Research Article
BibTex RIS Cite
Year 2024, Volume: 4 Issue: 2, 48 - 56

Abstract

References

  • Agrawal, H., Malloy, Q. G. J., Welch, W. A., Wayne Miller, J., & Cocker, D. R. (2008). In-use gaseous and particulate matter emissions from a modern ocean going container vessel. Atmospheric Environment, 42(21), 5504–5510.
  • Alver, F., Saraç, B. A., & Alver Şahin, Ü. (2018). Estimating of shipping emissions in the Samsun Port from 2010 to 2015. Atmospheric Pollution Research, 9(5), 822–828.
  • Autoridad del Canal de Panamá. (2022). Vessel Requirements. In OP Notice to Shipping No. N-1-2022 (Vol. 1, Issue 1).
  • Beşikçi, E. B., Kececi, T., Arslan, O., & Turan, O. (2016). An application of fuzzy-AHP to ship operational energy efficiency measures. Ocean Engineering, 121, 392–402.
  • Bialystocki, N., & Konovessis, D. (2016). On the estimation of ship’s fuel consumption and speed curve: A statistical approach. Journal of Ocean Engineering and Science, 1(2), 157–166.
  • Bilgili, L. (2018). Estimation of operation gaseous emissions in ship life cycle with machine learning method [Doctorial Thesis]. Yildiz Technical University.
  • Bond, T. C., Streets, D. G., Yarber, K. F., Nelson, S. M., Woo, J. H., & Klimont, Z. (2004). A technology-based global inventory of black and organic carbon emissions from combustion. Journal of Geophysical Research: Atmospheres, 109(14), 1–43.
  • Burgard, D. A., & Bria, C. R. M. (2016). Bridge-based sensing of NOx and SO2 emissions from ocean-going ships. Atmospheric Environment, 136, 54–60.
  • Capaldo, K., Corbett, J. J., Kasibhatla, P., Fischbeck, P., & Pandis, S. N. (1999). Effects of ship emission on sulphur cycling and radiative climate forcing over the ocean. Nature, 400, 743–746.
  • Cepowski, T., & Drozd, A. (2023). Measurement-based relationships between container ship operating parameters and fuel consumption. Applied Energy, 347, Article 121315.
  • Cooper, D. A. (2003). Exhaust emissions from ships at berth. Atmospheric Environment, 37(27), 3817–3830. Cooper, D. A., & Andreasson, K. (1999). Predictive NO(x) emission monitoring on board a passenger ferry. Atmospheric Environment, 33(28), 4637–4650.
  • Corbett, J. J., & Koehler, H. W. (2004). Considering alternative input parameters in an activity-based ship fuel consumption and emissions model: Reply to comment by Øyvind Endresen et al. on “Updated emissions from ocean shipping”. Journal of Geophysical Research D: Atmospheres, 109(23), 1–8.
  • Corbett, J. J., Wang, H., & Winebrake, J. J. (2009). The effectiveness and costs of speed reductions on emissions from international shipping. Transportation Research Part D: Transport and Environment, 14(8), 593–598.
  • Corbett, J. J., Winebrake, J. J., Green, E. H., Kasibhatla, P., Eyring, V., & Lauer, A. (2007). Mortality from ship emissions: A global assessment. Environmental Science and Technology, 41(24), 8512–8518.
  • De Meyer, P., Maes, F., & Volckaert, A. (2008). Emissions from international shipping in the Belgian part of the North Sea and the Belgian seaports. Atmospheric Environment, 42(1), 196–206.
  • De Ruyter De Wildt, M., Eskes, H., & Boersma, K. F. (2012). The global economic cycle and satellite-derived NO2 trends over shipping lanes. Geophysical Research Letters, 39(1), 2–7. Deniz, C., & Durmuşoǧlu, Y. (2008). Estimating shipping emissions in the region of the Sea of Marmara, Turkey. Science of the Total Environment, 390(1), 255–261.
  • Doney, S. C., Fabry, V. J., Feely, R. A., & Kleypas, J. A. (2009). Ocean acidification: The other CO2 problem. Annual Review of Marine Science, 1(1), 169–192.
  • Eyring, V., Isaksen, I. S. A., Berntsen, T., Collins, W. J., Corbett, J. J., Endresen, O., Grainger, R. G., Moldanova, J., Schlager, H., & Stevenson, D. S. (2010). Transport impacts on atmosphere and climate: Shipping. Atmospheric Environment, 44(37), 4735–4771.
