Degradation of shape Memory alloys: Role of alloying and nature of environment. Materials, 16, 5660.
  • Schmidt, D. L., Coburn, C. E., DeKoven, B. M., Potter, G. E., Meyers, G. F., Fischer, D. A. (1994). Water-based non-stick hydrophobic coatings. Nature, 368, 39–41.
  • Selvarajoo, T., Davies, R., Freeman, B. L., & Jefferson, T. (2020). Mechanical response of a vascular self- healing cementitious material system under varying loading conditions. Construction and Building Materials, 254, 119245.
  • Shields, Y., De Belie, N., Jefferson, T., & Van Tittelboom, K. (2021). A review of vascular networks for self- healing applications. Smart Materials and Structures, 30, 063001.
  • Ślosarczyk, A. (2021). Carbon microfibers/silica aerogel nanocomposites based on water-glass. Advanced Materials Proceedings, 3, 45–49.
  • Sofocleous, K., Ogin, S., Tsakiropoulos, P., Draconakis, V., & Doumanidis, C. C. (2013). Controlled impact testing of woven fabric composites with and without reinforcing shape-memory alloy wires. Journal of Composite Materials, 48, 3799–3813.
  • Soltan, A., Esen, İ., Kara, S. A., & Ahlatçı, H. (2023). Examination of the corrosion behavior of shape memory NITI material for biomedical applications. Materials, 16, 3951.
  • Somani, P. R., & Radhakrishnan, S. (2003). Electrochromic materials and devices: present and future. Materials Chemistry and Physics, 77, 117–133.
  • Staszczak, M., Kalat, M. N., Golasiński, K., Urbański, Ł., Takeda, K., Matsui, R., & Pieczyska, E. A. (2022). Characterization of polyurethane shape memory polymer and determination of shape fixity and shape recovery in subsequent thermomechanical cycles. Polymers, 14, 4775.
  • Sun, L., Huang, W., Ding, Z., Zhao, Y., Wang, C. C., Purnawali, H., & Tang, C. (2012). Stimulus-responsive shape memory materials: A review. Materials in Engineering, 33, 577–640.
  • Tcharkhtchi, A., Abdallah‐Elhirtsi, S., Ebrahimi, K., Fitoussi, J., Shirinbayan, M., & Farzaneh, S. (2014). Some new concepts of shape memory effect of polymers. Polymers, 6, 1144–1163.
  • Tobushi, H., Matsui, R., Takeda, K., & Hayashi, S. (2015). Mechanical testing of shape-memory polymers for biomedical applications. In Elsevier eBooks (pp. 65– 75).
  • Tracy, C. E., Zhang, J., Benson, D. K., Czanderna, A. W., & Deb, S. K. (1999). Accelerated durability testing of electrochromic windows. Electrochimica Acta, 44, 3195–3202.
  • Treml, S., Engelhardt, M., Sprengard, C., & Butko, W. (2019). Determination of the internal pressure of vacuum insulation panels with the envelope lift-off technique – methods for analysing test data. Energy and Buildings, 184, 44–52.
  • Viková, M., & Vik, M. (2023). Transition temperature of color change in thermochromic systems and its description using sigmoidal models. Materials, 16, 7478.
  • Vili, Y. Y. F. C. (2007). Investigating smart textiles based on shape memory materials. Textile Research Journal, 77, 290–300.
  • Wałęsa‐Chorab, M., & Skene, W. G. (2020). Extending the color retention of an electrochromic device by immobilizing color switching and Ion-Storage complementary layers. Electronic Materials, 1, 40–53.
  • Wang, B., Liu, J., Liu, M., & Chen, G. (2023). Preparation and corrosion resistance of shape memory self- healing coatings responsive to near-infrared light. Polymer Testing, 126, 108146. Wang, D., Sun, Q., Hokkanen, M. J., Zhang, C., Lin, F., Liu, Q., Zhu, S., Zhou, T., Chang, Q., He, B., Zhou, Q., Chen, L., Wang, Z., Ras, R. H. A., & Deng, X. (2020). Design of robust superhydrophobic surfaces. Nature, 582, 55–59.
  • Wang, H., Zhang, Y., & Tan, Z. (2023). Dynamic Response and Deformative Mechanism of the Shape Memory Polymer Filled with Low-Melting-Point Alloy under Different Dynamic Loads. Polymers, 15, 423.
  • Wang, J., Chen, Y., An, J., Xu, K., Chen, T., Müller‐ Buschbaum, P., & Zhong, Q. (2017). Intelligent Textiles with Comfort Regulation and Inhibition of Bacterial Adhesion Realized by Cross-Linking Poly(n-isopropylacrylamide-co-ethylene glycol methacrylate) to Cotton Fabrics. ACS Applied Materials & Interfaces, 9, 13647–13656.
  • Wang, L., & Tang, S. (2022). High-Performance construction Materials: latest advances and Prospects. Buildings, 12, 928. White, S. R., Maiti, S., Jones, A. S., Brown, E. N., Sottos, N. R., & Geubelle, P. H. (2005). Fatigue of self-healing polymers: Multiscale analysis and experiments. 11th International Conference on Fracture 2005, ICF11, 3888–3891. White, S. R., Sottos, N. R., Geubelle, P. H., Moore, J. S., Kessler, M. R., Sriram, S. R., Brown, E. N., Viswanathan, S. (2001). Autonomic healing of polymer composites. Nature, 409, 794–797.
  • Wu, Y., Ju, D., Yang, L., Zhao, H., Wang, H., Sun, C., Wu, Y., Cao, Z., & Guo, B. (2020). Evaluation of radiation damage behavior in polyimide aerogel by infrared camera and photoacoustic spectroscopy. Polymer Testing, 85, 106405.
  • Wu, Y., Mishra, Y. K., & Xiong, J. (2023). Electrochromic Materials: scope for the cyclic decay mechanisms and performance stability optimization strategies. Coloration Technology.
  • Xia, Z., Wang, H., Su, Y., Tang, P., Dai, M., Lin, H., Zhang, Z., & Shi, Q. (2020). Enhanced electrochromic properties by improvement of crystallinity for sputtered WO3 film. Coatings, 10, 577.
