Research Article
BibTex RIS Cite
Year 2020, Volume: 38 Issue: 4, 1977 - 1986, 05.10.2021

Abstract

References

  • [1] Türkiye Metalurji Mühendisleri Odası, “Alüminyum Raporu”, Metalurji Dergisi, V:137, p.2-4.
  • [2] Awotunde M., Adegbenjo A., Obadele B., Okoro M., Shongwe B., Olubambi P., (2019), Influence of sintering methods on the mechanical properties of aluminium nanocomposites reinforced with carbonaceous compounds: A review, J Mater Res Technol, https://doi.org/10.1016/j.jmrt.2019.01.026
  • [3] Altuner S., Keleşoğlu E., (2012) Production of Y2O3 coated Al2O3 reinforced aluminum matrix composites and the coating interface effects over wettability properties, Sigma Journal of Engineering and Natural Sciences, 30: 252-258.
  • [4] Health and Safety Executive (HSE). (2013). Using Nanomaterials at Work – Including Carbon (CNTs) and Other Biopersistent High Aspect Ratio Nanomaterials (HARNs). Publication HSG272. London: HSE. www.hse.gov.uk/pubns/books/hsg272.pdf (accessed 7 May 2019).
  • [5] Li, J., Zhang, X., Geng, L., (2019), Effect of heat treatment on interfacial bonding and strengthening efficiency of graphene in GNP/Al composites, Composites: Part A, doi: https://doi.org/10.1016/ j.compositesa.2019.04.010
  • [6] Rong Y., He H.P., Zhang L., Li N., Zhu Y.C., (2018), Molecular dynamics studies on the strengthening mechanism of Al matrix composites reinforced by graphene nanoplatelets, Computational Materials Science, 153 p.48-56.
  • [7] Scaffaro R. Botta L. Maio A. Mistretta M. Mantia F. (2016), Effect of Graphene Nanoplatelets on the Physical and Antimicrobial Properties of Biopolymer-Based Nanocomposites, Materials (Basel), 9(5): 351.
  • [8] Wei. K., Leng T., Keat Y., Osman H., Rasidi M., (2019), The potential of natural rubber (NR) in controlling morphology in two- matrix epoxy/NR/graphene nano-platelets (GNP) systems. Polymer Testing, 77:105905.
  • [9] Küçükyıldırım B., Akdoğan Eker A., (2012), Comparison of calculated prediction model results with experimental strengths of carbon nantube reinforced aluminum matrix composite materials, Sigma Journal of Engineering and Natural Sciences, 30: 364-373.
  • [10] Alicanoğlu P., Ulusoy Ç., Sponza D., (2017), Effect of Graphene- TiO2 on the photodegradation of olive mill effluent and recovery of Graphene- TiO2, Sigma Journal of Engineering and Natural Sciences, 8 (3), 227-234.
  • [11] Gavas M.Yaşar M. &Aydın M. & Altunpak Y., (2011), Üretim Yöntemleri ve İmalat Teknolojileri, Seçkin Yayıncılık, Ankara, Türkiye, p.205-207, p.240.
  • [12] Nas E. & Gökkaya H. & Sur G. Sıcak Presleme Yöntemi Kullanılarak Kompozit Malzemelerin Üretilebilirliği Üzerine Bir Değerlendirme. Karaelmas Science and Engineering Journal, V:3, p.56-65.
  • [13] Balıkesir University, Engineering Faculty, Mehcanical Engineering Department, http://w3.balikesir.edu.tr/~ay/dersler/Dovme-Hadde-Extruzyon.pdf , p.49-50.
  • [14] Informa Healthcare USA, Drug Development and Industrial Pharmacy (2007), Pharmaceutical Applications of Hot-Melt Extrusion: Part I, USA (accessed 6 May 2019)
  • [15] Li R.T., Wang Z.Y., Sun W., Hu H.I., Khor K.A., Wang Y., Dong Z.I., (2019), Microstructure and strengthening mechanisms in the Al/Al–Cu–Cr–Fe composites consolidated using spark plasma sintering, Materials Characterization, 109917.