  • Eyring, V., Köhler, H. W., Lauer, A., & Lemper, B. (2005). Emissions from international shipping: 2. Impact of future technologies on scenarios until 2050. Journal of Geophysical Research D: Atmospheres, 110(17), 183–200.
  • Gkerekos, C., Lazakis, I., & Theotokatos, G. (2019). Machine learning models for predicting ship main engine Fuel Oil Consumption: A comparative study. Ocean Engineering, 188, Article 106282.
  • Graf von Westarp, A. (2020). A new model for the calculation of the bunker fuel speed–consumption relation. Ocean Engineering, 204, Article 107262.
  • Gusti, Ayudhia P., & Semin. (2016). The effect of vessel speed on fuel consumption and exhaust gas emissions. American Journal of Engineering and Applied Sciences, 9(4), 1046–1053.
  • Gusti, Ayudhia Pangestu, & Semin. (2018). Effect of ship speed on ship emissions. Asian Journal of Scientific Research, 11(3), 428–433.
  • Henningsen, R., Skjolsvik, K., Andersen, A., Corbett, J., & Skjelvik, J. (2000). Study of Greenhouse Gas Emissions from Ships Final Report to the International Maritime Organization. International Maritime Organization
  • IEA. (2024). World Energy Outlook. IEA.
  • IMO. (2020a). Fourth IMO Greenhouse Gas Study: Executive Summary. In IMO Greenhouse Gas Study. IMO.
  • IMO. (2015b). Nitrogen Oxides (NOx) – Regulation 13. https://www.imo.org/en/OurWork/Environment/Pages/Nitrogen-oxides-(NOx)-%E2%80%93-Regulation-13.aspx Accessed on Dec 11, 2024.
  • IMO. (2015c). IMO Sulphur Regulation. https://www.imo.org/en/OurWork/Environment/Pages/Sulphur-oxides-(SOx)-%E2%80%93-Regulation-14.aspx Accessed on Dec 11, 2024
  • Isakson, J., Persson, T. A., & Selin Lindgren, E. (2001). Identification and assessment of ship emissions and their effects in the harbour of Göteborg, Sweden. Atmospheric Environment, 35(21), 3659–3666.
  • Jalkanen, J. P., Johansson, L., & Kukkonen, J. (2016). A comprehensive inventory of ship traffic exhaust emissions in the European sea areas in 2011. Atmospheric Chemistry and Physics, 16(1), 71–84.
  • Johansson, L., Jalkanen, J. P., & Kukkonen, J. (2017). Global assessment of shipping emissions in 2015 on a high spatial and temporal resolution. Atmospheric Environment, 167, 403–415.
  • Kågeson, P. (1999). Economic instruments for reducing emissions from sea transport. In Air Pollution and Climate Series (Vol. 11), European Federation for Transport and Environment.
  • Kee, K.-K., Lau Simon, B.-Y., & Yong Renco, K.-H. (2018). Prediction of Ship Fuel Consumption and Speed Curve by Using Statistical Method. Journal of Computer Science & Computational Mathematics, 8(2), 19–24.
  • Kesgin, U., & Vardar, N. (2001). A study on exhaust gas emissions from ships in Turkish Straits. Atmospheric Environment, 35(10), 1863–1870.
  • Kollamthodi, S., Brannigan, C., Harfoot, M., Skinner, I., Whall, C., Lavric, L., Noden, R., Lee, D., Buhaug, Ø., Martinussen, K., Skejic, R., Valberg, I., Brembo, J. C., Eyring, V., & Faber, J. (2008). Greenhouse gas emissions from shipping: Trends, projections and abatement potential: Final report to the Committee on Climate Change (CCC). In AEA Technology (Issue 4).
  • Lang, J., Zhou, Y., Chen, D., Xing, X., Wei, L., Wang, X., Zhao, N., Zhang, Y., Guo, X., Han, L., & Cheng, S. (2017). Investigating the contribution of shipping emissions to atmospheric PM2.5 using a combined source apportionment approach. Environmental Pollution, 229, 557–566.
  • Lepore, A., dos Reis, M. S., Palumbo, B., Rendall, R., & Capezza, C. (2017). A comparison of advanced regression techniques for predicting ship CO2 emissions. Quality and Reliability Engineering International, 33(6), 1281–1292.
