Research Article
BibTex RIS Cite

A numerical study about the influence of bathymetry on the generation and propagation of realistic irregular waves and representative regular waves occurred in Tramandaí, Brazil

Year 2024, Volume: 4 Issue: 1, 1 - 11, 07.07.2024

Abstract

Due to the increase in global energy consumption and the search for diversification of the energy matrix, there has been an increase in research related to renewable energy sources. The energy contained in sea waves stands out when it comes to renewable sources. Then, the present study aims to analyze the influence of wave channel bathymetry on the generation and propagation of realistic irregular waves and representative regular waves of the sea state that occurred in Tramandaí, in the state of Rio Grande do Sul, Brazil. Thereunto, two geometries were considered for the wave channel: with an inclined bottom (representing local bathymetry) and with a flat bottom. The computational fluid dynamics software, FLUENT, which is based on the Finite Volume Method, was employed in the numerical simulation of the wave channels. The Volume of Fluid model was used for the treatment between the phases, which are water and air. The WaveMIMO methodology was used to generate realistic irregular waves, while 2nd order Stokes Theory was considered to generate representative regular waves. The results showed that the generation and propagation of both realistic irregular waves and representative regular waves presented greater accuracy when considering the wave channel with an inclined bottom.

References

  • Cannata, G., Simone, M., & Gallerano, F. (2023) Numerical investigation into the performance of an OWC device under regular and irregular waves. Journal of Marine Science and Engineering, 11(4), Article 735
  • Cardoso, S. D., Marques, W. C., Kirinus, E. D. P., & Stringari, C. E. (2014). Levantamento batimétrico usando cartas náuticas. In 13ª Mostra da Produção Universitária, Universidade Federal do Rio Grande. [Portuguese]
  • Chakrabarti, S. K. (2005). Handbook of offshore engineering. Elsevier.
  • Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)? - Arguments against avoiding RMSE in the literature. Geoscientific Model Development, 7(3), 1247–1250.
  • Cisco, L. A., Koch, A. H. S., Condotta, M. P., Hofstatter, R., Harras, L. M., Oleinik, P. H., Paiva, M. S., Isoldi, L. A., & Machado, B. N (2020). O oceano como fonte de energia: uma revisão da literatura. Revista Interdisciplinar de Pesquisa em Engenharia, 6(2), 23–33. [Portuguese]
  • Dean, R. G., & Dalrymple, R. A. (1991). Water wave mechanics for engineers and scientists. World Scientific Publishing Company.
  • De Lima, Y. T. B. (2021). Análise geométrica através do design construtal de conversores de energia das ondas do mar do tipo coluna de água oscilante com câmaras hidropneumáticas acopladas. Tese de doutorado em engenharia mecânica, Universidade Federal do Rio Grande do Sul. [Portuguese]
  • EPE (2023). Brazilian Energy Balance 2023. Ministry of Mines and Energy, Rio de Janeiro. Available online: https://www.epe.gov.br/pt/publicacoes- dados-abertos/publicacoes/balanco-energetico- nacional-2023. Accessed on Oct 04, 2023).
  • Gomes, M. D. N., Isoldi, L. A., Santos, E. D. D., & Rocha, L. A. O. (2012). Análise de malhas para geração numérica de ondas em tanques. In Anais do VII do Congresso Nacional de Engenharia Mecânica (Associação Brasileira de Engenharia e Ciências Mecânicas). [Portuguese].
  • Gomes, M. N. (2014). Constructal Design de dispositivos conversores de energia das ondas do mar em energia elétrica do tipo Coluna de Água Oscilante. Tese de doutorado em engenharia mecânica, Universidade Federal do Rio Grande do Sul. [Portuguese].