  • [16] Huang J.-L., Nayak P., (2013) Advances in Ceramic Matrix Composites. Ed: I. M. Low, Strengthening alumina ceramic matrix nanocomposites using spark plasma sintering, Woodhead Publishing, Cambridge, United Kingdom.
  • [17] Sakarya University, Engineering Faculty, (2015), http://content.lms.sabis.sakarya.edu.tr/Uploads/48939/37455/sinterleme_2015.pdf
  • [18] Pérez-Bustamante R., Bolaños-Morales D., Bonilla-Martínez J., Estrada-Guel I., Martínez-Sánchez R., (2014) Microstructural and hardness behavior of graphene-nanoplatelets/ aluminum composites synthesized by mechanical alloying. Journal of Alloys and Compounds.
  • [19] Liu J., Khan U., Coleman J., Fernan- dez B., Rodriguez P., Naher S., Brabazon D., (2016), Graphene oxide and graphene nanosheet reinforced aluminium matrix composites: Powder synthesis and prepared com- posite characteristics, doi: 10.1016/j.matdes.2016.01.031
  • [20] Wang J., Li Z., Fan G., Pan H., Chen Z., Zhang D. Reinforcement with graphene nanosheets in aluminum matrix composites, Scripta Materialia. 2016, 66 (2012) 594–597.
  • [21] Rashad M., Pan F., Tang A., Asif M. Effect of Graphene Nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method, Progress in Natural Science: Materials International. 2014, https://doi.org/10.1016/j.pnsc.2014.03.012
  • [22] Yang W., Zhao Q., Xin L., Qiao J., Zou J., Shao P., Yu Z., Zhang Q., Wu G., (2017), Microstructure and mechanical properties of graphene nanoplates reinforced pure Al matrix composites prepared by pressure infiltration method, Journal of Alloys and Compounds, doi: 10.1016/ j.jallcom.2017.10.283
  • [23] Li M., Gao H., Liang., Gu S., You W., Shu D., Wang J., Sun B. (2018), Microstructure evolution and properties of graphene nanoplatelets reinforced aluminum matrix composites, Materials Characterization., https://doi.org/10.1016/j.matchar.2018.04.007
  • [24] Bisht A., Srivastava M., R M., Lahiri L. and Lahiri D., (2017), Strengthening mechanism in graphene nanoplatelets reinforced aluminum composite fabricated through spark plasma sintering, Materials Science & Engineering A, http://dx.doi.org/10.1016/j.msea.2017.04.009
  • [25] Li J, Zhang X., Geng L., (2018), Improving graphene distribution and mechanical properties of GNP/Al composites by cold drawing, Materials and Desing, 144: 159-168, https://doi.org/10.1016/j.matdes.2018.02.024
  • [26] Wang J., Guo L., Lin W., Chen J., Liu C., Chen S., Zhang S., Zhen T., (2019) Effect of the graphene content on the microstructures and properties of graphene/aluminum composites, New Carbon Materials, 34(3): 275-285.
  • [27] Turan M. (2019). Investigation of mechanical properties of carbonaceous (MWCNT, GNPs and C60) reinforced hot-extruded aluminum matrix composites. Karabuk University, Metallurgical and Materials Engineering Department, Karabuk, Turkey.
  • [28] Awotunde M., Adegbenjo A., Obadele B., Okoro M., Shongwe B., Olubambi P., (2019) Influence of sintering methods on the mechanical properties of aluminium nanocomposites reinforced with carbonaceous compounds: A review. J mater res technol., 8(2):2432–2449.