  • Matthias, V., Bewersdorff, I., Aulinger, A., & Quante, M. (2010). The contribution of ship emissions to air pollution in the North Sea regions. Environmental Pollution, 158(6), 2241–2250.
  • Millero, F. J. (1995). Thermodynamics of the carbon dioxide system in the oceans. Geochimica et Cosmochimica Acta, 59(4), 661–677.
  • Moldanová, J., Fridell, E., Popovicheva, O., Demirdjian, B., Tishkova, V., Faccinetto, A., & Focsa, C. (2009). Characterisation of particulate matter and gaseous emissions from a large ship diesel engine. Atmospheric Environment, 43(16), 2632–2641.
  • Moreira, L., Vettor, R., & Soares, C. G. (2021). Neural network approach for predicting ship speed and fuel consumption. Journal of Marine Science and Engineering, 9(2), 1–14.
  • Moreno-Gutiérrez, J., Calderay, F., Saborido, N., Boile, M., Rodríguez Valero, R., & Durán-Grados, V. (2015). Methodologies for estimating shipping emissions and energy consumption: A comparative analysis of current methods. Energy, 86, 603–616.
  • Notteboom, T. E. (2006). The Time factor in liner shipping services. Maritime Economics and Logistics, 8(1), 19–39.
  • Öztürk, O. B., & Başar, E. (2022). Multiple linear regression analysis and artificial neural networks based decision support system for energy efficiency in shipping. Ocean Engineering, 243, Article 110209.
  • Park, R. J., Jacob, D. J., Chin, M., & Martin, R. V. (2003). Sources of carbonaceous aerosols over the United States and implications for natural visibility. Journal of Geophysical Research Atmospheres, 108(12), Article 4355.
  • Pelić, V., Bukovac, O., Radonja, R., & Degiuli, N. (2023). The impact of slow steaming on fuel consumption and CO2 emissions of a container ship. Journal of Marine Science and Engineering, 11(3), Article 675.
  • Psaraftis, H. N., & Kontovas, C. A. (2010). Balancing the economic and environmental performance of maritime transportation. Transportation Research Part D: Transport and Environment, 15(8), 458–462.
  • Quinn, P. K., Bates, T. S., Baum, E., Doubleday, N., Fiore, A. M., Flanner, M., Fridlind, A., Garrett, T. J., Koch, D., Menon, S., Shindell, D., Stohl, A., & Warren, S. G. (2008). Short-lived pollutants in the Arctic: Their climate impact and possible mitigation strategies. Atmospheric Chemistry and Physics, 8(6), 1723–1735.
  • Raven, J., Caldeira, K., Elderfield, H., Hoegh-Guldberg, O., Liss, P., Riebesell, U., Shepherd, J., Turley, C., & Watson, A. (2005). Ocean acidification due to increasing atmospheric carbon dioxide. The Royal Society.
  • Rawlings, J. O., Pantula, S. G., & Dickey, D. A. (1998). Applied Regression Analysis: A Research Tool. In G. Casella, S. Fienberg, & I. Olkin (Eds.), The American Statistician (2nd ed.). Springer-Verlag.
  • Richter, A., Eyring, V., Burrows, J. P., Bovensmann, H., Lauer, A., Sierk, B., & Crutzen, P. J. (2004). Satellite measurements of NO2 from international shipping emissions. Geophysical Research Letters, 31(23), 1–4.
  • Ronen, D. (1982). The effect of oil price on the optimal speed of ships. The Journal of Operational Research Society, 33(11), 1035–1040.
  • Ronen, D. (2011). The effect of oil price on containership speed and fleet size. Journal of the Operational Research Society, 62(1), 211–216.
  • Saxe, H., & Larsen, T. (2004). Air pollution from ships in three Danish ports. Atmospheric Environment, 38(24), 4057–4067.
  • Schrooten, L., De Vlieger, I., Int Panis, L., Styns, K., & Torfs, R. (2008). Inventory and forecasting of maritime emissions in the Belgian sea territory, an activity-based emission model. Atmospheric Environment, 42(4), 667–676.
