Research Article
BibTex RIS Cite

Year 2025, Volume: 43 Issue: 1, 62 - 72, 28.02.2025

Abstract

References

  • REFERENCES
  • [1] Biolek D. CDTA-Building Block for Current- Mode Analog Signal Processing. Proceedings of the European Conference on Circuit Theory and Design, 2023. p. 397–400.
  • [2] Keskin AU, Biolek D, Hancioglu E, Biolkova V. Current-mode KHN filter employing current differencing transconductance amplifiers. Int J Electron Commun 2006;60:443–446. [CrossRef]
  • [3] Rai SK, Pandey R, Garg B, Patel SK. A novel design of current differencing transconductance amplifier with high transconductance gain and enhanced bandwidth. Turk J Electric Eng Comput Sci 2021;29:454–469. [CrossRef]
  • [4] Rai SK, Pandey R, Garg B. Design of current differencing transconductance amplifier using a novel approach of transconductance boosting for high frequency applications. J Circuits Syst Comput 2020;29:1–27. [CrossRef]
  • [5] Singh S, Jain S, Pandey R, Pandey N. Adaptive biased current differencing trans-conductance amplifier. Int J Electron Commun 2021;128:153494. [CrossRef]
  • [6] Bisariya S, Afzal N. Design and implementation of CDTA: a review. Sadhana 2020;45:282. [CrossRef]
  • [7] Arora Y, Aggarwal B, Kaur J. Low voltage high performance floating gate and quasi floating gate CDTA. J Eng Res 2022;10:144–152.
  • [8] Rana C, Prasad D, Afzal N. Low voltage floating gate MOSFET based current differencing transconductance amplifier and its applications. J Semiconduct 2018;39:094002. [CrossRef]
  • [9] Choraria K, Divya Basson I, Pandey R. CDTA Based Multimode SIMO Biquad Filter, International Conference on Communication and Signal Processing (ICCSP), IEEE, 2020. [CrossRef]
  • [10] Lakys Y, Godara B, Fabre A. Cognitive and Encrypted Communications, Part 2: A New Approach to Active Frequency-Agile Filters and Validation Results for an Agile Bandpass Topology in SiGe- BiCMOS. International Conference on Electrical and Electronics Engineering - ELECO 2009, Bursa, Turkey, 16-29, 2009.
  • [11] Pandey N, Sayal A, Choudhary R, Pandey R. Design of CDTA and VDTA Based Frequency Agile Filters. Adv Electron 2014;2014:1–15. [CrossRef]
  • [12] Alaybeyoglu E, Kuntman H. A new frequency agile filter structure employing CDTA for positioning systems and secure communications. Analog Integr Circuits Signal Process 2016;89:693–703. [CrossRef]
  • [13] Bisariya S, Afzal N. Current-Mode Full-Wave Rectifier Based on Transconductance-Boosted Bulk-Driven CDTA and Two Diodes, Signals, Machines and Automation. SIGMA 2022, Lecture Notes in Electrical Engineering. Singapore: Springer; 2023. p. 487–496. [CrossRef]
  • [14] Das R, Paul SK. Resistorless Electronically Tunable Quadrature Oscillator Using Single CDTA. Lecture Notes in Networks and Systems. Singapore: Springer Science and Business Media Deutschland GmbH, 2021. p. 381–387. [CrossRef]
  • [15] Jin J, Wang C. CDTA-based electronically tunable current-mode quadrature oscillator. Int J Electron 2014;101:1086–1095. [CrossRef]