  • Xu, C., Zhang, H., & Fang, G. (2022). Review on thermal conductivity improvement of phase change materials with enhanced additives for thermal energy storage. Journal of Energy Storage, 51, 104568.
  • Xu, T., Walter, E., Agrawal, A., Bohn, C. D., Velmurugan, J., Zhu, W., Lezec, H. J., & Talin, A. A. (2016). High-contrast and fast electrochromic switching enabled by plasmonics. Nature Communications, 7.
  • Ye, T., Sun, Y., Zhao, X., Lin, B., Yang, H., Zhang, X., & Le, G. (2018). Long-term-stable, solution-processable, electrochromic carbon nanotubes/polymer composite for smart supercapacitor with wide working potential window. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 6, 18994–19003.
  • Yoshida, N., Takeuchi, M., Okura, T., Monma , H., Wakamura, M., Ohsaki, H., Watanabe, T. (2006). Super-hydrophobic photocatalytic coatings utilizing apatite-based photocatalyst. Thin Solid Films, 502, 108–111.
  • Zaleska, A., Hänel, A., & Nischk, M. (2010). Photocatalytic air purification. Recent Patents on Engineering, 4, 200–216.
  • Zhang, L., Hoff, I., Zhang, X., & Yang, C. (2022). Investigation of the self-healing and rejuvenating properties of aged asphalt mixture containing multi-cavity Ca-alginate capsules. Construction and Building Materials, 361, 129685.
  • Zhao, B., Peng, N., Liang, C., Yong, W. F., Chung, T. S. (2015). Hollow fiber membrane dehumidification device for air conditioning system. Membranes, 5, 722–738.
  • Zhao, Q., Hu, Q., & Xie, T. (2015). Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding. Progress in Polymer Science, 49–50, 79–120. Zhao, W., Yang, J., Zhou, J., Xu, F., Zrínyi, M., Dussault, P. , H., Osada, Y., Chen, Y. M. (2014). Self-healing gels based on constitutional dynamic chemistry and their potential applications. Chemical Society Reviews, 43, 8114–8131.
  • Zhou, K. (2020). Coloration and ion insertion Kinetics Study in Electrochromic WO3 films by Chronoamperometry. International Journal of Electrochemical Science, 15, 7821–7832. Zhou, Y., & Huang, W. (2015). Shape Memory Effect in Polymeric Materials: Mechanisms and optimization. Procedia IUTAM, 12, 83–92.
  • Крыльский, Д. В. (2013, March 29). RU2524963C1 -Electroconductive adhesive for electrochromic devices. Retrieved from https://patents.google.com/patent/ RU2524963C1/en
Year 2023, Volume: 3 Issue: 2, 89 - 110
https://doi.org/10.14744/seatific.2023.0010

Abstract

References

  • Abdullah, S. C., Jumahat, A., Abdullah, N. R., & Frormann, L. (2012). Determination of shape fixity and shape recovery rate of carbon nanotube-filled shape memory polymer nanocomposites. Procedia Engineering, 41, 1641–1646.
  • Adams, T. (2016). Sound materials: A Compendium of Sound Absorbing Materials for Architecture and Design. Frame Publishers.
  • Addington, M., & Schodek, D. (2012). Smart materials and technologies in architecture. Routledge.
  • Aegerter, M. A., Leventis, N., & Koebel, M. M. (2011). Aerogels Handbook. Springer Science & Business Media.
  • Al‐Dahoudi, N., Bisht, H., Göbbert, C., Krajewski, T., & Aegerter, M. A. (2001). Transparent conducting, anti- static and anti-static–anti-glare coatings on plastic substrates. Thin Solid Films, 392, 299–304.
  • Alım, B., Han, I., & Demir, L. (2018). Alloying effect on K shell X-ray fluorescence cross-sections and yields in Ti-Ni based shape memory alloys. Journal of Radiation Research and Applied Sciences, 11, 150–156.
  • Amendola, V., & Meneghetti, M. (2009). Self-healing at the nanoscale. Nanoscale, 1, 74.
  • Arciniegas, M. P., Casals, J., Manero, J. M., Peña, J., & Gil, F. (2008). Study of hardness and wear behaviour of NiTi shape memory alloys. Journal of Alloys and Compounds, 460, 213–219.
  • Arroyave, S., Asensio, E., Perilla, J. E., Narváez-Rincón, P. C., Cadavid, A., & Guerrero, A. (2023). Evaluation and characterization of autonomous self-healing cementitious materials with low carbon footprint using hybrid organic/inorganic microcapsules. Materials Today: Proceedings.
  • Azra, C., Plummer, C. J. G., & Månson, J. E. (2013). Dynamic mechanical analysis for rapid assessment of the time-dependent recovery behavior of shape memory polymers. Smart Materials and Structures, 22, 075037.
  • Bætens, R., Jelle, B. P., Thue, J. V., Tenpierik, M., Grynning, S., Uvsløkk, S., & Gustavsen, A. (2010). Vacuum insulation panels for building applications: A review and beyond. Energy and Buildings, 42, 147–172.
  • Baradari, S., Resnina, N., Belyaev, S., & Nili‐Ahmadabadi, M. (2021). Martensitic phase transformation and shape memory properties of the as-cast NiCuTiHf and NiCuTiHfZr alloys. Journal of Alloys and Compounds, 888, 161534.
  • Barati, M., Kadkhodaei, M., & Chirani, S. A. (2018). Investigation on pseudoelastic training method and the generated two-way shape memory effect in NiTi shape memory alloy. Modares Mechanical Engineering, 18, 86–94.
  • Behl, M., & Lendlein, A. (2007). Shape-memory polymers. Materials Today, 10, 20–28.
  • Bekas, D., Tsirka, K., Baltzis, D., & Paipetis, A.S. (2016). Self- healing materials: A review of advances in materials, evaluation, characterization and monitoring techniques. Composites Part B: Engineering, 87, 92–119.
  • Bell, V. B., & Rand, P. (2006). Materials for architectural design. Laurence King Pub.
  • Bengisu, M., & Ferrara, M. (2018). Materials that Move: Smart Materials, Intelligent Design. Springer.