INVESTIGATION OF SINTERING CONDITIONS AND THE GNP ADDITIONS ON ALUMINUM COMPACTS

Year 2020, Volume: 38 Issue: 4, 1977 - 1986, 05.10.2021

Abstract

Today, due to its lightness and superior properties, the use of Aluminum (Al) materials has increased considerably. In the production of Powder Metal (PM) or nanomaterials, it is possible to form the materials required by the additives to be added into the main composition. When recent studies investigated, it has been seen that the Graphene NanoPlate (GNP) additive improves the mechanical properties of almost all materials. In this review study, the properties of GNP added to Aluminum PM and Nanomaterials are investigated. Also, the mechanical properties of Al-GNP materials sintered with different methods such as hot pressing, hot extrusion, and plasma sintering are investigated and compared among themselves.

References

  • [1] Türkiye Metalurji Mühendisleri Odası, “Alüminyum Raporu”, Metalurji Dergisi, V:137, p.2-4.
  • [2] Awotunde M., Adegbenjo A., Obadele B., Okoro M., Shongwe B., Olubambi P., (2019), Influence of sintering methods on the mechanical properties of aluminium nanocomposites reinforced with carbonaceous compounds: A review, J Mater Res Technol, https://doi.org/10.1016/j.jmrt.2019.01.026
  • [3] Altuner S., Keleşoğlu E., (2012) Production of Y2O3 coated Al2O3 reinforced aluminum matrix composites and the coating interface effects over wettability properties, Sigma Journal of Engineering and Natural Sciences, 30: 252-258.
  • [4] Health and Safety Executive (HSE). (2013). Using Nanomaterials at Work – Including Carbon (CNTs) and Other Biopersistent High Aspect Ratio Nanomaterials (HARNs). Publication HSG272. London: HSE. www.hse.gov.uk/pubns/books/hsg272.pdf (accessed 7 May 2019).
  • [5] Li, J., Zhang, X., Geng, L., (2019), Effect of heat treatment on interfacial bonding and strengthening efficiency of graphene in GNP/Al composites, Composites: Part A, doi: https://doi.org/10.1016/ j.compositesa.2019.04.010
  • [6] Rong Y., He H.P., Zhang L., Li N., Zhu Y.C., (2018), Molecular dynamics studies on the strengthening mechanism of Al matrix composites reinforced by graphene nanoplatelets, Computational Materials Science, 153 p.48-56.
  • [7] Scaffaro R. Botta L. Maio A. Mistretta M. Mantia F. (2016), Effect of Graphene Nanoplatelets on the Physical and Antimicrobial Properties of Biopolymer-Based Nanocomposites, Materials (Basel), 9(5): 351.
  • [8] Wei. K., Leng T., Keat Y., Osman H., Rasidi M., (2019), The potential of natural rubber (NR) in controlling morphology in two- matrix epoxy/NR/graphene nano-platelets (GNP) systems. Polymer Testing, 77:105905.
  • [9] Küçükyıldırım B., Akdoğan Eker A., (2012), Comparison of calculated prediction model results with experimental strengths of carbon nantube reinforced aluminum matrix composite materials, Sigma Journal of Engineering and Natural Sciences, 30: 364-373.
  • [10] Alicanoğlu P., Ulusoy Ç., Sponza D., (2017), Effect of Graphene- TiO2 on the photodegradation of olive mill effluent and recovery of Graphene- TiO2, Sigma Journal of Engineering and Natural Sciences, 8 (3), 227-234.
  • [11] Gavas M.Yaşar M. &Aydın M. & Altunpak Y., (2011), Üretim Yöntemleri ve İmalat Teknolojileri, Seçkin Yayıncılık, Ankara, Türkiye, p.205-207, p.240.
  • [12] Nas E. & Gökkaya H. & Sur G. Sıcak Presleme Yöntemi Kullanılarak Kompozit Malzemelerin Üretilebilirliği Üzerine Bir Değerlendirme. Karaelmas Science and Engineering Journal, V:3, p.56-65.
  • [13] Balıkesir University, Engineering Faculty, Mehcanical Engineering Department, http://w3.balikesir.edu.tr/~ay/dersler/Dovme-Hadde-Extruzyon.pdf , p.49-50.
  • [14] Informa Healthcare USA, Drug Development and Industrial Pharmacy (2007), Pharmaceutical Applications of Hot-Melt Extrusion: Part I, USA (accessed 6 May 2019)