  • Schrooten, L., De Vlieger, I., Panis, L. I., Chiffi, C., & Pastori, E. (2009). Emissions of maritime transport: A European reference system. Science of the Total Environment, 408(2), 318–323.
  • Shi, Y. (2016). Are greenhouse gas emissions from international shipping a type of marine pollution? Marine Pollution Bulletin, 113(1–2), 187–192. Smith, K. R. (2000). National burden of disease in India from indoor air pollution. Proceedings of the National Academy of Sciences of the United States of America, 97(24), 13286–13293.
  • Smith, T. W. P., Jalkanen, J. P., Anderson, B. A., Corbett, J. J., Faber, J., Hanayama, S., O’Keeffe, E., Parker, S., Johansson, L., Aldous, L., Raucci, C., Traut, M., Ettinger, S., Nelissen, D., Lee, D. S., Ng, S., Agrawal, A., Winebrake, J. J., Hoen, M, … & Pandey, A. (2014). Third IMO GHG Study 2014. International Maritime Organization (IMO).
  • Smith, T. W. P., Jalkanen, J. P., Anderson, B. A., Corbett, J. J., Faber, J., Hanayama, S., O’Keeffe, E., Parker, S., Johansson, L., Aldous, L., Raucci, C., Traut, M., Ettinger, S., Nelissen, D., Lee, D. S., Ng, S., Agrawal, A., Winebrake, J. J., & Hoen, M., A. (2014). Third IMO Greenhouse Gas Study. In International Maritime Organization (IMO).
  • Solomon, S., D., Qin, M., Manning, Z., Chen, M., Marquis, K. B., Averyt, M. T., Miller HL, Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., & Miller, H. L. (2007). Summary for Policymakers. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In Cambridge University Press..
  • Streets, D. G., Carmichael, G. R., & Arndt, R. L. (1997). Sulfur dioxide emissions and sulfur deposition from international shipping in Asian waters. Atmospheric Environment, 31(10), 1573–1582.
  • Streets, D. G., Guttikunda, S. K., & Carmichael, G. R. (2000). The growing contribution of sulfur emissions from ships in Asian waters, 1988-1995. Atmospheric Environment, 34(26), 4425–4439.
  • Styhre, L., Winnes, H., Black, J., Lee, J., & Le-Griffin, H. (2017). Greenhouse gas emissions from ships in ports – Case studies in four continents. Transportation Research Part D: Transport and Environment, 54, 212–224.
  • Taskar, B., Sasmal, K., & Yiew, L. J. (2023). A case study for the assessment of fuel savings using speed optimization. Ocean Engineering, 274, Article 113990.
  • Trozzi, C. (2010). Emission estimate methodology for maritime navigation. US EPA 19th International Emissions Inventory Conference. https://www3.epa.gov/ttnchie1/conference/ei19/ Accessed on Dec 05, 2024.
  • Tyrrell, T. (2008). Calcium carbonate cycling in future oceans and its influence on future climates. Journal of Plankton Research, 30(2), 141–156.
  • Tzannatos Ernestos, E. (2010). Ship emissions and their externalities for Greece. Atmospheric Environment, 44(18), 2194–2202.
  • Uyanık, T., Karatuğ, Ç., & Arslanoğlu, Y. (2020). Machine learning approach to ship fuel consumption: A case of container vessel. Transportation Research Part D: Transport and Environment, 84, Article 102389.
  • Wang, Shengzheng, Ji, B., Zhao, J., Liu, W., & Xu, T. (2018). Predicting ship fuel consumption based on LASSO regression. Transportation Research Part D: Transport and Environment, 65, 817–824.
  • Williams, E. J., Lerrier, B. M., Murphy, P. C., Herndon, S. C., & Zahniser, M. S. (2009). Emissions of NOx, So2, CO, and HCHO from commercial marine shipping during Texas Air Quality Study (TexAQS) 2006. In Journal of Geophysical Research Atmospheres, 114(21), Article D21306.
  • Winther, M. (2008). New national emission inventory for navigation in Denmark. Atmospheric Environment, 42(19), 4632–4655.
  • Ye, X., Kang, Y., Zuo, B., & Zhong, K. (2017). Study of factors affecting warm air spreading distance in impinging jet ventilation rooms using multiple regression analysis. Building and Environment, 120, 1–12.