  • Bessinger, D., Muggli, K., Beetz, M., Auras, F., & Bein, T. (2021). Fast-Switching VIS–IR Electrochromic covalent organic frameworks. Journal of the American Chemical Society, 143, 7351–7357.
  • Blaiszik, B. J., Kramer, S., Olugebefola, S. C., Moore, J. S., Sottos, N. R., White, S. R. (2010). Self-Healing Polymers and Composites. Annual Review of Materials Research, 40, 179–211.
  • Bode, S., Enke, M., Hernández, M., Bose, R. K., Grande, A. M., Van Der Zwaag, S., Schubert, U. S., Garcia, S. J., & Hager, M. D. (2015). Characterization of Self-Healing polymers: From macroscopic healing tests to the molecular mechanism. In Advances in Polymer Science (pp. 113–142).
  • Borui, L., Dang, J., Zhuang, Q., & Lv, Z. (2022). Recent Advances in Inorganic Electrochromic Materials from Synthesis to Applications: Critical Review on Functional Chemistry and Structure Engineering. Chemistry-An Asian Journal, 17.
  • Boscolo, A., Menosso, E., Piuzzi, B., Toppano, M. (2007). Thermochromic materials for temperature sensors in new applications. In Springer eBooks (pp. 139–144).
  • Cao, L., Gao, D. (2010). Transparent superhydrophobic and highly oleophobic coatings. Faraday Discussions, 146, 57.
  • Chabas, A., Lombardo, T., Cachier, H., Pertuisot, M., Oikonomou, K., Falcone, R., Verità, M., Geotti- Bianchini, F. (2008). Behaviour of self-cleaning glass in urban atmosphere. Building and Environment, 43, 2124–2131.
  • Chang, T., Cao, X., Dedon, L. R., Long, S., Huang, A., Shao, Z., Li, N., Luo, H., & Jin, P. (2018). Optical design and stability study for ultrahigh-performance and long-lived vanadium dioxide-based thermochromic coatings. Nano Energy, 44, 256–264.
  • Charfi, A., Bouraoui, T., Feki, M., Bradaï, C., & Normand, B. (2009). Surface treatment and corrosion behaviour of Fe–32Mn–6Si shape memory alloy. Comptes Rendus Chimie, 12, 270–275.
  • Coccia, M., Farotti, E., & Lattanzi, A. (2022). Evaluation of the thermomechanical Shape memory polymers in equi-biaxial condition by hydraulic bulge test. IOP Conference Series: Materials Science and Engineering, 1214, 012036.
  • Crowell, P. A., Wong, G. K., & Reppy, J. D. (1990). Measurement of the superfluid density in silica aerogels. Physica B: Condensed Matter, 165–166, 549–550. Cunha, M. F., Sobrinho, J. M. B., Da Rocha Souto, C., Santos, A. J. V. D., De Castro, A. C., Ries, A., & Sarmento, N. L. (2019). Transformation temperatures of shape memory alloy based on electromechanical impedance technique. Measurement, 145, 55–62.
  • Davraz, M., & Bayrakçı, H. C. (2013). Performance properties of vacuum insulation panels produced with various filling materials. Science and Engineering of Composite Materials. 21, 521–527.
  • Delgado, J. M., Martinho, J. C., Sá, A. V., Guimarães, A. S., & Abrantes, V. (2018). Thermal Energy Storage with Phase Change Materials: A Literature Review of Applications for Buildings Materials. Springer.
  • deMello, A. J. (2006). Control and detection of chemical reactions in microfluidic systems. Nature, 442, 394–402.
  • Deputatova, L. V., Syrovatka, R. A., Vasilyak, L. M., Филинов, В. С., Lapitsky, D. S., Vladimirov, V. I., & Pecherkin, V. Y. (2018). Linear electrodynamic trap as a tool for cleaning dusty surfaces. Contributions to Plasma Physics, 59, 340–344.
  • Di Bari, R., Horn, R., Nienborg, B., Klinker, F., Kieseritzky, E., & Pawelz, F. (2020). The environmental potential of phase change materials in building applications. A multiple case investigation based on life cycle assessment and building simulation. Energies, 13, 3045.
  • Dornelas, V. M., De Oliveira, S. A., Savi, M. A., Pacheco, P. M. C. L., & De Souza, L. F. G. (2021). Fatigue on shape memory alloys: Experimental observations and constitutive modeling. International Journal of Solids and Structures, 213, 1–24.
  • Egea, A., Molina‐García, Á., Herrero-Martín, R., & Pérez- García, J. (2022). Accelerated testing methods to analyse long term stability of a Phase Change Material under the combined effect of shear stress and thermal cycling. Journal of Energy Storage, 56, 105867.
  • Ehrburger‐Dolle, F., Dallamano, J., Elaloui, E., & Pajonk, G. M. (1995). Relations between the texture of silica aerogels and their preparation. Journal of Non- Crystalline Solids, 186, 9–17.
  • Elgrishi, N., Rountree, K., McCarthy, B. D., Rountree, E. S., Eisenhart, T. T., & Dempsey, J. L. (2017). A practical Beginner’s guide to cyclic voltammetry. Journal of Chemical Education, 95, 197–206.
  • Fabretto, M., Vaithianathan, T., Hall, C., Murphy, P., Innis, P. C., Mazurkiewicz, J., & Wallace, G. G. (2007). Colouration efficiency measurements in electrochromic polymers: The importance of charge density. Electrochemistry Communications, 9, 2032–2036.
  • Fan, H., Li, K., Liu, X., Xu, K., Su, Y., Hou, C., Zhang, Q., Li, Y., & Wang, H. (2020). Continuously Processed, Long Electrochromic Fibers with Multi-Environmental Stability. ACS Applied Materials & Interfaces, 12, 28451–28460.
  • Fan, L., Rong, M. Z., Zhang, M. Q., & Chen, X. (2018). Repeated Intrinsic Self-Healing of Wider Cracks in Polymer via Dynamic Reversible Covalent Bonding Molecularly Combined with a Two-Way Shape Memory Effect. ACS Applied Materials & Interfaces, 10, 38538–38546.
  • Fawaier, M., & Bokor, B. (2022). Dynamic insulation systems of building envelopes: A review. Energy and Buildings, 270, 112268.