  • [16] Das R, Bhowmick B, Paul P. Current Differencing Transconductance Amplifier (CDTA) Based Current-Mode Quadrature Oscillator. Advances in Computer, Communication, and Control, Lecture Notes in Networks and Systems. Singapore: Springer; 2019. p. 41. [CrossRef]
  • [17] Chien HC, Wang JM. Dual-mode resistorless sinusoidal oscillator using single CCCDTA. Microelectronics J 2013;44:216–224. [CrossRef]
  • [18] Xia Z, Wang C, Jin J, Du S, Lin H, Yang H. Novel AM/FM/ASK/FSK/PSK/QAM signal generator based on a digitally programmable CDTA. Circuits Syst Signal Process 2015;34:1635–1653. [CrossRef]
  • [19] Biolek D, Vavra J, Keskin AU. CDTA-Based Capacitance Multipliers. Circuits Syst Signal Process 2019;38:1466–1481. [CrossRef]
  • [20] Sharma VK, Parveen T, Ansari MS. Four quadrant analog multiplier based memristor emulator using single active element. Int J Electron Commun 2021;130:153575. [CrossRef]
  • [21] Tangsrirat W, Pukkalanun T, Mongkolwai P, Surakampontorn W. Simple current-mode analog multiplier, divider, square-rooter and squarer based on CDTAs. Int J Electron Commun 2011;65:198–203. [CrossRef]
  • [22] Silapan P, Siripruchyanun, M. (2011) Fully and electronically controllable current-mode Schmitt triggers employing only single MO-CCCDTA and their applications. Analog Integr Circuits Signal Process 2011;68:111–128. [CrossRef]
  • [23] Siripruchyanun M, Jaikla W. A current-mode analog multiplier/divider based on CCCDTA. Int J Electron Commun 2008;62:223–227. [CrossRef]
  • [24] Belen MA, Mahouti P, Partal H, Demirel S, Gunes F. Design and simulation of a tunable bandpass filter using varactor diodes for wireless and radar applications. Sigma J Eng Nat Sci 2015;33:86–93.
  • [25] Yuce E. Design of universal current-mode filter employing CCII+s. Sigma J Eng Nat Sci 2007;25:247–258.
  • [26] Khateb F, Biolek D. Bulk-driven current differencing transconductance amplifier. Circuits Syst Signal Process 2011;30:1071–1089. [CrossRef]
  • [27] Khateb F, Kumngern M, Spyridon V, Psychalinos C. Differential Difference Current Conveyor Using Bulk-Driven Technique for Ultra-Low- Voltage Applications. Circuits Syst Signal Process 2014;33:159–176. [CrossRef]
  • [28] Blalock BJ, Allen, PE, Rincon, Mora GA. Designing 1-V op amps using standard digital CMOS technology. IEEE Trans Circuits Systems II 1998;45:769–780. [CrossRef]
  • [29] Akbari, M., Hussein, S.M., Hashim, Y., Tang, K.T., (2021) An enhanced ınput differential pair for low-voltage bulk-driven amplifiers. IEEE Trans Very Large Scale Integr VLSI Syst 2021;29:1601–1611. [CrossRef]
  • [30] Kulej T, Khateb F, Arbet D. A 0.3-V High Linear Rail-to-Rail Bulk-Driven OTA in 0.13 μm CMOS. IEEE Transactions on Circuits and Systems II: Express Briefs 2022;69:2046–2050. [CrossRef]
  • [31] Khateb F, Kumngern M, Kulej T. 0.5 V Differential Difference Transconductance Amplifier and its Application in Voltage-Mode Universal Filter. IEEE 2022;10:43209–43220. [CrossRef]
  • [32] Ballo A, Grasso AD, Pennisi S. A 0.3-V 8.5-μA Bulk- Driven OTA. IEEE Transactions on Very Large Scale Integration (VLSI) Systems. IEEE Trans Circuits Syst I: Regul Pap 2024;31:1–5. [CrossRef]

