Research Article
BibTex RIS Cite

Lifts of connections to the bundle of (1,1) type tensor frames

Year 2021, Volume: 39 Issue: 2, 177 - 183, 02.06.2021

Abstract

In this paper we consider the bundle of (1,1) type tensor frames over a smooth manifold, define the horizontal and complete lifts of symmetric linear connection into this bundle. Also we study the properties of the geodesic lines corresponding to the complete lift of the linear connection and investigate the relations between Sasaki metric and lifted connections on the bundle of (1,1) type tensor frames.

References

  • [1] L. A. Cordero, C. T. Dodson and Manuel de Leon, Differential Geometry of Frame Bundles, Mathematics and its Applications, Kluwer Academic Publishers Group, Dordrecht, 1989.
  • [2] L. A. Cordero and Manuel de Leon, Horizontal lift of connection to the frame bundle, Boll. Un. Mat. Ital 6 (1984), 223-240.
  • [3] H. D. Fattayev, The lifts of affine connections to the bundle of (2,0) type contra-variant tensors, J. of Qafqaz Univ., 19(2007), 116-119.
  • [4] H. D. Fattayev, Some problems of differential geometry of the bundle of affinor frames, News of Baku Univ., Physico-Math. Sci., 1(2018), 45-57.
  • [5] H. D. Fattayev, The geodesic lines of the lifts of affine connections in the bundle of (2,0) type contravariant tensors, News of Baku Univ., Physico-Math. Sci., 3(2007) 52-57.
  • [6] J. Kurek, On a horizontal lift of a linear connection to the bundle of linear frames, Ann. Univ. Marie Curie-Skladovska. Sectio A., XLI(1097), 31-37.
  • [7] A. Mağden and A. A. Salimov, Geodesics for complete lifts of affine connections in tensor bundles, Appl. Math. and Comp., 151(2004), no. 3, 863-868.
  • [8] K. P. Mok, Metrics and connections on the cotangent bundle, Kodai Math. Sem. Rep., 28 (1977), 226-238.
  • [9] K. P. Mok, Complete lifts of tensor fields and connections to the frame bundle, Proc. London Math. Soc., 38(1979), no. 3, 72-88.
  • [10] L. Rŷparovâ and J. Mikeš, On geodesic bifurcations. Proceedings of the Eighteenth International Conference on Geometry, Integrability and Quantization, Ivail M. Mladenov, Couwu Mend and Akira Yoshioha, eds. (Sofia: Avangard Prima, (2017), 217-224.
  • [11] A. A. Salimov and H. D. Fattayev, Connections On The Coframe Bundle, Inter. Elect. J. of Geom 12(2019), no. 1, 93-101.
  • [12] A. A. Salimov, A. Gezer and K. Akbulut, Geodesics of Sasakian metrics on tensor bundles, Mediterr. J. Math., 6(2009), no 2, 137-149.
  • [13] A. A. Salimov and S. Kazimova, Geodesics of the Cheeger-Gromoll metric, Turkish J. Math., 33(2009), no. 1, 99-105.
  • [14] S. Sasaki, On the differential geometry of tangent bundles of Riemannian Manifolds, Tohoku Math. J., 1(1966), no. 3, 338-354.
  • [15] K. Yano and S. Ishihara, Tangent and cotangent bundles, Marsel Dekker, Inc., New York, 1973.
  • [16] K. Yano and S. Kobayashi, Prolongations of tensor fields and connections to tangent bundles, 1. General theory, J. Math. Soc. Japan, 18(1966), no 2,194-210.
  • [17] K. Yano and S.Ishihara, Horizontal lifts of tensor fields and connections to tangent bundles, J. Math. and Mech 16(1967), 1015-1030.
  • [18] K. Yano and E. M. Patterson, Vertical and complete lifts from a manifold to its cotangent bundle, J. Math. Soc. Japan, 19 (1967), 91-113.
  • [19] K. Yano and E. M
There are 19 citations in total.

Details

Primary Language English
Journal Section Technical Note
Authors

Habil Fattayev1 This is me 0000-0003-0861-3904

Haşim Çayır This is me 0000-0003-0348-8665

Publication Date June 2, 2021
Submission Date September 27, 2021
Published in Issue Year 2021 Volume: 39 Issue: 2

Cite

Vancouver Fattayev1 H, Çayır H. Lifts of connections to the bundle of (1,1) type tensor frames. SIGMA. 2021;39(2):177-83.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK https://eds.yildiz.edu.tr/sigma/