  • Fiksman, G. (1997). Optical memory effects in sol-gel gel-glass based thermochromic material. Optical Engineering, 36, 1766.
  • Fink, A., Fu, Z., & Körner, C. (2023). Functional properties and shape memory effect of Nitinol manufactured via electron beam powder bed fusion. Materialia, 30, 101823.
  • Fisher, G. (2003). Chemical Analysis of Nickel-Manganese- Gallium Alloys. Defence R&D Canada – Atlantic, 1–22.
  • Fisher, H., Woolard, P., Ross, C. J., Kunkel, R., Bohnstedt, B. N., Liu, Y., & Lee, C. (2020). Thermomechanical data of polyurethane shape memory polymer: Considering varying compositions. Data in Brief, 32, 106294.
  • Flexible Eddy Current Test Probe Using a Shape-Memory Alloy for. (2021, March 2). Southwest Research Institute. Retrieved from https://www.swri.org/ patents/flexible-eddy-current-test-10895554
  • FTP Code. (2020). International Code for Application of Fire Test Procedures, 2010 Edition. International Maritime Organization.
  • Fu, F., & Hu, L. (2017). Temperature sensitive colour-changed composites. In Elsevier eBooks (pp. 405–423).
  • Fulcher, J., Yang, L., Tandon, G. P., & Foster, D. C. (2010). Thermomechanical characterization of shape memory polymers using high temperature nanoindentation. Polymer Testing, 29, 544–552.
  • Gall, K., Dunn, M. L., Liu, Y., Finch, D. S., Lake, M. S., & Munshi, N. A. (2002). Shape memory polymer nanocomposites. Acta Materialia, 50, 5115–5126.
  • Gan, B., Gatepin, M., Cantonwine, S., & Tin, S. (2012). In situ characterization of the martensitic transformation temperature of NiTi shape memory alloys via instrumented microindentation. Philosophical Magazine Letters, 92, 254–261.
  • Garber-Slaght, R., & Craven, C. (2012). EVALUATING WINDOW INSULATION FOR COLD CLIMATES. Journal of Green Building, 7, 32–48.
  • Goda, I., Zubair, Z., L’Hostis, G., & Dréan, J. (2020). Design and characterization of 3D multilayer woven reinforcements shape memory polymer composites. Journal of Composite Materials, 55, 653–673. Gojević, A., Grubeša, I. N., Marković, B., Juradin, S., & Crnoja, A. (2023). Autonomous Self- Healing methods as a potential technique for the improvement of concrete’s durability. Materials, 16, 7391. Goldade, V., Shil’ko, S., & Neverov, A. (2015). Smart Materials Taxonomy. CRC Press.
  • Granqvist, C. G., Arvizu, M. A., Pehlivan, İ. B., Qu, H., Wen, R., & Niklasson, G. A. (2018a). Electrochromic materials and devices for energy efficiency and human comfort in buildings: A critical review. Electrochimica Acta, 259, 1170–1182.
  • Granqvist, C. G., Arvizu, M. A., Pehlivan, İ. B., Qu, H., Wen, R., & Niklasson, G. A. (2018b). Electrochromic materials and devices for energy efficiency and human comfort in buildings: A critical review. Electrochimica Acta, 259, 1170–1182.
  • Grinshpun, S. A., Adhikari, A., Honda, T., Kim, K. Y., Toivola, M., Rao, K. S., & Reponen, T. (2006). Control of Aerosol Contaminants in Indoor Air: Combining the Particle Concentration Reduction with Microbial Inactivation. Environmental Science & Technology, 41, 606–612.
  • Haimei, L., Guo, Q., Zhao, T., Zuo, P., & Fengming, E. (2023). Effects of aging and immersion on the healing property of Asphalt–Aggregate interface and relationship to the healing potential of asphalt mixture. Materials, 16, 3574.
  • Haj-Ali, R., Eliasi, R., Fourman, V., Tzur, C., Bar, G., Grossman, E., Verker, R., Gvishi, R., Gouzman, I., & Eliaz, N. (2016). Mechanical characterization of aerogel materials with digital image correlation. Microporous and Mesoporous Materials, 226, 44–52.
  • Hamilton, A., Sottos, N. R., & White, S. R. (2011). Pressurized vascular systems for self-healing materials. Journal of the Royal Society Interface, 9, 1020–1028.
  • Hartl, D. J., & Lagoudas, D. C. (2008). Thermomechanical characterization of shape memory alloy materials. In Springer eBooks (pp. 53–119).
  • Hashemi, Y. M., Kadkhodaei, M., Sgambitterra, E., & Maletta, C. (2023). On the characterization of the compressive response of shape memory alloys using bending. Smart Materials and Structures, 32, 035033.
  • Hassab, S., Shen, D. E., Österholm, A. M., Da Rocha, M., Song, G., Alesanco, Y., Viñuales, A., Rougier, A., Reynolds, J. R., & Padilla, J. (2018). A new standard method to calculate electrochromic switching time. Solar Energy Materials and Solar Cells, 185, 54–60.
  • Hickey, A., Gonda, I., Irwin, W. J., & Fildes, F. (1990). Effect of hydrophobic coating on the behavior of a hygroscopic aerosol powder in an environment of controlled temperature and relative humidity. Journal of Pharmaceutical Sciences, 79, 1009–1014.
  • Hongisto, V., Saarinen, P., Alakoivu, R., & Hakala, J. (2022). Acoustic properties of commercially available thermal insulators − An experimental study. Journal of Building Engineering, 54, 104588.
  • Huang, W., Ding, Z., Wang, C., Wei, J., Zhao, Y., & Purnawali, H. (2010). Shape memory materials. Materials Today, 13, 54–61.
  • Huang, X., Panahi‐Sarmad, M., Dong, K., Li, R., Chen, T., & Xiao, X. (2021). Tracing evolutions in electro- activatedshapememorypolymercompositeswith 4D printing strategies: A systematic review. Composites Part A: Applied Science and Manufacturing, 147, 106444.
  • Huang, Y., Stonehouse, A., & Abeykoon, C. (2023). Encapsulation methods for phase change materials – A critical review. International Journal of Heat and Mass Transfer, 200, 123458.