Correlation of the Ship Speed and Carbon Dioxide Emissions: A Study on Panamax Tankers

Year 2024, Volume: 4 Issue: 2, 48 - 56

Abstract

The amount of energy needed by the maritime industry is increasing depending on the global energy demand and the increase in commercial activities. Larger ships are expected to create greater challenges in the energy demand and environmental performance issues. Therefore, estimating fuel consumption and emissions are important preliminary steps to avoid these problems. In this study, the relationship between speed and CO2 emissions is reduced to a single equation. It aims to reach fuel consumption and emission amounts by using only speed input. Since the speed input includes RPM, weather and sea conditions, cargo quantity and wave course data, the effects of these data on fuel consumption have been obtained indirectly. In this way, fuel consumption and emissions can be predicted depending on the speed through a simple equation, and the solutions on measurements and route optimization would be much easier.

References

  • Agrawal, H., Malloy, Q. G. J., Welch, W. A., Wayne Miller, J., & Cocker, D. R. (2008). In-use gaseous and particulate matter emissions from a modern ocean going container vessel. Atmospheric Environment, 42(21), 5504–5510.
  • Alver, F., Saraç, B. A., & Alver Şahin, Ü. (2018). Estimating of shipping emissions in the Samsun Port from 2010 to 2015. Atmospheric Pollution Research, 9(5), 822–828.
  • Autoridad del Canal de Panamá. (2022). Vessel Requirements. In OP Notice to Shipping No. N-1-2022 (Vol. 1, Issue 1).
  • Beşikçi, E. B., Kececi, T., Arslan, O., & Turan, O. (2016). An application of fuzzy-AHP to ship operational energy efficiency measures. Ocean Engineering, 121, 392–402.
  • Bialystocki, N., & Konovessis, D. (2016). On the estimation of ship’s fuel consumption and speed curve: A statistical approach. Journal of Ocean Engineering and Science, 1(2), 157–166.
  • Bilgili, L. (2018). Estimation of operation gaseous emissions in ship life cycle with machine learning method [Doctorial Thesis]. Yildiz Technical University.
  • Bond, T. C., Streets, D. G., Yarber, K. F., Nelson, S. M., Woo, J. H., & Klimont, Z. (2004). A technology-based global inventory of black and organic carbon emissions from combustion. Journal of Geophysical Research: Atmospheres, 109(14), 1–43.
  • Burgard, D. A., & Bria, C. R. M. (2016). Bridge-based sensing of NOx and SO2 emissions from ocean-going ships. Atmospheric Environment, 136, 54–60.
  • Capaldo, K., Corbett, J. J., Kasibhatla, P., Fischbeck, P., & Pandis, S. N. (1999). Effects of ship emission on sulphur cycling and radiative climate forcing over the ocean. Nature, 400, 743–746.
  • Cepowski, T., & Drozd, A. (2023). Measurement-based relationships between container ship operating parameters and fuel consumption. Applied Energy, 347, Article 121315.
  • Cooper, D. A. (2003). Exhaust emissions from ships at berth. Atmospheric Environment, 37(27), 3817–3830. Cooper, D. A., & Andreasson, K. (1999). Predictive NO(x) emission monitoring on board a passenger ferry. Atmospheric Environment, 33(28), 4637–4650.
  • Corbett, J. J., & Koehler, H. W. (2004). Considering alternative input parameters in an activity-based ship fuel consumption and emissions model: Reply to comment by Øyvind Endresen et al. on “Updated emissions from ocean shipping”. Journal of Geophysical Research D: Atmospheres, 109(23), 1–8.
  • Corbett, J. J., Wang, H., & Winebrake, J. J. (2009). The effectiveness and costs of speed reductions on emissions from international shipping. Transportation Research Part D: Transport and Environment, 14(8), 593–598.
  • Corbett, J. J., Winebrake, J. J., Green, E. H., Kasibhatla, P., Eyring, V., & Lauer, A. (2007). Mortality from ship emissions: A global assessment. Environmental Science and Technology, 41(24), 8512–8518.
  • De Meyer, P., Maes, F., & Volckaert, A. (2008). Emissions from international shipping in the Belgian part of the North Sea and the Belgian seaports. Atmospheric Environment, 42(1), 196–206.