  • Hirt, C. W., & Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1), 201–225.
  • Hübner, R. G., Fragassa, C., Paiva, M. D. S., Oleinik, P. H., Gomes, M. D. N., Rocha, L. A., dos Santos, E. D., Machado, B. N., & Isoldi, L. A (2022). Numerical analysis of an overtopping wave energy converter subjected to the incidence of irregular and regular waves from realistic sea states. Journal of Marine Science and Engineering, 10(8), Article 1084.
  • IEA (2024). Renewables 2023, IEA, Paris https://www.iea. org/reports/renewables-2023, Licence: CC BY 4.0.
  • Koch, A. H. S., Paiva, M. S., Monteiro, C. B., Oleinik, P. H., Isoldi, L. A., & Machado, B. N. (2021). Numerical evaluation of the hydropneumatic power of the oscillating water column wave energy converter submitted to regular and irregular waves. Engineering Science & Technology, 3, 32–43.
  • Lisboa, R. C., Teixeira, P. R. F., & Didier, E. (2017). Regular and irregular wave propagation analysis in a flume with numerical beach using a navier-stokes based model. Defect and Diffusion Forum, 372, 81–90.
  • Maliska, C. R. (2004). Tranferência de Calor e Mecânica dos Fluidos Computacional. LTC - Livros Técnicos e Científicos. [Portuguese]
  • Maciel, R. P., Fragassa C., Machado, B. N., Rocha, L. A. O., Dos Santos, E. D., Gomes, M. N., & Isoldi, L. A. (2021). Verification and validation of a methodology to numerically generate waves using transient discrete data as prescribed velocity boundary condition. Journal of Marine Science and Engineering, 9(8), Article 896.
  • Maciel, R. P., Oleinik, P. H., Dos Santos, E. D., Rocha, L. A. O., Machado, B. N., Gomes, M. N., & Isoldi, L. A (2023). Constructal design applied to an oscillating water column wave energy converter device under realistic sea state conditions. Journal of Marine Science and Engineering, 11(11), Article 2174.
  • Machado, B. N., Oleinik, P. H., Kirinus, E. P., Dos Santos, E. D., Rocha, L. A. O., Gomes, M. N., Conde, J. M. P., & Isoldi, L. A. (2021). WaveMIMO Methodology: Numerical wave generation of a realistic sea state. Journal of Applied and Computational Mechanics, 7(4), 2129–2148.
  • Oleinik, P. H. (2022). O programa Spec2Wave: Manual do usuário. RIPE 6(2), 23–33. [Portuguese]
  • Oleinik, P. H., Tavares, G. P., Machado, B. N., & Isoldi, L. A. (2021). Transformation of water wave spectra into time series of surface elevation. Earth, 2(4), 997– 1005.
  • Paiva, M. S., Mocellin, A. P. G., Koch, A. H. S., Oleinik, P. H., Isoldi, L. A., & Machado, B. N. (2023). Investigation on the Discretization of the Realistic Irregular Wave Generation Region through the WaveMIMO Methodology. Revista de Engenharia Térmica, 22(1), 3–10.
  • Palma, G., Formentin, S. M., Zanuttigh, B., Contestabile, P., & Vicinanza, D. (2019). Numerical simulations of the hydraulic performa3nce of a breakwater- integrated overtopping wave energy converter. Journal of Marine Science and Engineering, 7(2), Article 38.
  • Pecher, A. & Kofoed, J. P (2017). Handbook of ocean wave energy. Springer Nature.
  • Seibt, F. M., Dos Santos, E. D., Isoldi, L. A., & Rocha, L. A. O. (2023). Constructal Design on full-scale numerical model of a submerged horizontal plate- type wave energy converter. Marine Systems and Ocean Technology Key, 18, 1–13.
  • Santana, D. R. (2023). Energia Renovável para o Desenvolvimento Econômico do Brasil. Revista OWL - Revista Interdisciplinar de Ensino e Educação, 1(1), 48–64. [Portuguese]
  • Versteeg, H. K., & Malalasekera, W. (2007). An introduction to computational fluid dynamics - The finite volume method. Pearson Education Limited.
Year 2024, Volume: 4 Issue: 1, 1 - 11, 07.07.2024