  • Ibarra, D. S., Jacob, M., Li, F., Lü, H., Li, G., & Chen, J. (2022). Deep learning for predicting the thermomechanical behavior of shape memory polymers. Polymer, 261, 125395.
  • Ibrahim, N. I., Al‐Sulaiman, F. A., Saidur, R., Yilbaş, B. S., & Sahin, A. Z. (2017). Heat transfer enhancement of phase change materials for thermal energy storage applications: A critical review. Renewable & Sustainable Energy Reviews, 74, 26–50.
  • International Maritime Organization (IMO). (2021). SOLAS - International Convention for the Safety of Life at Sea. IMO Publications.
  • Ismaeel, W. S. (2023). The dynamics of sustainable material selection for Green-Certified Projects. Buildings, 13, 2077.
  • Jacobson, N. D., & Iroh, J. O. (2021). Shapememory Corrosion- Resistant polymeric materials. International Journal of Polymer Science, 2021, 1–18.
  • Jani, J. M., Leary, M., Subic, A., & Gibson, M. (2014). A review of shape memory alloy research, applications and opportunities. Materials in Engineering, 56, 1078–1113.
  • Jelle, B. P., & Hägen, G. (1993). Transmission spectra of an electrochromic window based on polyaniline, Prussian blue and tungsten oxide. Journal of the Electrochemical Society, 140, 3560–3564.
  • Jensen, J., Madsen, M. V., & Krebs, F. C. (2013). Photochemical stability of electrochromic polymers and devices. Journal of Materials Chemistry C, 1, 4826.
  • Jia, Z., Bao, W., Tao, C., & Song, W. (2021). Reversibly photochromic wood constructed by depositing microencapsulated/polydimethylsiloxane composite coating. Journal of Forestry Research, 33, 1409–1418.
  • Jin, R., Zhou, Z., Liu, J., Shi, B., Zhou, N., Wang, X., Jia, X., Guo, D., & Jin, X. (2023). Aerogels for thermal protection and their application in aerospace. Gels, 9, 606.
  • Johnson, W. L., Demko, J. A., Fesmire, J. E., & Weisend, J. G. (2010). Analysis and testing of multilayer and aerogel insulation configurations. AIP Conference Proceedings.
  • Joo, S. J., Yu, M. H., Kim, W. S., & Kim, K. H. (2018). Damage detection and self-healing of carbon fiber polypropylene (CFPP)/carbon nanotube (CNT) nano-composite via addressable conducting network. Composites Science and Technology, 167, 62–70. Kang, G., & Song, D. (2015). Review on structural fatigue of NiTi shape memory alloys: Pure mechanical and thermo-mechanical ones. Theoretical and Applied Mechanics Letters, 5, 245–254.
  • Kim, J., Boafo, F. E., Kim, S., & Kim, J. (2017). Aging performance evaluation of vacuum insulation panel (VIP). Case Studies in Construction Materials, 7, 329–335.
  • Kim, M., Jang, S., Choi, S. W., Yang, J., Kim, J., & Choi, D. Y. (2021a). Analysis of shape memory behavior and mechanical properties of shape memory polymer composites using thermal conductive fillers. Micromachines, 12, 1107.
  • Kim, M., Jang, S., Choi, S. W., Yang, J., Kim, J., & Choi, D. Y. (2021b). Analysis of shape memory behavior and mechanical properties of shape memory polymer composites using thermal conductive fillers. Micromachines, 12, 1107.
  • Kim, Y. U., Chang, S. J., Lee, Y. J., No, H., Choi, G., & Kim, S. (2021). Evaluation of the applicability of high insulation fire door with vacuum insulation panels: Experimental results from fire resistance, airtightness, and condensation tests. Journal of Building Engineering, 43, 102800.
  • Ko, K., Cho, T., Ham, D. S., Kang, M., Choi, W. J., & Cho, S. (2022). Preparation of highly adhesive urethane– acrylate-based gel-polymer electrolytes and their optimization in flexible electrochromic devices. Journal of Electroanalytical Chemistry, 917, 116423.
  • Kotzé, J. P., Von Backström, T. W., & Erens, P. (2014). Simulation and Testing of a Latent Heat Thermal Energy Storage Unit with Metallic Phase Change Material. Energy Procedia, 49, 860–869.
  • Kožuh, S., Gojić, M., Ivanić, I., Grgurić, T. H., Kosec, B., & Anžel, I. (2018). The effect of heat treatment on the microstructure and mechanical properties of CU- AL-MN shape memory alloy. Kemija U Industriji, 67, 11–17.
  • Kulkov, S. N. (2019). Smart Materials based on a high and low temperatures SME-Alloys. IOP Conference Series: Materials Science and Engineering, 613, 012002.
  • Lakatos, A. (2022). Novel Thermal Insulation Materials for Buildings. Energies, 15, 6713.
  • Lavernhe-Taillard, K., Calloch, S., Chirani, S. A., & Lexcellent, C. (2009). Multiaxial shape memory effect and superelasticity. Strain, 45, 77–84.
  • Lee, J., Kim, H. W., Lee, J., An, H., & Chung, C. (2021). Microcapsule-Type Self-Healing Protective Coating That Can Maintain Its Healed State upon Crack Expansion. Materials, 14, 6198.
  • Lee, M. W., An, S., Yoon, S. S., & Yarin, A. L. (2018). Advances in self-healing materials based on vascular networks with mechanical self-repair characteristics. Advances in Colloid and Interface Science, 252, 21–37.
  • Lee, T., Jeong, S., Woo, U., Choi, H., & Jung, D. S. (2023). Experimental evaluation of shape memory alloy ultrasonic pulse velocity. International Journal of Concrete Structures and Materials, 17.
  • Lendlein, A. (2010). Characterization Methods for Shape- Memory Polymers. In Shape-Memory Polymers (Vol. 226, pp. 97–143). Springer Science & Business Media.
  • Lexcellent, C., Leclercq, S., Gabry, B., & Bourbon, G. (2000). The two-way shape memory effect of shape memory alloys: an experimental study and a phenomenological model. International Journal of Plasticity, 16, 1155–1168.
  • Li, G., & Feng, X. (2022). Recent advances in smart Self- Healing polymers and composites. Woodhead Publishing.