  • De Ruyter De Wildt, M., Eskes, H., & Boersma, K. F. (2012). The global economic cycle and satellite-derived NO2 trends over shipping lanes. Geophysical Research Letters, 39(1), 2–7. Deniz, C., & Durmuşoǧlu, Y. (2008). Estimating shipping emissions in the region of the Sea of Marmara, Turkey. Science of the Total Environment, 390(1), 255–261.
  • Doney, S. C., Fabry, V. J., Feely, R. A., & Kleypas, J. A. (2009). Ocean acidification: The other CO2 problem. Annual Review of Marine Science, 1(1), 169–192.
  • Eyring, V., Isaksen, I. S. A., Berntsen, T., Collins, W. J., Corbett, J. J., Endresen, O., Grainger, R. G., Moldanova, J., Schlager, H., & Stevenson, D. S. (2010). Transport impacts on atmosphere and climate: Shipping. Atmospheric Environment, 44(37), 4735–4771.
  • Eyring, V., Köhler, H. W., Lauer, A., & Lemper, B. (2005). Emissions from international shipping: 2. Impact of future technologies on scenarios until 2050. Journal of Geophysical Research D: Atmospheres, 110(17), 183–200.
  • Gkerekos, C., Lazakis, I., & Theotokatos, G. (2019). Machine learning models for predicting ship main engine Fuel Oil Consumption: A comparative study. Ocean Engineering, 188, Article 106282.
  • Graf von Westarp, A. (2020). A new model for the calculation of the bunker fuel speed–consumption relation. Ocean Engineering, 204, Article 107262.
  • Gusti, Ayudhia P., & Semin. (2016). The effect of vessel speed on fuel consumption and exhaust gas emissions. American Journal of Engineering and Applied Sciences, 9(4), 1046–1053.
  • Gusti, Ayudhia Pangestu, & Semin. (2018). Effect of ship speed on ship emissions. Asian Journal of Scientific Research, 11(3), 428–433.
  • Henningsen, R., Skjolsvik, K., Andersen, A., Corbett, J., & Skjelvik, J. (2000). Study of Greenhouse Gas Emissions from Ships Final Report to the International Maritime Organization. International Maritime Organization
  • IEA. (2024). World Energy Outlook. IEA.
  • IMO. (2020a). Fourth IMO Greenhouse Gas Study: Executive Summary. In IMO Greenhouse Gas Study. IMO.
  • IMO. (2015b). Nitrogen Oxides (NOx) – Regulation 13. https://www.imo.org/en/OurWork/Environment/Pages/Nitrogen-oxides-(NOx)-%E2%80%93-Regulation-13.aspx Accessed on Dec 11, 2024.
  • IMO. (2015c). IMO Sulphur Regulation. https://www.imo.org/en/OurWork/Environment/Pages/Sulphur-oxides-(SOx)-%E2%80%93-Regulation-14.aspx Accessed on Dec 11, 2024
  • Isakson, J., Persson, T. A., & Selin Lindgren, E. (2001). Identification and assessment of ship emissions and their effects in the harbour of Göteborg, Sweden. Atmospheric Environment, 35(21), 3659–3666.
  • Jalkanen, J. P., Johansson, L., & Kukkonen, J. (2016). A comprehensive inventory of ship traffic exhaust emissions in the European sea areas in 2011. Atmospheric Chemistry and Physics, 16(1), 71–84.
  • Johansson, L., Jalkanen, J. P., & Kukkonen, J. (2017). Global assessment of shipping emissions in 2015 on a high spatial and temporal resolution. Atmospheric Environment, 167, 403–415.
  • Kågeson, P. (1999). Economic instruments for reducing emissions from sea transport. In Air Pollution and Climate Series (Vol. 11), European Federation for Transport and Environment.
  • Kee, K.-K., Lau Simon, B.-Y., & Yong Renco, K.-H. (2018). Prediction of Ship Fuel Consumption and Speed Curve by Using Statistical Method. Journal of Computer Science & Computational Mathematics, 8(2), 19–24.
  • Kesgin, U., & Vardar, N. (2001). A study on exhaust gas emissions from ships in Turkish Straits. Atmospheric Environment, 35(10), 1863–1870.
  • Kollamthodi, S., Brannigan, C., Harfoot, M., Skinner, I., Whall, C., Lavric, L., Noden, R., Lee, D., Buhaug, Ø., Martinussen, K., Skejic, R., Valberg, I., Brembo, J. C., Eyring, V., & Faber, J. (2008). Greenhouse gas emissions from shipping: Trends, projections and abatement potential: Final report to the Committee on Climate Change (CCC). In AEA Technology (Issue 4).
  • Lang, J., Zhou, Y., Chen, D., Xing, X., Wei, L., Wang, X., Zhao, N., Zhang, Y., Guo, X., Han, L., & Cheng, S. (2017). Investigating the contribution of shipping emissions to atmospheric PM2.5 using a combined source apportionment approach. Environmental Pollution, 229, 557–566.