A novel Bulk-driven current differential transconductance amplifier and its applications

Year 2025, Volume: 43 Issue: 1, 62 - 72, 28.02.2025

Abstract

This research proposes a novel, more efficient bulk-driven current differential transconductance amplifier (BDCDTA) for low-voltage, low-power applications. The proposed design consists of a current difference unit followed by a transconductance amplifier, which utilizes a split transistor network approach to obtain high transconductance. In the biasing circuit, a current source and a split network are also incorporated, allowing the BDCDTA characteristics to be tuned as needed by properly selecting its value and the number of transistors. To demonstrate the capabilities of the proposed BDCDTA, a biquad filter is constructed. Furthermore, as a new BDCDTA application, frequency agile filters are also implemented. The frequency-agile filter, which has only three active elements, is simple to integrate, and the center frequency can easily be electronically adjusted by changing the bias current amount. The simulations are performed using PSPICE 180 nm CMOS technology parameters. All calculations and simulated outcomes validate the overall performance and potential of the presented circuit and its applications.

References

  • REFERENCES
  • [1] Biolek D. CDTA-Building Block for Current- Mode Analog Signal Processing. Proceedings of the European Conference on Circuit Theory and Design, 2023. p. 397–400.
  • [2] Keskin AU, Biolek D, Hancioglu E, Biolkova V. Current-mode KHN filter employing current differencing transconductance amplifiers. Int J Electron Commun 2006;60:443–446. [CrossRef]
  • [3] Rai SK, Pandey R, Garg B, Patel SK. A novel design of current differencing transconductance amplifier with high transconductance gain and enhanced bandwidth. Turk J Electric Eng Comput Sci 2021;29:454–469. [CrossRef]
  • [4] Rai SK, Pandey R, Garg B. Design of current differencing transconductance amplifier using a novel approach of transconductance boosting for high frequency applications. J Circuits Syst Comput 2020;29:1–27. [CrossRef]
  • [5] Singh S, Jain S, Pandey R, Pandey N. Adaptive biased current differencing trans-conductance amplifier. Int J Electron Commun 2021;128:153494. [CrossRef]
  • [6] Bisariya S, Afzal N. Design and implementation of CDTA: a review. Sadhana 2020;45:282. [CrossRef]
  • [7] Arora Y, Aggarwal B, Kaur J. Low voltage high performance floating gate and quasi floating gate CDTA. J Eng Res 2022;10:144–152.
  • [8] Rana C, Prasad D, Afzal N. Low voltage floating gate MOSFET based current differencing transconductance amplifier and its applications. J Semiconduct 2018;39:094002. [CrossRef]
  • [9] Choraria K, Divya Basson I, Pandey R. CDTA Based Multimode SIMO Biquad Filter, International Conference on Communication and Signal Processing (ICCSP), IEEE, 2020. [CrossRef]
  • [10] Lakys Y, Godara B, Fabre A. Cognitive and Encrypted Communications, Part 2: A New Approach to Active Frequency-Agile Filters and Validation Results for an Agile Bandpass Topology in SiGe- BiCMOS. International Conference on Electrical and Electronics Engineering - ELECO 2009, Bursa, Turkey, 16-29, 2009.
  • [11] Pandey N, Sayal A, Choudhary R, Pandey R. Design of CDTA and VDTA Based Frequency Agile Filters. Adv Electron 2014;2014:1–15. [CrossRef]
  • [12] Alaybeyoglu E, Kuntman H. A new frequency agile filter structure employing CDTA for positioning systems and secure communications. Analog Integr Circuits Signal Process 2016;89:693–703. [CrossRef]
  • [13] Bisariya S, Afzal N. Current-Mode Full-Wave Rectifier Based on Transconductance-Boosted Bulk-Driven CDTA and Two Diodes, Signals, Machines and Automation. SIGMA 2022, Lecture Notes in Electrical Engineering. Singapore: Springer; 2023. p. 487–496. [CrossRef]
  • [14] Das R, Paul SK. Resistorless Electronically Tunable Quadrature Oscillator Using Single CDTA. Lecture Notes in Networks and Systems. Singapore: Springer Science and Business Media Deutschland GmbH, 2021. p. 381–387. [CrossRef]