  • Li, G., & Wang, A. (2016). Cold, warm, and hot programming of shape memory polymers. Journal of Polymer Science Part B, 54, 1319–1339.
  • Li, R., Ma, X., Li, J., Cao, J., Gao, H., Li, T., Zhang, X., Wang, L., Zhang, Q., Wang, G., Hou, C., Li, Y., Palacios, T., Lin, Y., Wang, H., & Ling, X. (2021). Flexible and high-performance electrochromic devices enabled by self-assembled 2D TiO2/MXene heterostructures. Nature Communications, 12.
  • Liu, B., Wang, M., Du, W., Jiang, L., Li, H., Wang, L., Li, J., Zuo, D., & Ding, Q. (2023). The Application of Self-Healing Microcapsule Technology in the field of Cement-Based Materials: A Review and Prospect. Polymers, 15, 2718.
  • Liu, K., & Jiang, L. (2012). Bio-Inspired Self-Cleaning surfaces. Annual Review of Materials Research, 42, 231–263.
  • Liu, N., & Huang, W. (2006). DSC study on temperature memory effect of NiTi shape memory alloy. Transactions of Nonferrous Metals Society of China, 16, 37–41.
  • Liu, Y., Zhang, Y., Chen, T., Jin, Z., Feng, W., Li, M., Chen, L., & Wang, C. (2023). A stable and Self‐Healing thermochromic polymer coating for all weather thermal regulation. Advanced Functional Materials, 33.
  • Liu, Y., & Zhang, X. (2020). Bio-Inspired Self-Healing Surfaces with Mechanical Adaptability: A Review. Soft Matter, 16, 5466–5478.
  • Luo, H., Lu, H., & Leventis, N. (2006). The compressive behavior of isocyanate-crosslinked silica aerogel at high strain rates. Mechanics of Time-Dependent Materials, 10, 83–111.
  • Ma, E., Chen, X., Lai, J., Kong, X., & Guo, C. (2023). Self-healing of microcapsule-based materials for highway construction: A review. Journal of Traffic and Transportation Engineering (English Edition), 10, 368–384.
  • Mao, W., Litina, C., & Al‐Tabbaa, A. (2020). Development and application of novel sodium silicate Microcapsule-Based Self-Healing Oil Well cement. Materials, 13, 456.
  • Martins, G. S. (2019a). Differential scanning thermal analysis of Shape-Memory polymers, polymer blends and composites. In Advanced structured materials (pp. 153–166).
  • Martins, G. S. (2019b). Differential scanning thermal analysis of Shape-Memory polymers, polymer blends and composites. In Advanced structured materials (pp. 153–166).
  • Materials, G. I. O. N. A performance test method of electrochromic device. Retrieved from https://eureka. patsnap.com/patent-CN110824197B
  • McKinley, G. (2004). Actuation of shape memory polymer using magnetic fields for applications in medical devices.Department of Mechanical Engineering, Massachusetts Institute of Technology, 144.
  • Meddour, B., & Brek, S. (2018). Modeling of the Two-Way shape memory effect. In InTech eBooks.
  • Meir, S., Gordon, S., Karsh, M., Wiezman, A., Ayers, R., & Olson, D. L. (2011). Nondestructive evaluation of ni- ti shape memory alloy. AIP Conference Proceedings.
  • Mirzamojeni, M., Aghayan, I., & Behzadian, R. (2023). Evaluation of field aging effect on self-healing capability of asphalt mixtures. Construction and Building Materials, 369, 130571.
  • Mohamed, A., Salehi, S., Ahmed, R., & Li, G. (2022). Experimental study on rheological and settling properties of shape memory polymer for fracture sealing in geothermal formations. Journal of Petroleum Science and Engineering, 208, 109535.
  • Moner‐Girona, M., Roig, A., Molins, E., Martínez, E., & Esteve, J. (1999). Micromechanical properties of silica aerogels. Applied Physics Letters, 75, 653–655. Mphahlele, K., Ray, S. S., & Колесников, А. В. (2017). Self- Healing Polymeric Composite Material Design, Failure Analysis and Future Outlook: A review. Polymers, 9, 535.
  • Naresh, C., Bose, P. S. C., & Rao, C. (2016). Shape memory alloys: a state of art review. IOP Conference Series: Materials Science and Engineering, 149, 012054.
  • Nikafkar, M., & Berardi, U. (2020). Experimental verification of the theoretical aging of vacuum insulated panels. XV International Conference on Durability of Building Materials and Components. eBook of Proceedings.
  • Ning, J., Chen, S., Wang, J., He, C., Fang, K., Yin, H., Liu, Y., Li, Y., & Yu, D. (2023). Smart thermally responsive perovskite materials: Thermo-chromic application and density function theory calculation. Heliyon, 9, e12845.
  • Nunayon, S. S., Zhang, H., & Lai, A. C. (2019). Comparison of disinfection performance of UVC‐LED and conventional upper‐room UVGI systems. Indoor Air, 30, 180–191.
  • Ohki, T., Ni, Q., Ohsako, N., & Iwamoto, M. (2004). Mechanical and shape memory behavior of composites with shape memory polymer. Composites Part A: Applied Science and Manufacturing, 35, 1065–1073.
  • Ostrý, M., Bantová, S., & Struhala, K. (2019). Tests on material compatibility of phase change materials and selected plastics. Molecules, 24, 1398.
  • Padilla, J., Niklaus, L., Schott, M., Posset, U., Faceira, B., Mjejri, I., Rougier, A., Alesanco, Y., Viñuales, A., Shen, D. E., Österholm, A. M., & Reynolds, J. R. (2023). Quantitative assessment of the cycling stability of different electrochromic materials and devices. ACS Applied Optical Materials, 1, 1174– 1183.
  • Pan, H., Li, Y., Zhang, H., Sun, D., Hu, X., Yang, J., & Xu, F. (2022). In situ investigation of the healing process in dual-microcapsule self-healing materials by the synchrotron radiation computed tomography. Composites Part A: Applied Science and Manufacturing, 158, 106955.
  • Park, C., Kim, J., Kim, Y., Bae, S., Do, M., Im, S., & Yoo, S. D. (2021). High-Coloration Efficiency and Low- Power Consumption Electrochromic Film based on Multifunctional Conducting Polymer for Large Scale Smart Windows. ACS Applied Electronic Materials, 3, 4781–4792.