  • Lepore, A., dos Reis, M. S., Palumbo, B., Rendall, R., & Capezza, C. (2017). A comparison of advanced regression techniques for predicting ship CO2 emissions. Quality and Reliability Engineering International, 33(6), 1281–1292.
  • Matthias, V., Bewersdorff, I., Aulinger, A., & Quante, M. (2010). The contribution of ship emissions to air pollution in the North Sea regions. Environmental Pollution, 158(6), 2241–2250.
  • Millero, F. J. (1995). Thermodynamics of the carbon dioxide system in the oceans. Geochimica et Cosmochimica Acta, 59(4), 661–677.
  • Moldanová, J., Fridell, E., Popovicheva, O., Demirdjian, B., Tishkova, V., Faccinetto, A., & Focsa, C. (2009). Characterisation of particulate matter and gaseous emissions from a large ship diesel engine. Atmospheric Environment, 43(16), 2632–2641.
  • Moreira, L., Vettor, R., & Soares, C. G. (2021). Neural network approach for predicting ship speed and fuel consumption. Journal of Marine Science and Engineering, 9(2), 1–14.
  • Moreno-Gutiérrez, J., Calderay, F., Saborido, N., Boile, M., Rodríguez Valero, R., & Durán-Grados, V. (2015). Methodologies for estimating shipping emissions and energy consumption: A comparative analysis of current methods. Energy, 86, 603–616.
  • Notteboom, T. E. (2006). The Time factor in liner shipping services. Maritime Economics and Logistics, 8(1), 19–39.
  • Öztürk, O. B., & Başar, E. (2022). Multiple linear regression analysis and artificial neural networks based decision support system for energy efficiency in shipping. Ocean Engineering, 243, Article 110209.
  • Park, R. J., Jacob, D. J., Chin, M., & Martin, R. V. (2003). Sources of carbonaceous aerosols over the United States and implications for natural visibility. Journal of Geophysical Research Atmospheres, 108(12), Article 4355.
  • Pelić, V., Bukovac, O., Radonja, R., & Degiuli, N. (2023). The impact of slow steaming on fuel consumption and CO2 emissions of a container ship. Journal of Marine Science and Engineering, 11(3), Article 675.
  • Psaraftis, H. N., & Kontovas, C. A. (2010). Balancing the economic and environmental performance of maritime transportation. Transportation Research Part D: Transport and Environment, 15(8), 458–462.
  • Quinn, P. K., Bates, T. S., Baum, E., Doubleday, N., Fiore, A. M., Flanner, M., Fridlind, A., Garrett, T. J., Koch, D., Menon, S., Shindell, D., Stohl, A., & Warren, S. G. (2008). Short-lived pollutants in the Arctic: Their climate impact and possible mitigation strategies. Atmospheric Chemistry and Physics, 8(6), 1723–1735.
  • Raven, J., Caldeira, K., Elderfield, H., Hoegh-Guldberg, O., Liss, P., Riebesell, U., Shepherd, J., Turley, C., & Watson, A. (2005). Ocean acidification due to increasing atmospheric carbon dioxide. The Royal Society.
  • Rawlings, J. O., Pantula, S. G., & Dickey, D. A. (1998). Applied Regression Analysis: A Research Tool. In G. Casella, S. Fienberg, & I. Olkin (Eds.), The American Statistician (2nd ed.). Springer-Verlag.
  • Richter, A., Eyring, V., Burrows, J. P., Bovensmann, H., Lauer, A., Sierk, B., & Crutzen, P. J. (2004). Satellite measurements of NO2 from international shipping emissions. Geophysical Research Letters, 31(23), 1–4.
  • Ronen, D. (1982). The effect of oil price on the optimal speed of ships. The Journal of Operational Research Society, 33(11), 1035–1040.
  • Ronen, D. (2011). The effect of oil price on containership speed and fleet size. Journal of the Operational Research Society, 62(1), 211–216.
  • Saxe, H., & Larsen, T. (2004). Air pollution from ships in three Danish ports. Atmospheric Environment, 38(24), 4057–4067.
  • Schrooten, L., De Vlieger, I., Int Panis, L., Styns, K., & Torfs, R. (2008). Inventory and forecasting of maritime emissions in the Belgian sea territory, an activity-based emission model. Atmospheric Environment, 42(4), 667–676.
  • Schrooten, L., De Vlieger, I., Panis, L. I., Chiffi, C., & Pastori, E. (2009). Emissions of maritime transport: A European reference system. Science of the Total Environment, 408(2), 318–323.