  • [15] Jin J, Wang C. CDTA-based electronically tunable current-mode quadrature oscillator. Int J Electron 2014;101:1086–1095. [CrossRef]
  • [16] Das R, Bhowmick B, Paul P. Current Differencing Transconductance Amplifier (CDTA) Based Current-Mode Quadrature Oscillator. Advances in Computer, Communication, and Control, Lecture Notes in Networks and Systems. Singapore: Springer; 2019. p. 41. [CrossRef]
  • [17] Chien HC, Wang JM. Dual-mode resistorless sinusoidal oscillator using single CCCDTA. Microelectronics J 2013;44:216–224. [CrossRef]
  • [18] Xia Z, Wang C, Jin J, Du S, Lin H, Yang H. Novel AM/FM/ASK/FSK/PSK/QAM signal generator based on a digitally programmable CDTA. Circuits Syst Signal Process 2015;34:1635–1653. [CrossRef]
  • [19] Biolek D, Vavra J, Keskin AU. CDTA-Based Capacitance Multipliers. Circuits Syst Signal Process 2019;38:1466–1481. [CrossRef]
  • [20] Sharma VK, Parveen T, Ansari MS. Four quadrant analog multiplier based memristor emulator using single active element. Int J Electron Commun 2021;130:153575. [CrossRef]
  • [21] Tangsrirat W, Pukkalanun T, Mongkolwai P, Surakampontorn W. Simple current-mode analog multiplier, divider, square-rooter and squarer based on CDTAs. Int J Electron Commun 2011;65:198–203. [CrossRef]
  • [22] Silapan P, Siripruchyanun, M. (2011) Fully and electronically controllable current-mode Schmitt triggers employing only single MO-CCCDTA and their applications. Analog Integr Circuits Signal Process 2011;68:111–128. [CrossRef]
  • [23] Siripruchyanun M, Jaikla W. A current-mode analog multiplier/divider based on CCCDTA. Int J Electron Commun 2008;62:223–227. [CrossRef]
  • [24] Belen MA, Mahouti P, Partal H, Demirel S, Gunes F. Design and simulation of a tunable bandpass filter using varactor diodes for wireless and radar applications. Sigma J Eng Nat Sci 2015;33:86–93.
  • [25] Yuce E. Design of universal current-mode filter employing CCII+s. Sigma J Eng Nat Sci 2007;25:247–258.
  • [26] Khateb F, Biolek D. Bulk-driven current differencing transconductance amplifier. Circuits Syst Signal Process 2011;30:1071–1089. [CrossRef]
  • [27] Khateb F, Kumngern M, Spyridon V, Psychalinos C. Differential Difference Current Conveyor Using Bulk-Driven Technique for Ultra-Low- Voltage Applications. Circuits Syst Signal Process 2014;33:159–176. [CrossRef]
  • [28] Blalock BJ, Allen, PE, Rincon, Mora GA. Designing 1-V op amps using standard digital CMOS technology. IEEE Trans Circuits Systems II 1998;45:769–780. [CrossRef]
  • [29] Akbari, M., Hussein, S.M., Hashim, Y., Tang, K.T., (2021) An enhanced ınput differential pair for low-voltage bulk-driven amplifiers. IEEE Trans Very Large Scale Integr VLSI Syst 2021;29:1601–1611. [CrossRef]
  • [30] Kulej T, Khateb F, Arbet D. A 0.3-V High Linear Rail-to-Rail Bulk-Driven OTA in 0.13 μm CMOS. IEEE Transactions on Circuits and Systems II: Express Briefs 2022;69:2046–2050. [CrossRef]
  • [31] Khateb F, Kumngern M, Kulej T. 0.5 V Differential Difference Transconductance Amplifier and its Application in Voltage-Mode Universal Filter. IEEE 2022;10:43209–43220. [CrossRef]
  • [32] Ballo A, Grasso AD, Pennisi S. A 0.3-V 8.5-μA Bulk- Driven OTA. IEEE Transactions on Very Large Scale Integration (VLSI) Systems. IEEE Trans Circuits Syst I: Regul Pap 2024;31:1–5. [CrossRef]
There are 33 citations in total.

Details

Primary Language English
Subjects Clinical Sciences (Other)
Journal Section Research Article
Authors

Shailendra Bisariya This is me 0000-0003-4834-9618

Neelofer Afzal This is me 0009-0002-0653-7063

Submission Date September 8, 2023
Publication Date February 28, 2025
Published in Issue Year 2025 Volume: 43 Issue: 1

Cite

Vancouver Bisariya S, Afzal N. A novel Bulk-driven current differential transconductance amplifier and its applications. SIGMA. 2025;43(1):62-7.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK https://eds.yildiz.edu.tr/sigma/