  • Park, S. I., Quan, Y., Kim, S., Kim, H., Kim, S., Chun, D., Lee, C. S., Taya, M., Chu, W., & Ahn, S. (2016). A review on fabrication processes for electrochromic devices. International Journal of Precision Engineering and Manufacturing-Green Technology, 3, 397–421. Pehlivan, E., Granqvist, C. G., & Niklasson, G. A. (2021). Impedance spectroscopy of electrochromic hydrous tungsten oxide films. Electronic Materials, 2, 312– 323.
  • Peijnenburg, W. J., Oomen, A. G., Soeteman‐Hernández, L. G., Groenewold, M., Sips, A. J. a. M., Noorlander, C., Kettelarij, J., & Bleeker, E. A. (2021). Identification of emerging safety and sustainability issues of advanced materials: Proposal for a systematic approach. NanoImpact, 23, 100342.
  • Perego, D. L. (2008). Ageing tests and recovery procedures of silica aerogel. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 595, 224–227.
  • Peters, S., & Drewes, D. (2019). Materials in progress: Innovations for designers and architects. Birkhäuser.
  • Pierre, A. C., & Anderson, M. A. (2011). Aerogels: Synthesis, Characterization, and Applications. Wiley.
  • Pradhan, S., Sahu, S. K., Pramanik, J., & Badgayan, N. D. (2022). An insight into mechanical & thermal properties of shape memory polymer reinforced with nanofillers; a critical review. Materials Today: Proceedings, 50, 1107–1112.
  • Putra, N., Hakim, I. I., Erwin, F. P., Abdullah, N. A., Ariantara, B., Amin, M., Mahlia, T., & Kusrini, E. (2019). Development of a novel thermoelectric module based device for thermal stability measurement of phase change materials. Journal of Energy Storage, 22, 331–335. Rahman, A., Penco, M., Peroni, I., Ramorino, G., Janszen, G., & Di Landro, L. A. (2012). Autonomous healing materials based on epoxidized natural rubber and ethylene methacrylic acid ionomers. Smart Materials and Structures, 21, 035014.
  • Rai, V., Singh, R. S., Blackwood, D. J., & Zhao, D. (2020). A review on Recent Advances in Electrochromic Devices: A Material Approach. Advanced Engineering Materials, 22.
  • Ritter, A. (2006). Smart materials in architecture, interior architecture and design. Walter de Gruyter.
  • Rondelli, G. (1996). Corrosion resistance tests on NiTi shape memory alloy. Biomaterials, 17, 2003–2008.
  • Rybak, A., Malinowski, Ł., Adamus-Włodarczyk, A., & Ulański, P. (2021). Thermally Conductive Shape Memory Polymer Composites Filled with Boron Nitride for Heat Management in Electrical Insulation. Polymers, 13, 2191.
  • Sampath, S., Harris, W. B. J., & Srivatsan, T. S. (2023). Environment-Induced Degradation of shape Memory alloys: Role of alloying and nature of environment. Materials, 16, 5660.
  • Schmidt, D. L., Coburn, C. E., DeKoven, B. M., Potter, G. E., Meyers, G. F., Fischer, D. A. (1994). Water-based non-stick hydrophobic coatings. Nature, 368, 39–41.
  • Selvarajoo, T., Davies, R., Freeman, B. L., & Jefferson, T. (2020). Mechanical response of a vascular self- healing cementitious material system under varying loading conditions. Construction and Building Materials, 254, 119245.
  • Shields, Y., De Belie, N., Jefferson, T., & Van Tittelboom, K. (2021). A review of vascular networks for self- healing applications. Smart Materials and Structures, 30, 063001.
  • Ślosarczyk, A. (2021). Carbon microfibers/silica aerogel nanocomposites based on water-glass. Advanced Materials Proceedings, 3, 45–49.
  • Sofocleous, K., Ogin, S., Tsakiropoulos, P., Draconakis, V., & Doumanidis, C. C. (2013). Controlled impact testing of woven fabric composites with and without reinforcing shape-memory alloy wires. Journal of Composite Materials, 48, 3799–3813.
  • Soltan, A., Esen, İ., Kara, S. A., & Ahlatçı, H. (2023). Examination of the corrosion behavior of shape memory NITI material for biomedical applications. Materials, 16, 3951.
  • Somani, P. R., & Radhakrishnan, S. (2003). Electrochromic materials and devices: present and future. Materials Chemistry and Physics, 77, 117–133.
  • Staszczak, M., Kalat, M. N., Golasiński, K., Urbański, Ł., Takeda, K., Matsui, R., & Pieczyska, E. A. (2022). Characterization of polyurethane shape memory polymer and determination of shape fixity and shape recovery in subsequent thermomechanical cycles. Polymers, 14, 4775.
  • Sun, L., Huang, W., Ding, Z., Zhao, Y., Wang, C. C., Purnawali, H., & Tang, C. (2012). Stimulus-responsive shape memory materials: A review. Materials in Engineering, 33, 577–640.
  • Tcharkhtchi, A., Abdallah‐Elhirtsi, S., Ebrahimi, K., Fitoussi, J., Shirinbayan, M., & Farzaneh, S. (2014). Some new concepts of shape memory effect of polymers. Polymers, 6, 1144–1163.
  • Tobushi, H., Matsui, R., Takeda, K., & Hayashi, S. (2015). Mechanical testing of shape-memory polymers for biomedical applications. In Elsevier eBooks (pp. 65– 75).
  • Tracy, C. E., Zhang, J., Benson, D. K., Czanderna, A. W., & Deb, S. K. (1999). Accelerated durability testing of electrochromic windows. Electrochimica Acta, 44, 3195–3202.
  • Treml, S., Engelhardt, M., Sprengard, C., & Butko, W. (2019). Determination of the internal pressure of vacuum insulation panels with the envelope lift-off technique – methods for analysing test data. Energy and Buildings, 184, 44–52.
  • Viková, M., & Vik, M. (2023). Transition temperature of color change in thermochromic systems and its description using sigmoidal models. Materials, 16, 7478.