  • [15] Li R.T., Wang Z.Y., Sun W., Hu H.I., Khor K.A., Wang Y., Dong Z.I., (2019), Microstructure and strengthening mechanisms in the Al/Al–Cu–Cr–Fe composites consolidated using spark plasma sintering, Materials Characterization, 109917.
  • [16] Huang J.-L., Nayak P., (2013) Advances in Ceramic Matrix Composites. Ed: I. M. Low, Strengthening alumina ceramic matrix nanocomposites using spark plasma sintering, Woodhead Publishing, Cambridge, United Kingdom.
  • [17] Sakarya University, Engineering Faculty, (2015), http://content.lms.sabis.sakarya.edu.tr/Uploads/48939/37455/sinterleme_2015.pdf
  • [18] Pérez-Bustamante R., Bolaños-Morales D., Bonilla-Martínez J., Estrada-Guel I., Martínez-Sánchez R., (2014) Microstructural and hardness behavior of graphene-nanoplatelets/ aluminum composites synthesized by mechanical alloying. Journal of Alloys and Compounds.
  • [19] Liu J., Khan U., Coleman J., Fernan- dez B., Rodriguez P., Naher S., Brabazon D., (2016), Graphene oxide and graphene nanosheet reinforced aluminium matrix composites: Powder synthesis and prepared com- posite characteristics, doi: 10.1016/j.matdes.2016.01.031
  • [20] Wang J., Li Z., Fan G., Pan H., Chen Z., Zhang D. Reinforcement with graphene nanosheets in aluminum matrix composites, Scripta Materialia. 2016, 66 (2012) 594–597.
  • [21] Rashad M., Pan F., Tang A., Asif M. Effect of Graphene Nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method, Progress in Natural Science: Materials International. 2014, https://doi.org/10.1016/j.pnsc.2014.03.012
  • [22] Yang W., Zhao Q., Xin L., Qiao J., Zou J., Shao P., Yu Z., Zhang Q., Wu G., (2017), Microstructure and mechanical properties of graphene nanoplates reinforced pure Al matrix composites prepared by pressure infiltration method, Journal of Alloys and Compounds, doi: 10.1016/ j.jallcom.2017.10.283
  • [23] Li M., Gao H., Liang., Gu S., You W., Shu D., Wang J., Sun B. (2018), Microstructure evolution and properties of graphene nanoplatelets reinforced aluminum matrix composites, Materials Characterization., https://doi.org/10.1016/j.matchar.2018.04.007
  • [24] Bisht A., Srivastava M., R M., Lahiri L. and Lahiri D., (2017), Strengthening mechanism in graphene nanoplatelets reinforced aluminum composite fabricated through spark plasma sintering, Materials Science & Engineering A, http://dx.doi.org/10.1016/j.msea.2017.04.009
  • [25] Li J, Zhang X., Geng L., (2018), Improving graphene distribution and mechanical properties of GNP/Al composites by cold drawing, Materials and Desing, 144: 159-168, https://doi.org/10.1016/j.matdes.2018.02.024
  • [26] Wang J., Guo L., Lin W., Chen J., Liu C., Chen S., Zhang S., Zhen T., (2019) Effect of the graphene content on the microstructures and properties of graphene/aluminum composites, New Carbon Materials, 34(3): 275-285.
  • [27] Turan M. (2019). Investigation of mechanical properties of carbonaceous (MWCNT, GNPs and C60) reinforced hot-extruded aluminum matrix composites. Karabuk University, Metallurgical and Materials Engineering Department, Karabuk, Turkey.
  • [28] Awotunde M., Adegbenjo A., Obadele B., Okoro M., Shongwe B., Olubambi P., (2019) Influence of sintering methods on the mechanical properties of aluminium nanocomposites reinforced with carbonaceous compounds: A review. J mater res technol., 8(2):2432–2449.
There are 28 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Erim Akkaya This is me 0000-0002-1914-304X

Uğur Çavdar This is me 0000-0002-3434-6670

Publication Date October 5, 2021
Submission Date April 8, 2020
Published in Issue Year 2020 Volume: 38 Issue: 4

Cite

Vancouver Akkaya E, Çavdar U. INVESTIGATION OF SINTERING CONDITIONS AND THE GNP ADDITIONS ON ALUMINUM COMPACTS. SIGMA. 2021;38(4):1977-86.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK https://eds.yildiz.edu.tr/sigma/