Abstract

References

  • Cannata, G., Simone, M., & Gallerano, F. (2023) Numerical investigation into the performance of an OWC device under regular and irregular waves. Journal of Marine Science and Engineering, 11(4), Article 735
  • Cardoso, S. D., Marques, W. C., Kirinus, E. D. P., & Stringari, C. E. (2014). Levantamento batimétrico usando cartas náuticas. In 13ª Mostra da Produção Universitária, Universidade Federal do Rio Grande. [Portuguese]
  • Chakrabarti, S. K. (2005). Handbook of offshore engineering. Elsevier.
  • Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)? - Arguments against avoiding RMSE in the literature. Geoscientific Model Development, 7(3), 1247–1250.
  • Cisco, L. A., Koch, A. H. S., Condotta, M. P., Hofstatter, R., Harras, L. M., Oleinik, P. H., Paiva, M. S., Isoldi, L. A., & Machado, B. N (2020). O oceano como fonte de energia: uma revisão da literatura. Revista Interdisciplinar de Pesquisa em Engenharia, 6(2), 23–33. [Portuguese]
  • Dean, R. G., & Dalrymple, R. A. (1991). Water wave mechanics for engineers and scientists. World Scientific Publishing Company.
  • De Lima, Y. T. B. (2021). Análise geométrica através do design construtal de conversores de energia das ondas do mar do tipo coluna de água oscilante com câmaras hidropneumáticas acopladas. Tese de doutorado em engenharia mecânica, Universidade Federal do Rio Grande do Sul. [Portuguese]
  • EPE (2023). Brazilian Energy Balance 2023. Ministry of Mines and Energy, Rio de Janeiro. Available online: https://www.epe.gov.br/pt/publicacoes- dados-abertos/publicacoes/balanco-energetico- nacional-2023. Accessed on Oct 04, 2023).
  • Gomes, M. D. N., Isoldi, L. A., Santos, E. D. D., & Rocha, L. A. O. (2012). Análise de malhas para geração numérica de ondas em tanques. In Anais do VII do Congresso Nacional de Engenharia Mecânica (Associação Brasileira de Engenharia e Ciências Mecânicas). [Portuguese].
  • Gomes, M. N. (2014). Constructal Design de dispositivos conversores de energia das ondas do mar em energia elétrica do tipo Coluna de Água Oscilante. Tese de doutorado em engenharia mecânica, Universidade Federal do Rio Grande do Sul. [Portuguese].
  • Hirt, C. W., & Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1), 201–225.
  • Hübner, R. G., Fragassa, C., Paiva, M. D. S., Oleinik, P. H., Gomes, M. D. N., Rocha, L. A., dos Santos, E. D., Machado, B. N., & Isoldi, L. A (2022). Numerical analysis of an overtopping wave energy converter subjected to the incidence of irregular and regular waves from realistic sea states. Journal of Marine Science and Engineering, 10(8), Article 1084.
  • IEA (2024). Renewables 2023, IEA, Paris https://www.iea. org/reports/renewables-2023, Licence: CC BY 4.0.
  • Koch, A. H. S., Paiva, M. S., Monteiro, C. B., Oleinik, P. H., Isoldi, L. A., & Machado, B. N. (2021). Numerical evaluation of the hydropneumatic power of the oscillating water column wave energy converter submitted to regular and irregular waves. Engineering Science & Technology, 3, 32–43.
  • Lisboa, R. C., Teixeira, P. R. F., & Didier, E. (2017). Regular and irregular wave propagation analysis in a flume with numerical beach using a navier-stokes based model. Defect and Diffusion Forum, 372, 81–90.
  • Maliska, C. R. (2004). Tranferência de Calor e Mecânica dos Fluidos Computacional. LTC - Livros Técnicos e Científicos. [Portuguese]
  • Maciel, R. P., Fragassa C., Machado, B. N., Rocha, L. A. O., Dos Santos, E. D., Gomes, M. N., & Isoldi, L. A. (2021). Verification and validation of a methodology to numerically generate waves using transient discrete data as prescribed velocity boundary condition. Journal of Marine Science and Engineering, 9(8), Article 896.
  • Maciel, R. P., Oleinik, P. H., Dos Santos, E. D., Rocha, L. A. O., Machado, B. N., Gomes, M. N., & Isoldi, L. A (2023). Constructal design applied to an oscillating water column wave energy converter device under realistic sea state conditions. Journal of Marine Science and Engineering, 11(11), Article 2174.
  • Machado, B. N., Oleinik, P. H., Kirinus, E. P., Dos Santos, E. D., Rocha, L. A. O., Gomes, M. N., Conde, J. M. P., & Isoldi, L. A. (2021). WaveMIMO Methodology: Numerical wave generation of a realistic sea state. Journal of Applied and Computational Mechanics, 7(4), 2129–2148.
  • Oleinik, P. H. (2022). O programa Spec2Wave: Manual do usuário. RIPE 6(2), 23–33. [Portuguese]
  • Oleinik, P. H., Tavares, G. P., Machado, B. N., & Isoldi, L. A. (2021). Transformation of water wave spectra into time series of surface elevation. Earth, 2(4), 997– 1005.
  • Paiva, M. S., Mocellin, A. P. G., Koch, A. H. S., Oleinik, P. H., Isoldi, L. A., & Machado, B. N. (2023). Investigation on the Discretization of the Realistic Irregular Wave Generation Region through the WaveMIMO Methodology. Revista de Engenharia Térmica, 22(1), 3–10.
  • Palma, G., Formentin, S. M., Zanuttigh, B., Contestabile, P., & Vicinanza, D. (2019). Numerical simulations of the hydraulic performa3nce of a breakwater- integrated overtopping wave energy converter. Journal of Marine Science and Engineering, 7(2), Article 38.
  • Pecher, A. & Kofoed, J. P (2017). Handbook of ocean wave energy. Springer Nature.
  • Seibt, F. M., Dos Santos, E. D., Isoldi, L. A., & Rocha, L. A. O. (2023). Constructal Design on full-scale numerical model of a submerged horizontal plate- type wave energy converter. Marine Systems and Ocean Technology Key, 18, 1–13.
  • Santana, D. R. (2023). Energia Renovável para o Desenvolvimento Econômico do Brasil. Revista OWL - Revista Interdisciplinar de Ensino e Educação, 1(1), 48–64. [Portuguese]
  • Versteeg, H. K., & Malalasekera, W. (2007). An introduction to computational fluid dynamics - The finite volume method. Pearson Education Limited.
There are 27 citations in total.

Details

Primary Language English
Subjects Energy Systems Engineering (Other)
Journal Section Research Articles
Authors

Ana Paula Mocellin

Maycon Paıva 0000-0003-0773-9433

Elizaldo Dos Santos This is me

Luiz Rocha This is me

Liércio Isoldi This is me

Juliana Sartori Ziebell

Bianca Machado

Publication Date July 7, 2024
Submission Date March 22, 2024
Acceptance Date April 17, 2024
Published in Issue Year 2024 Volume: 4 Issue: 1

Cite

APA Mocellin, A. P., Paıva, M., Dos Santos, E., Rocha, L., et al. (2024). A numerical study about the influence of bathymetry on the generation and propagation of realistic irregular waves and representative regular waves occurred in Tramandaí, Brazil. Seatific Journal, 4(1), 1-11.

Seatific Journal

Creative Commons Attribution-NonCommercial (CC BY-NC) 4.0 International License