  • Vili, Y. Y. F. C. (2007). Investigating smart textiles based on shape memory materials. Textile Research Journal, 77, 290–300.
  • Wałęsa‐Chorab, M., & Skene, W. G. (2020). Extending the color retention of an electrochromic device by immobilizing color switching and Ion-Storage complementary layers. Electronic Materials, 1, 40–53.
  • Wang, B., Liu, J., Liu, M., & Chen, G. (2023). Preparation and corrosion resistance of shape memory self- healing coatings responsive to near-infrared light. Polymer Testing, 126, 108146. Wang, D., Sun, Q., Hokkanen, M. J., Zhang, C., Lin, F., Liu, Q., Zhu, S., Zhou, T., Chang, Q., He, B., Zhou, Q., Chen, L., Wang, Z., Ras, R. H. A., & Deng, X. (2020). Design of robust superhydrophobic surfaces. Nature, 582, 55–59.
  • Wang, H., Zhang, Y., & Tan, Z. (2023). Dynamic Response and Deformative Mechanism of the Shape Memory Polymer Filled with Low-Melting-Point Alloy under Different Dynamic Loads. Polymers, 15, 423.
  • Wang, J., Chen, Y., An, J., Xu, K., Chen, T., Müller‐ Buschbaum, P., & Zhong, Q. (2017). Intelligent Textiles with Comfort Regulation and Inhibition of Bacterial Adhesion Realized by Cross-Linking Poly(n-isopropylacrylamide-co-ethylene glycol methacrylate) to Cotton Fabrics. ACS Applied Materials & Interfaces, 9, 13647–13656.
  • Wang, L., & Tang, S. (2022). High-Performance construction Materials: latest advances and Prospects. Buildings, 12, 928. White, S. R., Maiti, S., Jones, A. S., Brown, E. N., Sottos, N. R., & Geubelle, P. H. (2005). Fatigue of self-healing polymers: Multiscale analysis and experiments. 11th International Conference on Fracture 2005, ICF11, 3888–3891. White, S. R., Sottos, N. R., Geubelle, P. H., Moore, J. S., Kessler, M. R., Sriram, S. R., Brown, E. N., Viswanathan, S. (2001). Autonomic healing of polymer composites. Nature, 409, 794–797.
  • Wu, Y., Ju, D., Yang, L., Zhao, H., Wang, H., Sun, C., Wu, Y., Cao, Z., & Guo, B. (2020). Evaluation of radiation damage behavior in polyimide aerogel by infrared camera and photoacoustic spectroscopy. Polymer Testing, 85, 106405.
  • Wu, Y., Mishra, Y. K., & Xiong, J. (2023). Electrochromic Materials: scope for the cyclic decay mechanisms and performance stability optimization strategies. Coloration Technology.
  • Xia, Z., Wang, H., Su, Y., Tang, P., Dai, M., Lin, H., Zhang, Z., & Shi, Q. (2020). Enhanced electrochromic properties by improvement of crystallinity for sputtered WO3 film. Coatings, 10, 577.
  • Xu, C., Zhang, H., & Fang, G. (2022). Review on thermal conductivity improvement of phase change materials with enhanced additives for thermal energy storage. Journal of Energy Storage, 51, 104568.
  • Xu, T., Walter, E., Agrawal, A., Bohn, C. D., Velmurugan, J., Zhu, W., Lezec, H. J., & Talin, A. A. (2016). High-contrast and fast electrochromic switching enabled by plasmonics. Nature Communications, 7.
  • Ye, T., Sun, Y., Zhao, X., Lin, B., Yang, H., Zhang, X., & Le, G. (2018). Long-term-stable, solution-processable, electrochromic carbon nanotubes/polymer composite for smart supercapacitor with wide working potential window. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 6, 18994–19003.
  • Yoshida, N., Takeuchi, M., Okura, T., Monma , H., Wakamura, M., Ohsaki, H., Watanabe, T. (2006). Super-hydrophobic photocatalytic coatings utilizing apatite-based photocatalyst. Thin Solid Films, 502, 108–111.
  • Zaleska, A., Hänel, A., & Nischk, M. (2010). Photocatalytic air purification. Recent Patents on Engineering, 4, 200–216.
  • Zhang, L., Hoff, I., Zhang, X., & Yang, C. (2022). Investigation of the self-healing and rejuvenating properties of aged asphalt mixture containing multi-cavity Ca-alginate capsules. Construction and Building Materials, 361, 129685.
  • Zhao, B., Peng, N., Liang, C., Yong, W. F., Chung, T. S. (2015). Hollow fiber membrane dehumidification device for air conditioning system. Membranes, 5, 722–738.
  • Zhao, Q., Hu, Q., & Xie, T. (2015). Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding. Progress in Polymer Science, 49–50, 79–120. Zhao, W., Yang, J., Zhou, J., Xu, F., Zrínyi, M., Dussault, P. , H., Osada, Y., Chen, Y. M. (2014). Self-healing gels based on constitutional dynamic chemistry and their potential applications. Chemical Society Reviews, 43, 8114–8131.
  • Zhou, K. (2020). Coloration and ion insertion Kinetics Study in Electrochromic WO3 films by Chronoamperometry. International Journal of Electrochemical Science, 15, 7821–7832. Zhou, Y., & Huang, W. (2015). Shape Memory Effect in Polymeric Materials: Mechanisms and optimization. Procedia IUTAM, 12, 83–92.
  • Крыльский, Д. В. (2013, March 29). RU2524963C1 -Electroconductive adhesive for electrochromic devices. Retrieved from https://patents.google.com/patent/ RU2524963C1/en

Details

Primary Language English
Subjects Maritime Engineering (Other)
Journal Section Reviews
Authors

Angela Denise PERİ 0000-0001-5480-8337

Early Pub Date January 19, 2024
Publication Date
Submission Date November 9, 2023
Acceptance Date January 10, 2024
Published in Issue Year 2023 Volume: 3 Issue: 2

Cite

APA PERİ, A. D. (2024). Smart Materials Finishing and Insulation Solutions applied to the Interior Design of a Cruise Ship Cabin. Seatific Journal, 3(2), 89-110. https://doi.org/10.14744/seatific.2023.0010

Seatific Journal