  • Shi, Y. (2016). Are greenhouse gas emissions from international shipping a type of marine pollution? Marine Pollution Bulletin, 113(1–2), 187–192. Smith, K. R. (2000). National burden of disease in India from indoor air pollution. Proceedings of the National Academy of Sciences of the United States of America, 97(24), 13286–13293.
  • Smith, T. W. P., Jalkanen, J. P., Anderson, B. A., Corbett, J. J., Faber, J., Hanayama, S., O’Keeffe, E., Parker, S., Johansson, L., Aldous, L., Raucci, C., Traut, M., Ettinger, S., Nelissen, D., Lee, D. S., Ng, S., Agrawal, A., Winebrake, J. J., Hoen, M, … & Pandey, A. (2014). Third IMO GHG Study 2014. International Maritime Organization (IMO).
  • Smith, T. W. P., Jalkanen, J. P., Anderson, B. A., Corbett, J. J., Faber, J., Hanayama, S., O’Keeffe, E., Parker, S., Johansson, L., Aldous, L., Raucci, C., Traut, M., Ettinger, S., Nelissen, D., Lee, D. S., Ng, S., Agrawal, A., Winebrake, J. J., & Hoen, M., A. (2014). Third IMO Greenhouse Gas Study. In International Maritime Organization (IMO).
  • Solomon, S., D., Qin, M., Manning, Z., Chen, M., Marquis, K. B., Averyt, M. T., Miller HL, Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., & Miller, H. L. (2007). Summary for Policymakers. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In Cambridge University Press..
  • Streets, D. G., Carmichael, G. R., & Arndt, R. L. (1997). Sulfur dioxide emissions and sulfur deposition from international shipping in Asian waters. Atmospheric Environment, 31(10), 1573–1582.
  • Streets, D. G., Guttikunda, S. K., & Carmichael, G. R. (2000). The growing contribution of sulfur emissions from ships in Asian waters, 1988-1995. Atmospheric Environment, 34(26), 4425–4439.
  • Styhre, L., Winnes, H., Black, J., Lee, J., & Le-Griffin, H. (2017). Greenhouse gas emissions from ships in ports – Case studies in four continents. Transportation Research Part D: Transport and Environment, 54, 212–224.
  • Taskar, B., Sasmal, K., & Yiew, L. J. (2023). A case study for the assessment of fuel savings using speed optimization. Ocean Engineering, 274, Article 113990.
  • Trozzi, C. (2010). Emission estimate methodology for maritime navigation. US EPA 19th International Emissions Inventory Conference. https://www3.epa.gov/ttnchie1/conference/ei19/ Accessed on Dec 05, 2024.
  • Tyrrell, T. (2008). Calcium carbonate cycling in future oceans and its influence on future climates. Journal of Plankton Research, 30(2), 141–156.
  • Tzannatos Ernestos, E. (2010). Ship emissions and their externalities for Greece. Atmospheric Environment, 44(18), 2194–2202.
  • Uyanık, T., Karatuğ, Ç., & Arslanoğlu, Y. (2020). Machine learning approach to ship fuel consumption: A case of container vessel. Transportation Research Part D: Transport and Environment, 84, Article 102389.
  • Wang, Shengzheng, Ji, B., Zhao, J., Liu, W., & Xu, T. (2018). Predicting ship fuel consumption based on LASSO regression. Transportation Research Part D: Transport and Environment, 65, 817–824.
  • Williams, E. J., Lerrier, B. M., Murphy, P. C., Herndon, S. C., & Zahniser, M. S. (2009). Emissions of NOx, So2, CO, and HCHO from commercial marine shipping during Texas Air Quality Study (TexAQS) 2006. In Journal of Geophysical Research Atmospheres, 114(21), Article D21306.
  • Winther, M. (2008). New national emission inventory for navigation in Denmark. Atmospheric Environment, 42(19), 4632–4655.
  • Ye, X., Kang, Y., Zuo, B., & Zhong, K. (2017). Study of factors affecting warm air spreading distance in impinging jet ventilation rooms using multiple regression analysis. Building and Environment, 120, 1–12.
There are 72 citations in total.

Details

Primary Language English
Subjects Maritime Engineering (Other)
Journal Section Research Articles
Authors

Levent Bilgili 0000-0001-9431-5289

Volkan Şahin

Publication Date
Submission Date October 7, 2024
Acceptance Date December 2, 2024
Published in Issue Year 2024 Volume: 4 Issue: 2

Cite

APA Bilgili, L., & Şahin, V. (n.d.). Correlation of the Ship Speed and Carbon Dioxide Emissions: A Study on Panamax Tankers. Seatific Journal, 4(2), 48-56.

Seatific Journal

Creative Commons Attribution-NonCommercial (CC BY-NC) 4.0 International License